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Organizational Information

Course Webpage

http://www.spsc.tugraz.at/courses/adaptive/

You can possibly find a newer version of this document there.

Newsgroup

There is a newsgroup for the discussion of all course-relevant topics at:
news:tu-graz.lv.adaptive

Schedule

Eight or nine meetings (≈ 90 minutes each) on Tuesdays from 12:15 to 13:45 in lecture hall i11.
Please refer to TUGraz.online or our website to get the actual schedule.

Grading

Three homework assignments consisting of analytical problems as well as MATLAB simulations
(30 to 35 points each, 100 points in total without bonus problems). Solving bonus problems gives
additional points. Work should be done in pairs.

achieved points grade

≥ 88 1
75 . . . 87 2
62 . . . 74 3
49 . . . 61 4
≤ 48 5

A delayed submission results in a penalty of 10 points per day. Submitting your work as a
LATEX-document can earn you up to 3 (additional) points.

Prerequisites

• (Discrete-time) Signal Processing (FIR/IIR Filters, z-Transform, DTFT, . . . )

• Stochastic Signal Processing (Expectation Operator, Correlation, . . . )

• Linear Algebra (Matrix Calculus, Eigenvector/-value Decomposition, Gradient, . . . )

• MATLAB
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1. The Optimum Linear Filtering Problem—Least-Squares and

Wiener Filters

1.1. Transversal Filter

We write the convolution sum as an inner vector product

y[n] =
N−1∑

k=0

c∗k[n]x[n− k] = cH[n]x[n].

where
n . . . time index, n ∈ Z

x[n] . . . input sample at time n
y[n] . . . output sample at time n
(·)H . . . Hermitian transpose

x[n] =
[
x[n], x[n− 1], . . . , x[n−N + 1]

]T
. . . tap-input vector at time n

cH[n] =
[
c∗0[n], c

∗

1[n], . . . , c
∗

N−1[n]
]

. . . Hermitian transpose of coefficient vector
at time n (time-varying system)

N . . . number of coefficients, length of x[n]
N − 1 . . . number of delay elements, filter order

x[n]

y[n]

c∗0[n] c∗1[n] c∗2[n] c∗
N−1[n]

z
−1

z
−1

z
−1b b b b b b

b b b

x[n− 1] x[n− 2]

x[n−N + 1]

Figure 1: Transversal filter structure.

Special case: c[n] = c ⇒ time-invariant FIR filter of order N − 1

1.2. The Linear Filtering Problem

The problem is to approximate a desired signal d[n] by filtering the input signal x[n]. For
simplicity, we first consider a fixed (i.e., non-adaptive) filter c[n] = c.

cx[n] e[n]

d[n]

-

y[n]

Figure 2: The linear filtering problem.

The goal is to find the optimum filter coefficients c. But what does optimum mean?
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1.3. Least-Squares Filters

Consider a (finite) set of observations of {x[n]} and of {d[n]} is given (e.g., all past samples from
n = 0 to now). We define a deterministic cost function as

JLS(c) =
n∑

k=0

|e[k]|2,

and the problem is to find those filter coefficients that minimize this cost function:

cLS = argmin
c

JLS(c).

Problem 1.1. The following input/output measurements performed on a black box are
given:

?x[n] d[n]

n x[n] d[n]
0 -1 -3
1 -1 -5
2 1 0

Find the optimum Least-Squares Filter with N = 2 coefficients. Use matrix/vector notation

for the general solution. Note that the input signal x[n] is applied to the system at time

n = 0, i.e., x[−1] = 0.

Problem 1.2. The previous problem has demonstrated that gradient calculus is impor-
tant. To practice this calculus, determine ∇cJ(c) for the following cost functions:

(i) J(c) = K

(ii) J(c) = cTv = vTc = 〈c, v〉

(iii) J(c) = cTc = ||c||2 = 〈c, c〉

(iv) J(c) = cTAc, where AT = A .

MATLAB/Octave Exercise 1.1: Exponentially-Weighted Least Squares

(i) For the linear filtering problem shown before, derive the optimum filter coefficients c
in the sense of exponentially weighted least squares, i.e., find c[n] = argminc J(c, n),
where the cost function is

J(c, n) =

n∑

k=n−M+1

λn−k · |e[k]|2

with the so-called ‘forgetting factor’ 0 < λ ≤ 1. Use vector/matrix notation. Hint:
a diagonal weighting matrix may be useful. Explain the effect of the weighting and
answer for what scenario(s) such an exponential weighting may be meaningful.

(ii) Write a MATLAB function that computes the optimum filter coefficients in the sense
of exponentially weighted least squares according to the following specifications:

function c = ls_filter( x, d, N, lambda)

% x ... input signal

% d ... desired output signal (of same length as x)

% N ... number of filter coefficients

% lambda ... optional "forgetting factor" 0<lambda<=1 (default =1)
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(iii) We now identify a time-varying system. To this end, implement a filter with the
following time-varying 3-sample impulse response:

h[n] =




1
−1 + 0.002 · n
1− 0.002 · n


 .

Generate 1000 input/output sample pairs (x[n] and d[n] for n = 0 . . . 999) using sta-
tionary white noise with zero mean and variance σ2

x = 1 as the input signal x[n]. All
delay elements are initialized with zero (i.e., x[n] = 0 for n < 0). The adaptive filter
has also 3 coefficients (N = 3). By calling the MATLAB function ls filter with
length-M segments of both x[n] and d[n], the coefficients of the adaptive filter c[n] for
n = 0 . . . 999 can be computed. Visualize and compare the obtained coefficients with
the true impulse response. Try different segment lengths M and different forgetting
factors λ. Compare and discuss your results and explain the effects of M and λ (e.g.,
M ∈ {10, 50}, λ ∈ {1, 0.1}).

