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ABSTRACT

This paper addresses parameter estimation of superimpageals
jointly with their number within the Bayesian framework. \&em-
bine sparse Bayesian machine learning methods with the efat
the art SAGE-based parameter estimation algorithm. Exjsiparse
Bayesian methods allow to assess model order through pens
model parameters, but do not consider models nonlinearrampe:
ters. SAGE-based parameter estimation does allow nonlimeeel
structures, but lacks a mechanism for model order estimati@re

we show how Gaussian and Laplace priors can be applied tocenfo

sparsity and determine the model order in case of superiepsig-
nals, as well as develop an EM-based learning algorithmefiiat
ciently estimate parameters of the superimposed signalethas
prior parameters that control the sparsity of the learnedetso Our

Bayesian model order estimation, also referred to as sjgarse
yesian learning, consists of smoothness or “simplicityfistoaints,
imposed on the model parameters [6, 7]. These constraiatgsar
ally specified in terms of appropriate parameter priors. éfeRance
Vector Machines (RVM) [6] this prior is chosen to be zero-mea
Gaussian. This choice of priors leads to analytically ahlet es-
timation and was shown in [8] to be equivalent to the Schwgarz’
model selection [5]. However Gaussian priors are effeaivig un-
der very special conditions, like high SNR or large numbeolof
servations, and require some post-learning rules, orhibtés to re-
enforce sparseness [8]. Alternatively, one can make useplace
priors that were shown to result in better sparsity enfoerr{i7, 9]
at the expense of limited analytical tractability.

The above mentioned methods have been originally developed

work extends the existing approaches to complex data analsod for sparse regression and classification problems, asgumaulels

nonlinear in parameters. We also present new analyticaberir-
ical studies of the Laplace sparsity priors applied to c@xulata.
The performance of the proposed algorithm is analyzed usjing
thetic data.

Index Terms— Bayesian learning, evidence procedure, SAGE

1. INTRODUCTION

Design and analysis of state of the art communication sysé&zuipped

with sensor arrays often require accurate models, whictodegge
in a realistic manner the structure and dynamics of the stuphe-
nomenon. Over the last decade a significant amount of effiags
been put into the development of efficient estimation atpars, ca-

linear in parameters. In this paper we propose a sparse Bayes
parameter estimation algorithm that

e allows efficient estimation of model parameters that effter t
model structure nonlinearly,

e accounts for non-white additive noise,
e assumes complex measurement data, and,

e unlike the above cited methods, does not require matrix in-
versions during the computations.

The paper is organized as follows: In Section 2 we introduce
the signal model; Section 3 covers the learning algoritlselfitand,
finally, Section 4 shows some application results for theutited

pable tojointly estimate channel parameters, e.g., relative delaysnodels.

Doppler frequencies, directions of the impinging wave fsoretc
[1-3]. However, joint estimation of the model parametersngl
with the number of superimposed signals (i.e., model oridex)par-
ticularly difficult task. Often the model order is simply ftkeéo a
certain number. This approach does not always result instieal
models, specially in time-varying environments. Thus, e tgp-
ically forced to abandon the “joint” estimation concept. wéwer,
within the class of maximume-likelihood estimators it is pite to
provide a mechanism that seamlessly incorporates the nsetisd-
tion scheme into the estimation framework. Estimation efrttodel
order can be solved in the spirit of Occham’s razor principke,
several models are trained and then those that offer thebbksice
between model 'simplicity’ (the smallest dimension of tlaegmeter
space), and model performance (the highest likelihood}elected.
Examples are the celebrated Akaike Information CriterfiCj [4],
Minimum Description Length (MDL) principle and its varianf5].
Bayesian methods provide the ingredients required tolyormti-
mate signal parameters and their number.

2. SIGNAL MODEL

Let us assume that the receiver (Rx) is equipped with an aaten
array consisting ofP sensors located ato,...,zp_1 € R? with
respect to an arbitrary reference point. Let us also asshatetie
received signal can be represented as:

L
2(t) =Y wie(@)R(t— ) + (1), )

wherez(t) € C* is a vectorized representation of the sensor output
at timet, L, is the number of superimposed signals, each having a
complex gainw,, relative delayr;, and arriving from a directiog;.

The waveformR(-) incorporates the transmitted signal along with
the influence of the transceiver front-end. TRelimensional steer-

ing vectore(¢;) is represented ag¢;) = [co(¢1), - ., cp—1(¢1)]7,



and, assuming the coupling between the antenna sensore ce b
glected, its components are given as

cp(dr) = folor) eXp(jQW)\ileH (P)xp),

with A, e(¢é:), andf, (¢:) denoting the wavelength, the unit vector in
RR? pointing in the directiony;, and the complex electric field pattern
of thepth sensor, respectively. The additive nofge) is assumed to
be a spatially white’-dimensional vector with each element being a
zero-mean wide-sense stationary (WSS) complex Gaussise. o
practice the output of the sensor array is sampled with thokag
periodTs, resulting inP N-tuples of the MF output, wher®' is the
number of output samples. By stacking the sampled outpuf3 of
sensors in one vectar, (1) can be rewritten in the vector form as

L
z = Zwls(al) +£ = K(e)w +£7

2
=1
where we have defineé; = [¢;, 7], 8 = [01,...,0L], 7 =
[R(=7),R(Ts —71),...,R(N — 1)Ts —7)]%,
co(u)ri w: &
sO)=| | w= il =] L@
cp—1(¢)T wr, Epy

and¢, = [£,(0),...,&((N — 1)Ts)]". We will assume that

B{€,} = 0,E{¢,,&} = 0,form # k, and ()

The goal of the learning algorithm is to estimate the modehme-
ters which are: the order of the modehnd parameter&w;, 0, } ;.
Note that we treat the model paramet@randw separately. As we
will show, it is w that are used to control the model complexity: by
setting some of them to zero we realize model selectidParame-

In order to stay within the Bayesian framework we also need to
define the hyperprigp(e). To avoid additional free parameters, we
assume this prior to be noninformative, i.e., flat, whichresponds
to the automatic relevance determination (ARD) concempased
in [10, 11]. Similarly, we chose a prigr(0) to be flat. However, as
we will see, the latter does not have a dramatic effect ongthiening
algorithm and more elaborated priors can be easily intedrathis
completes the description of densities involved in the iigm.

3.1. EM-based learning algorithm

Our ultimate goal is to obtain the model parametgus, 6}, and
hyperparametere: that maximize the posterigr(w, 6, a|z). We
rewrite it asp(w, 0, a|z) = p(w, 0|, z)p(a|z) and maximize
each term on the right-hand side sequentially from righgtip Which
is known as themarginal estimation method [12, ch. 5]. The term
p(w, O|a, z) is of interest when we only estimate model parame-
ters assuming fixed model order. The second tpfm|z) — the
“penalty”, comes into play when the model order is to be estad.

We begin with the maximization gf(w, 8|a, z) assuming that
«