1.4. The Wiener Filter

We consider x[n] and d[n] as (jointly) stationary stochastic processes1. The cost function is now
stochastic:

JMSE(c) = E
{
|e[n]|2

}
. . . Mean Squared Error (MSE)

and the optimum solution in the MSE sense is obtained as:

cMSE = argmin
c

JMSE(c).

Problem 1.3. The autocorrelation sequence of a stochastic process x[n] is defined as

rxx[n, k] := E {x[n+ k]x∗[n]} .

If x[n] is stationary, then the autocorrelation sequence does not depend on time n, i.e.,

rxx[k] = E {x[n+ k]x∗[n]} .

Calculate the autocorrelation sequence for the following signals (A and θ are constant and ϕ
is uniformly distributed over (−π, π]):

(i) x[n] = A sin(θn)

(ii) x[n] = A sin(θn+ ϕ)

(iii) x[n] = Ae(θn+ϕ)

Problem 1.4. For the optimum linear filtering problem, find cMSE (i.e., the Wiener-Hopf

equation). What statistical measurements must be known to get the solution?

Problem 1.5. Assume that x[n] and d[n] are a jointly wide-sense stationary, zero-mean
processes.

(i) Specify the autocorrelation matrix Rxx = E
{
x[n]xT [n]

}
.

(ii) Specify the cross-correlation vector p = E {d[n]x[n]}.

1Note that if two processes are jointly WSS, they are WSS. The converse, however, is not necessarily true (i.e.,
two WSS processes need not be jointly WSS).
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(iii) Assume that d[n] is the output of a linear FIR filter to the input x[n], i.e., d[n] = hTx[n].
Furthermore, dim (h) = dim (c). What is the optimal solution in the MSE sense?

Problem 1.6. In order to get the MSE-optimal coefficients, the first N samples of rxx[k],
the auto-correlation sequence of x[n], and the cross-correlation between the tap-input vector
x[n] and d[n] need to be known. This and the next problem are to practice the computation
of correlations.

Let the input signal be x[n] = A sin(θn + ϕ), where ϕ is a random variable, uniformly
distributed over (−π, π].

(i) Calculate the auto-correlation sequence rxx[k].

(ii) Write the auto-correlation matrix Rxx for a Wiener-filtering problem with N = 1,
N = 2, and N = 3 coefficients.

(iii) Answer for these 3 cases, whether the Wiener-Hopf equation can be solved or not?

(iv) Repeat the last tasks for the following input signal: x[n] = Aej(θn+ϕ).

Problem 1.7. The input signal x[n] is now zero-mean white noise w[n] filtered by an FIR
filter with impulse response g[n].

g[n]w[n] x[n]

Find the auto-correlation sequence rxx[k].

Filtering with the Wiener filter allows us to make a few statements about the statistics of the
error signal:

Theorem 1 (Principle of Orthogonality). The estimate y[n] of the desired signal d[n] (stationary
process) is optimal in the sense of a minimum mean squared error if, and only if, the error e[n]
is orthogonal to the input x[n−m] for m = 0 . . . N − 1.

Proof. Left as an exercise.

Corollary 1. When the filter operates in its optimum condition, also the error e[n] and the
estimate y[n] are orthogonal to each other.

Proof. Left as an exercise.

Problem 1.8. Show that the minimum mean squared error equals

JMMSE = J(cMSE) = E
{
|d[n]|2

}
− pHR−1

xxp.

1.5. System Identification

We now apply the solution of the linear filtering problem to system identification. Let d[n] =
hHx[n], where h is the impulse response of the system to be identified.

Problem 1.9. Let the order of the unknown system be M − 1, and let the order of

the Wiener filter be N − 1, where N ≥ M . Determine the MSE-optimal solution under the

assumption that the autocorrelation sequence rxx[k] of the input signal is known.
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c

h

x[n] e[n]b

-

y[n]

Figure 3: The system identification problem in a noise-free environment.

Problem 1.10. Repeat the previous problem when the order of the unknown system is

M − 1 and the order of the Wiener filter is N − 1 with N < M . Use vector/matrix notation!

Problem 1.11. Let the order of the unknown system be 1 (d[n] = h0x[n] + h1x[n− 1])

but the Wiener filter is just a simple gain factor (y[n] = c0x[n]). Determine the optimum

value for this gain factor. The autocorrelation sequence rxx[k] of the input signal is known.

Consider the cases when x[n] is white noise and also when x[n] is not white.

1.6. System Identification in a Noisy Environment

In contrary to the previous scenario, we now consider the case where the output signal of the
system we want to identify is superimposed by a noise signal w[n], as depicted in Fig. 4.

c

h

x[n] e[n]

w[n]

b

-

y[n]

Figure 4: The system identification problem in a noisy environment.

The desired signal is now given as

d[n] = hHx[n] + w[n]

where h is the impulse response of the system to be identified and w[n] is stationary, additive
noise.

Problem 1.12. Show that the optimal coefficient vector of the Wiener filter equals the

impulse response of the system, i.e., cMSE = h if, and only if, w[n] is orthogonal to x[n−m]

for m = 0 . . . N − 1.
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Problem 1.13. Under what condition is the minimum mean squared error equal to

JMSE(cMSE) = E
{
|w[n]|2

}
?

1.7. Iterative Solution without Matrix Inversion—Gradient Search

Recall that for the optimal filtering problem the cost function evaluates to

JMSE(c) = E
{
|d[n]− cHx[n]|2

}
= E

{
|d[n]|2

}
− 2pHc+ cHRxxc

and that the gradient of this cost function with respect to the coefficient vector c equals

∇cJMSE(c) = 2 (Rxxc− p) .

In Problem 1.4 we used these expressions to derive the Wiener-Hopf solution, which required the
inversion of the autocorrelation matrix Rxx.

In contrary to that, the Gradient Search Method is an interative method which updates the
coefficient vector c[n] depending on the gradient of the cost function in a direction minimizing the
MSE. Thus, this iterative algorithm is also called theMethod of Steepest Descent. Mathematically,
the coefficient update rule is given by

c[n] = c[n− 1] + µ (p−Rxxc[n− 1])

where µ is a stepsize parameter and where the term in parentheses is the negative gradient, i.e.,

p−Rxxc[n− 1] = −∇cJMSE(c)
∣∣∣
c=c[n−1]

.

Problem 1.14. Assuming convergence, show that this algorithm converges toward the

MSE-optimal coefficient vector cMSE . Derive the range for the step size parameter µ for

which the algorithm is stable.

Problem 1.15. Calculate the convergence time constant(s) of the decay of the misalign-

ment vector v[n] = c[n] − cMSE (coefficient deviation) when the gradient search method is

applied.

Problem 1.16.

(i) Express the MSE as a function of the misalignment vector v[n] = c[n]− cMSE .

(ii) Find an expression for the learning curve JMSE [n] = JMSE(c[n]) when the gradient
search is applied.

(iii) Determine the time constant(s) of the learning curve.

Problem 1.17. Consider a noise-free system identification problem where both the
adaptive and the unknown transversal filter have 2 coefficients. The statistics of the input
signal are known as

Rxx =

[
1 1/2

1/2 1

]
.

The Gradient Method with µ = 1/2 is used to solve for the filter coefficients. The coefficients
of the unknown system are h = [2, 1]T.
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(i) Simplify the adaptation algorithm by substitution for p = E {x[n]d[n]} according to the
given system identification problem. Additionally, introduce the misalignment vector
v[n] and rewrite the adaptation algorithm such that v[n] is adapted.

(ii) The coefficients of the adaptive filter are initialized with c[0] = [0, −1]T. Find an
expression for v[n] either analytically or by calculation of some (three should be enough)
iteration steps. Do the components of v[n] show an exponential decay? If yes, determine
the corresponding time constant.

(iii) Repeat the previous task when the coefficients are initialized with c[0] = [0, 3]T. Do
the components of v[n] show an exponential decay? If yes, determine the corresponding
time constant.

(iv) Repeat the previous task when the coefficients are initialized with c[0] = [0, 0]T. Do
the components of v[n] show an exponential decay? If yes, determine the corresponding
time constant.

(v) Explain, why an exponential decay of the components of v[n] can be observed although
the input signal x[n] is not white.

2. Adaptive Transversal Filter Using The LMS Algorithm

2.1. The LMS Adaptation Algorithm

We now analyze the LMS adaptation algorithm, whose update rule is given as:

c[n] = c[n− 1] + µ e∗[n]x[n]

where
e[n] = d[n]− y[n] = d[n]− cH[n− 1]x[n]

c[n] . . . new coefficient vector
c[n− 1] . . . old coefficient vector

µ . . . step-size parameter
e[n] . . . error at time n
d[n] . . . desired output at time n
x[n] . . . tap-input vector at time n

c[n− 1]

z
−1

LMS

x[n]

d[n]

b

-

y[n]

c[n] e[n]

Figure 5: Adaptive transversal filter.
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How to choose µ? As it was shown in the lecture course, a sufficient (deterministic) stability
condition is given by

0 < µ <
2

||x[n]||2
∀n

where ||x[n]||2 is the tap-input energy at time n.

Note that the stochastic stability conditions in related literature, i.e.,

0 < µ <
2

E {||x[n]||2}
∀n

or

0 < µ <
2

Nσ2
x

for stationary input,

only ensure ‘stability on average’.

2.2. Normalized LMS Adaption Algorithm

To make the step size parameter independent of the energy of the input signal, the normalized
LMS can be used:

c[n] = c[n− 1] +
µ̃

α+ xH[n]x[n]
e∗[n]x[n]

where α is a small positive constant to avoid division by zero.

How to choose µ̃?

Here the algorithm can be shown to be stable if (sufficient stability condition)

0 < µ̃ < 2.

MATLAB/Octave Exercise 2.1: Write a MATLAB function y=lms1(x,d,N,mu)

which implements an adaptive transversal filter using LMS.

function y = lms1( x, d, N, mu)

%LMS1 Adaptive transversal filter using LMS

% y = lms1( x, d, N, mu)

% INPUT

% x ... vector with the samples of the input signal x[n], length(x) = xlen

% d ... vector with the samples of the desired output signal d[n]

% length(d) = xlen

% N ... number of coefficients

% mu .. step-size parameter

% OUTPUT

% y ... vector with the samples of the output signal y[n]

% size(y) = [ xlen, 1] ... column vector

Test your function using a constant input x[n] = 2 and a constant desired signal d[n] = 1 for

n = 0, . . . , 999. The adaptive filter should be zeroth-order, i.e., N = 1. Try different values

for µ. Plot x[n], y[n], and d[n] into the same figure by executing plot([x,y,d]) (note: x, y,

and d should be column vectors here).

MATLAB/Octave Exercise 2.2: Usually we are interested to see how the adaptation
of the coefficients works or how the error behaves over time. Therefore we need the function
[y,e,c]=lms2(x,d,N,mu) which provides us more output arguments. Extend the function
from MATLAB Exercise 2.1 by the additional output arguments.
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function [ y, e, c] = lms2( x, d, N, mu)

%LMS2 Adaptive transversal filter using LMS (for algorithm analysis)

% [y, e, c] = lms2( x, d, N, mu)

% INPUT

% x ... vector with the samples of the input signal x[n], length(x) = xlen

% d ... vector with the samples of the desired output signal d[n]

% length(d) = xlen

% N ... number of coefficients

% mu .. step-size parameter

% OUTPUT

% y ... vector with the samples of the output signal y[n]

% size(y) = [ xlen, 1] ... column vector

% e ... vector with the samples of the error signal e[n]

% size(y) = [ xlen, 1] ... column vector

% c ... matrix with the used coefficient vectors c[n]

% size(c) = [ N, xlen]

Test this function by applying the same input as in MATLAB Exercise 2.1 and plot the

squared error e2[n] versus time (learning curve).

MATLAB/Octave Exercise 2.3: Write the function [y,e,c]=nlms2(x,d,N,mu)

which implements the normalized LMS algorithm according to Section 2.2 and has the same

arguments as lms2().

2.3. System Identification Using an Adaptive Filter

c[n]

h

x[n]

w[n]

b

-

y[n]

e[n]

Figure 6: System identification using an adaptive filter and LMS.

Minimum Error, Excess Error, and Misadjustment If we can get only noisy measurements from
the unknown system

d[n] =
M−1∑

k=0

h∗k x[n− k] + w[n] ,

the MSE JMSE [n] = E
{
|e[n]|2

}
does not vanish completely if the time goes toward infinity.

We assume x[n] and w[n] are jointly stationary, uncorrelated processes. The remaining error
can be written as

lim
n→∞

JMSE(c[n]) = Jexcess + JMSE(cMSE)

where JMSE(cMSE) = σ2
w is the minimum MSE (MMSE), which would be achieved by the

Wiener-Hopf solution. The excess error (JMSE(cMSE)) is caused by a remaining misalignment

12



between the Wiener-Hopf solution and the coefficient vector at time n, i.e., it relates to v[n] 6= 0
(as it happens all the time for the LMS).

Finally, we define the ratio between the excess error and the MMSE as the misadjustment

M =
Jexcess

JMSE(cMSE)
≈

µNσ2
x

2
.

From the stability bounds on µ follows that 0 < M < 1.

Problem 2.1. Let τ̄ be the average convergence time constant defined by τ̄ = 1/µλ̄,
where λ̄ is the average of all N eigenvalues of Rxx. Show that the following trade-off between
convergence time, filter order, and misadjustment exists:

τ̄M =
N

2

As a consequence, a large filter order leads either to slow convergence or to a large misadjust-
ment.

MATLAB/Octave Exercise 2.4: For a noise-free system identification applica-
tion, write a MATLAB script to visualize the adaptation process both in the time
domain and in the frequency domain. Take the function lms2() from MATLAB Exer-
cise 2.2 and let x[n] be either normally distributed or uniformly distributed random numbers
with zero mean and unit variance (use the MATLAB code sqrt(12)*(rand(...)-0.5) or
randn(...)). Choose a proper value for the step-size parameter µ.

For the unknown system, you can take an arbitrary coefficient vector h 6= [0, 0, . . . , 0]T

and let the order of the adaptive filter N be the same as of the unknown system M . To
calculate d[n], use the MATLAB function filter(). To transform the impulse response h of
the unknown system and the instantaneous impulse response c[n] of the adaptive filter into
the frequency domain, use the MATLAB function freqz().

Additionally, modify your script and

• examine the case N > M (‘overmodeling’).

• examine the case N < M or when the unknown system is an IIR filter (‘undermodel-
ing’).

For the above cases, try white and also non-white input signals (pass the white x[n] through

a non-flat filter to make it non-white; do you need to recompute µ?). Compare your observa-

tions with the theoretical results from Problem 1.10 and Problem 1.9.

MATLAB/Octave Exercise 2.5: Persistent Excitation For the two-coefficient
case (N = M = 2), visualize the adaptation path in the c[n]-plane (c[n] = [c0[n], c1[n]]

T).
Let the unknown system be h = [1, 2]T. Use the normalized LMS algorithm (nlms2()) with
a proper µ̃ and compare the results for the following different input signals:

(i) x[n] = cos[0.5πn]

(ii) x[n] = cos[πn]

(iii) x[n] = cos[πn] + 2

(iv) x[n] = randn[n]

Describe your observations. Can the unknown system be identified successfully? Explain why

(or why not). See also Problem 1.6.
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MATLAB/Octave Exercise 2.6: Convergence Time Constant For a system
identification task such as in Fig. 6, we want to determine the convergence time constant τ
using the ensemble-averaged misalignment vector E {v[n]}.

For the input signal x[n], we take uniformly distributed random numbers with zero mean
and variance σ2

x. Choose a step-size µ according to the stability condition. For the unknown
system, let the number of coefficients M be 2 and set h0 and h1 to arbitrary non-zero values.
The number of coefficients of the adaptive filter N has to be equal to M .

Write a MATLAB script to produce the following plots:

(i) Effect of µ. For two different values for µ, plot

ln
E {vk[n]}

E {vk[0]}
versus n.

(ii) Effect of σ2
x. For two different values for σ2

x, plot the functions from the previous task
again.

(iii) What about non-white input signals? For example, let x[n] be an MA process (see
Appendix A) or a sinusoid (for the sinusoid we can introduce a random phase offset
such as in Problem 1.6, such that the ensemble-averaging yields a smooth curve). Note
that the signal power σ2

x should remain constant and should be a value from the last
task to allow comparisons. Transform v into its eigenvector space to obtain ṽ (use
either the known auto-correlation matrix or use the MATLAB function xcorr(); you
also might use eig()). Plot the obtained decoupled functions as in the previous tasks.

The convergence time constant τk should be measured automatically and printed into the

plots. Describe your observations.

MATLAB/Octave Exercise 2.7: Misadjustment Write a MATLAB script to
automatically calculate the misadjustment in a noisy system identification problem plotted
in Fig. 6. This script should also plot JMSE [n] (in a logarithmic scale) versus n.

Examine the effects of varying µ, σ2
x, and σ2

w. Describe your observations and create a
table with the following columns:

µ (given) σ2
x (given) σ2

w (given) limn→∞ JMSE [n] MSEEXCESS MISADJ
. . .

MATLAB/Octave Exercise 2.8: Tracking Repeat task (iii) of MATLAB Exer-

cise 1.1 and identify the time-varying system using the LMS algorithm. Examine the effect

of µ.

Problem 2.2. Convergence analysis of the LMS algorithm.

(i) Assuming convergence of the LMS algorithm

c[n] = c[n− 1] + µe∗[n]x[n],

find the limit c∞ of the sequence of coefficient vectors.

(ii) Show that the following expression for a sufficient condition for convergence is true in
the case of a noise-free system identification task

||v[n]||2 < ||v[n− 1]||2 ∀n

where v[n] is the misalignment vector v[n] = c[n]− c∞. Which requirements on µ can
be derived from this expression?

(iii) What happens when the environment is noisy?
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Problem 2.3. Joint Recursive Optimality. For a wide class of adaptation algorithms
(see [3] for more information), the underlying cost function J(c, n) can be written as

J(c, n) =
(
c− c[n− 1]

)T
G−1[n]

(
c− c[n− 1]

)
+ γ−1[n]

(
d[n]− cTx[n]

)2

where c is the new coefficient vector of the adaptive transversal filter and c[n−1] is the previous
one, x[n] is the tap-input vector, and d[n] is the desired output. Note that the expression
d[n] − cTx[n] is the a-posteriori error ǫ[n]. The weights G[n] and γ[n] are normalized such
that

γ[n] + xT[n]G[n]x[n] = 1,

and G[n] is symmetric (G[n] = GT[n]).

(i) Find a recursive expression to adapt c[n] given c[n − 1] such that the cost function
J(c, n) is minimized:

c[n] = argmin
c

J(c, n).

Note, this expression should contain the a-priori error e[n]

e[n] = d[n]− cT[n− 1]x[n]

and not the a-posteriori error (Hint: find the ratio between the a-posteriori and the
a-priori error first.).

(ii) Determine the weights G[n] and γ[n] for the case of the LMS algorithm and for the
case of the Normalized LMS algorithm.

(iii) Show that
min
c

J(c, n) = e2[n]

for all n > 0.

Problem 2.4. For a noisy system identification problem, the following two measurements
could be accomplished at the plant: σ2

x = 1 and σ2
d = 2. x[n] and w[n] can be assumed to

be stationary, zero-mean, white noise processes and orthogonal to each other. The unknown
system can be assumed to be linear and time-invariant. The adaptive filter has been specified
to have N = 100 coefficients, and we can assume that no undermodeling occurs. The LMS
algorithm is used to adapt the coefficients, and a maximum misadjustment of −10dB should
be reached.

(i) How should you choose the step size µ and what convergence time constant will be
obtained?

(ii) After applying the adaptive filter another measurement has been performed and an
error variance of σ2

e = 0.011 has been obtained. Calculate σ2
w and the ‘coefficient-to-

deviation ratio’ 10 log10
||h||2

||v||2 in dB (i.e., a kind of signal-to-noise ratio).

Problem 2.5. The Coefficient Leakage LMS Algorithm. We will investigate the
leaky LMS algorithm which is given by

c[n] = (1− µα)c[n− 1] + µe∗[n]x[n]

with the leakage parameter 0 < α ≪ 1.

Consider a noisy system identification task (proper number of coefficients) and assume the

input signal x[n] and the additive noise w[n] to be orthogonal. The input signal x[n] is zero-

mean white noise with variance σ2
x. Assume µ and α have been chosen to assure convergence.

Determine where this algorithm converges to (on average). Compare your solution with the

Wiener-Hopf solution. Also, calculate the average bias.
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3. Interference Cancelation

interference

source

-

adaptive

filter

signal

source
primary

sensor

reference

sensor

x[n]

h[n]

d[n] = w[n] + (x ∗ h)[n]

y[n] ≈ (x ∗ h)[n]

e[n] ≈ w[n]

w[n]

x[n]

Figure 7: Adaptive noise canceler.

The primary sensor (i.e., the sensor for the desired signal d[n]) receives the signal of interest w[n]
corrupted by an interference that went through the so-called interference path. When the
isolated interference is denoted by x[n] and the impulse response of the interference path
by h[n], the sensor receives

d[n] = w[n] + hTx[n].

For simplification we assume E {w[n]x[n− k]} = 0 for all k.

The reference sensor receives the isolated interference x[n].

The error signal is e[n] = d[n] − y[n] = w[n] + hTx[n] − y[n]. The adaptive filtering operation
is perfect if y[n] = hTx[n]. In this case the system output is e[n] = w[n], i.e., the isolated
signal of interest.

FIR model for the interference path: If we assume that h is the impulse response of an FIR
system (i.e., dimh = N) the interference cancelation problem is equal to the system iden-
tification problem.

MATLAB/Octave Exercise 3.1: Simulate an interference cancelation problem

according to Fig. 7 (e.g. “speaker next to noise source,” “50Hz interference in electrocardio-

graphy,” “baby’s heartbeat corrupted by mother’s” . . . ). Additionally, simulate the possibly

realistic scenario where a second cross path exists such that the reference sensor receives

x[n] + hT
2 w[n].

Problem 3.1. We use a first-order transversal filter to eliminate an interference of the
fAC = 50 Hz AC power supply from an ECG signal. The sampling frequency is fs (fs > 100
Hz).

(i) Using the method of equating the coefficients, express the optimum coefficients c0 and c1
that fully suppress the interference in terms of A := |H(ejθAC )| and ϑ := argH(ejθAC ),
i.e., in terms of the magnitude and the phase of the frequency response of the interfer-
ence path at the frequency of the interference.

(ii) Calculate the auto-correlation sequence rxx[k] of the reference input signal as a function
of the sampling frequency and build the auto-correlation matrix Rxx.
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(iii) Determine the cross-correlation vector p and solve the Wiener-Hopf equation to obtain
the MSE-optimal coefficients. Show that these coefficients are equal to those found in
(i).

(iv) Determine the condition number κ = λmax

λmin
of the auto-correlation matrix for the given

problem as a function of the sampling frequency. Is the unit delay in the transversal
filter a clever choice?

MATLAB/Octave Exercise 3.2: Canceling a Periodic Interference

90
shift

o

LMS

from 50Hz AC
power supply

reference input

ECG
output

−

from ECG preamplifier:
ECG signal + 50Hz interference

primary
input

y[n] e[n]

c0

c1

Figure 8: Adaptive notch filter.

To implement the filter structure shown in Fig. 8, you have to modify your MATLAB

function of the LMS algorithm. Instead of the transversal filter you need a 90◦-shifter. You

may use the MATLAB expression x90=imag(hilbert(x)). Compare the SNR of the primary

input signal and the SNR of the output signal. Measure the convergence time constant and

compare your result with the theory. What is the advantage of the 90◦-shifter over a unit-

delay element in a transversal filter (see also Problem 3.1)?

Problem 3.2. Consider the acoustic echo cancelation scenario below:

User 1
s1[n]

s2[n] (from User 2)

ŝ1[n] (to User 2)
−

c

b

s1[n] + (h ∗ s2)[n]

(i) Assuming that all s1 and s2 are jointly stationary and uncorrelated, derive the coeffi-
cient vector c optimal in the MSE sense.
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(ii) Given that the room has a dimension of 3 times 4 meters, and assuming that the speech
signals are sampled with fs = 8 kHz, what order should c have such that at least first-
order reflections can be canceled? Note, that physically the impulse response of the
room is infinite!

(iii) Assume the filter coefficients are updated using the LMS algorithm to track changes in
the room impulse response. What problems can occur?
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4. Adaptive Linear Prediction

4.1. Autoregressive spectrum analysis

w[n] S(z) b

cz
−1

x[n]
y[n]

e[n]
-

u[n] d[n]

P (z)

Figure 9: Linear prediction using an adaptive filter.

Let w[n] be a white input sequence, and let S(z) be an all-pole synthesis filter with difference
equation

u[n] = w[n]−
L∑

k=1

a∗ku[n− k].

In this case, u[n] is called an autoregressive (AR) process (see appendix B). We can estimate the
AR coefficients a1, . . . , aL by finding the MSE-optimal coefficients of a linear predictor. Once the
AR coefficients have been obtained, the squared-magnitude frequency response of the recursive
process-generator filter can be used as an estimate of the power-spectral density (PSD) of the
process u[n] (sometimes called AR Modeling).

Problem 4.1. Autocorrelation Sequence of an AR Process Consider the following
difference equation

u[n] = w[n] + 0.5u[n− 1],

i.e., a purely recursive linear system with input w[n] and output u[n]. w[n] are samples of

a stationary white noise process with zero mean and σ2
w = 1. Calculate the auto-correlation

sequence ruu[k] of the output.

4.2. Linear prediction

A linear predictor tries to predict the present sample u[n] from the N preceding samples u[n −
1], . . . , u[n−N ] using a linear combination:

û[n] =
N∑

k=1

c∗ku[n− k].

The prediction error is given by e[n] = u[n]− û[n] = w[n]−
∑

L

k=1 a
∗

k
u[n− k]−

∑
N

k=1 c
∗

k
u[n− k].

Minimizing the mean-squared prediction error yields the proper predictor coefficients ck for k =
1, . . . , N . In the ideal case (N = L), the error is a minimum when only the non-predictable
white noise excitation w[n] remains as e[n]. In this case, we obtain the (negative) AR coefficients:
ak = −ck for k = 1, . . . , L.
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For adaptive linear prediction (see Fig. 9), the adaptive transversal filter is the linear combiner,
and an adaptation algorithm (e.g., the LMS algorithm) is used to optimize the coefficients and
to minimize the prediction error.

Problem 4.2. AR Modeling. Consider a linear prediction scenario as shown in Fig. 9.
The mean squared error should be used as the underlying cost function. The auto-correlation
sequence of u[n] is given by

ruu[k] = 4/3 · (1/2)|k| .

Compute the AR coefficients a1, a2, . . . and the variance of the white-noise excitation σ2
w.

Start the calculation for an adaptive filter with 1 coefficient. Then, repeat the calculation for

2 and 3 coefficients.

Problem 4.3.

u[n] b

C(z)z
−1

Quantizer S(z)

-

û[n]
e[n] ê[n]

P (z)

Consider the scenario depicted above, where u[n] is an AR process. The quantizer depicted
shall have a resolution of B bits, and is modeled by an additive source with zero mean and
variance γσ2

e , where γ is a constant depending on B and where σ2
e is the variance of the

prediction error e[n]. S(z) is the synthesis filter, which is the inverse of the prediction filter.

(i) For a ideal prediction (i.e., the prediction error e[n] is white), compute the output SNR,
which is given as

E
{
u2[n]

}

E {(u[n]− û[n])2}
=

σ2
u

σ2
r

where r[n] = u[n]− û[n].

(ii) Repeat the previous task for the case where no prediction filter was used. What can
you observe?

4.3. Yule-Walker Equations

In order to get the Wiener-Hopf solution for the MSE-optimal coefficient vector cMSE

RxxcMSE = p,

we have to substitute x[n] = u[n− 1] and d[n] = u[n] and get

RuucMSE = ruu+1
.

In non-vector notation this reads



ruu[0] ruu[1] . . . ruu[L− 1]
r∗uu[1] ruu[0] . . . ruu[L− 2]

...
...

. . .
...

r∗uu[L− 1] r∗uu[L− 2] . . . ruu[0]


 cMSE =




r∗uu[1]
r∗uu[2]

...
r∗uu[L]


 .
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These equations are termed the Yule-Walker equations. Note that in the ideal case cMSE =
[−a1,−a2, . . . ,−aL]

T (given that the order of the transversal filter matches the order of the AR
process).

MATLAB/Octave Exercise 4.1: Power Spectrum Estimation Generate a
finite-length sequence u[n], which represents a snapshot of an arbitrary AR process, and let
us denote it as the unknown process. We want to compare different PSD estimation methods:

1. Direct solution of the Yule-Walker equations. Calculate an estimate of the auto-
correlation sequence of u[n] and solve the Yule-Walker equations to obtain an estimate
of the AR coefficients (assuming that the order L is known). Use these coefficients to
plot an estimate of the PSD function. You may use the MATLAB functions xcorr and
toeplitz.

2. LMS-adaptive transversal filter. Use your MATLAB implementation of the LMS algo-
rithm according to Fig. 9. Take the coefficient vector from the last iteration to plot an
estimate of the PSD function. Try different step-sizes µ.

3. RLS-adaptive transversal filter. Use rls.m (download it from our web page). Try
different forgetting factors λ.

4. Welch’s periodogram averaging method. Use the MATLAB function pwelch. Note, this
is a non-parametric method, i.e., there is no model assumption.

Plot the different estimates into the same axis and compare them with the original PSD.

4.4. Periodic Interference Cancelation without an External Reference Source

signal

periodic interference

b

cz
−∆

x[n]
y[n]

e[n]
-

u[n] d[n]

Figure 10: Canceling a periodic interference using a linear predictor.

Fig. 10 shows the usage of an adaptive linear predictor to remove a periodic interference of a
broadband signal. The output is simply the whitened prediction error.
Things to be aware of:

• The delay length ∆ must be longer than the correlation time of the broadband signal (but
not too long to avoid echoes).

• More coefficients yield a sharper filter and therefore less distortion of the broadband signal.
But more coefficients increase also the convergence time.

Problem 4.4. Periodic Interference Cancelation without an External Reference
Source Consider a measured signal u[n] that is the sum of a white-noise signal w[n] with
variance σ2

w = 1 and a sinusoidal: u[n] = w[n] + cos(π/2 · n + ϕ) (with ϕ a random phase
offset).
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(i) Calculate the auto-correlation sequence ruu[k] of u[n].

(ii) Let’s attenuate the sinusoidal using the setup of Fig. 10. A delay of 1 should be enough
for the white v[n]. Compute the optimum coefficients c0, c1 of the first-order adaptive
filter in the sense of a minimum mean squared error.

(iii) Determine the transfer function of the prediction-error filter, compute its poles and
zeros, and plot the pole/zero diagram. Sketch its frequency response.

MATLAB/Octave Exercise 4.2: Periodic Interference Cancelation without
an External Reference Source Simulate the scenario shown in Fig. 10. Take a speech

signal as the broadband signal. Try a delay around 10ms and an order of at least 100.
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5. Adaptive Equalization

5.1. Principle

signal

source

delay

-

adaptive

equalizer

channel

noise

unknown

channel 

receiver,

decision device,

decoder, ...y[n]

e[n]

d[n]

x[n]

u[n]

∆

Figure 11: Adaptive equalization (or inverse modeling).

Fig. 11 shows the principle of adaptive equalization. The goal is to adapt the transversal filter to
obtain

H(z)C(z) = z−∆ ,

i.e., to find the inverse (except for a delay) of the transfer function of the unknown channel. In the
case of a communication channel, this eliminates the intersymbol interference (ISI) introduced by
the temporal dispersion of the channel.

Difficulties:

1. Assume H(z) has a finite impulse response (FIR) ⇒ the inverse system H−1(z) is an IIR
filter. Using a finite-length adaptive transversal filter only yields an approximation of the
inverse system.

2. Assume H(z) is a non-minimum phase system (FIR or IIR) ⇒ the inverse system H−1(z)
is not stable.

3. We typically have to introduce the extra delay ∆ (i.e., the group delay of the cascade of
both the channel and the equalizer).

Situations where a reference, i.e., the original signal, is available to the adaptive filter:

• Audio: adaptive concert hall equalization, car HiFi, airplanes, . . . (equalizer = pre-emphasis
or pre-distortion; microphone where optimum quality should be received)

• Modem: transmission of an initial training sequence to adapt the filter and/or periodic
interruption of the transmission to re-transmit a known sequence to re-adapt.

Often there is no possibility to access the original signal. In this case we have to ‘guess’ the
reference: Blind Adaptation. Examples are Decision-Directed Learning or the Constant Modulus
Algorithm, which exploit a-priori knowledge of the source.

MATLAB/Octave Exercise 5.1: Inverse Modeling Setup a simulation according

to Fig. 11. Visualize the adaptation process by plotting the magnitude of the frequency

response of the channel, the equalizer, and the overall system H(z)C(z).
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Problem 5.1. ISI and Open-Eye Condition For the following equivalent discrete-time
channel impulse responses

(i) h = [0.8, 1, 0.8]T

(ii) h = [0.4, 1, 0.4]T

(iii) h = [0.5, 1, 0.5]T

calculate the worst-case ISI for binary data u[n] ∈ {+1, −1}. Is the channel’s eye opened or

closed?

Problem 5.2. Least-Squares and MinMSE Equalizer For a noise-free channel with

given impulse response h = [1, 2/3, 1/3]T, compute the optimum coefficients of the equal-

length, zero-delay equalizer in the least-squares sense. Can the equalizer open the channel’s

eye? Is the least-squares solution equivalent to the minimum-MSE solution for white data

u[n]?

Problem 5.3. MinMSE Equalizer for a Noisy Channel Consider a channel with

impulse response h = [1, 2/3, 1/3]T and additive white noise η[n] with zero mean and variance

σ2
η. Compute the optimum coefficients of the equal-length equalizer in the sense of a minimum

mean squared error.

5.2. Decision-Directed Learning

Let us now assume that we know the modulation alphabet of the digital transmission system
(e.g., binary antipodal modulation, PSK, etc.). The demodulator chooses the output symbol as
the element of the modulation alphabet with the minimum distance to the received signal. (For
binary antipodal modulation this can be accomplished by a simple threshold device.)

If we now assume that the distortion by the channel is moderate, one can use the distance
between the chosen output and the received symbol as the error signal for adapting the equalizer
(see Fig. 12).

-

adaptive

equalizer

decision

device

soft decision hard decision

y[n]

e[n]

d[n]

x[n]

Figure 12: Decision-directed adaptive channel equalizer.

MATLAB/Octave Exercise 5.2: Decision-Directed Channel Equalization
Simulate the equalization of a baseband transmission of a binary signal (possible symbols:

−1 and +1). Plot bit-error graphs for the equalized and unequalized transmission (i.e, a stem

plot that indicates for each symbol, whether it has been decoded correctly or not). Extend
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your program to add an initialization phase for which a training sequence is available. After

the training the equalizer switches to decision-directed mode.

Problem 5.4. Decision-Feedback Equalizer (DFE). Consider the feedback-only equal-
izer in Fig. 13. Assume that the transmitted data u[n] is white and has zero mean.

(i) For a general channel impulse response h and a given delay ∆, calculate the optimum
(min. MSE) coefficients cb of the feedback equalizer.

(ii) What is the resulting impulse response of the overall system when the equalizer operates
at its optimum?

(iii) Do the MSE-optimum coefficients cb of the feedback equalizer change for a noisy chan-
nel?

u[n] h

cb z−1

Decision
Device

b û[n]

e[n]

b

−

Channel Equalizer & Detector

Figure 13: Decision-feedback equalizer.

5.3. Alternative Equalizer Structures

Problem 5.5. Extend the decision-feeback equalizer structure in Fig. 13 by an additional

forward (or transversal) equalizer filter with coefficients cf right after the channel. Derive

the design equation for both MSE-optimum cf and cb (use an overall coefficient vector cT =

[cTf cTb ]).

Problem 5.6. Fractionally-Spaced Equalizer. A fractionally-spaced equalizer runs
at a sampling rate that is higher than the symbol rate. Consider the T/2-fractionally-spaced
equalizer (i.e., it runs at the double rate) in Fig. 14 where T is the symbol duration. The
decision device is synchronized with the transmitted symbols, which correspond to the even-
indexed samples at the double rate.

Equalizer
Decision

Device
Channel

nT

2 mT

Figure 14: Fractionally-spaced equalizer.

The discrete-time description of the channel for the high sampling rate is

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 = 1/2 + z−1 + 1/2 z−2 + 1/4 z−3,
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i.e., the unit delay z−1 corresponds to T
2 .

(i) Calculate the coefficients of the equal-length equalizer

C(z) = c0 + c1z
−1 + c2z

−2 + c3z
−3

such that the cascade of the given channel and the equalizer H(z)C(z) = 1, i.e., it
enables a delay-free and ISI-free transmission.

(ii) Calculate the coefficients of the equalizer such that the cascade is a pure delay of 1
symbol, i.e., H(z)C(z) = z−2.

(iii) Consider the channel to be noisy (additive white noise). Compute the noise gains of
the two equalizers of the previous tasks. Which one should be chosen?

(iv) Let the channel be

H(z) = 1 + 1/2 z−1 + 1/4 z−2 + 1/8 z−3.

Compute again the coefficients of an equal-length equalizer.
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A. Moving Average (MA) Process

A stationary MA process u[n] satisfies the difference equation

u[n] = v[n] +
K∑

k=1

g∗[k]v[n− k],

where K is the order and v[n] is white noise with zero mean and variance σ2
v , i.e., u[n] is white

noise filtered by an FIR filter with impulse response g[n] where g[0] = 1 (as defined in [6, 7]).
The auto-correlation sequence of the output u[n] is given by (see Problem 1.7)

ruu[k] = σ2
v

∑

i

g[i]g∗[i− k].

The variance of u[n] can be obtained by setting k = 0:

σ2
u = σ2

v

∑

i

|g[i]|2.

The factor
∑

i
|g[i]|2 is termed the Noise Gain.

B. Autoregressive (AR) Process

A stationary AR process u[n] satisfies the recursive linear difference equation

u[n] = v[n]−
L∑

k=1

aku[n− k],

where L is the order, and v[n] is white noise with zero mean and variance σ2
v , i.e., u[n] is white

noise filtered by an all-pole IIR filter. The process is fully specified by the AR coefficients
ak, k = 1 . . . L and the white-noise variance σ2

v .
The auto-correlation sequence ruu[n] can be expressed by a zero-input version of the above

recursive difference equation (see Problem 4.1)

ruu[n] = −
L∑

k=1

akruu[n− k] for n > 0.

For instance, knowing the first L samples of the auto-correlation sequence ruu[0] . . . ruu[L − 1]
is sufficient to calculate ruu[n] ∀n ∈ Z by recursion (when the AR coefficients ak, k = 1 . . . L
are known). Considering the symmetry of ruu[n] and evaluating the difference equation for
n = 1 . . . L yields the Yule-Walker equations (see Problem 4.2) that allow the computation of the
AR coefficients from the first L+1 samples of the auto-correlation sequence ruu[0] . . . ruu[L]. For
n = 0, the following equation is obtained

ruu[0] +
L∑

k=1

akruu[k] = σ2
v ,

which shows the relation between the variances σ2
v and σ2

u. Using this equation, the noise gain
of the AR process-generator filter can be calculated as

σ2
u

σ2
v

=
1

1 +
∑

L

k=1 ak
ruu[k]
ruu[0]

.
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Problem B.1. Assume the process generator difference equation is given as

u[n] = v[n] + au[n− 1]

where v[n] is white noise with variance σ2
v = rvv[0] and |a| < 1. We know that for k > 0,

ruu[k] = aruu[k − 1] = akruu[0].

To fully specify the autocorrelation function ruu we therefore only need to determine ruu[0] =
σ2
u. To this end, observe that the impulse response of above system is given as h[n] =

(−a)nu[n]. To a white noise input, the variance of the output can be computed using the
noise gain of the system, i.e.,

ruu[0] = σ2
u = σ2

v

∞∑

n=−∞

|h[n]|2 = σ2
v

1

1− a2
.

Thus, and with the symmetry of ruu,

ruu[k] = σ2
v

a|k|

1− a2
.
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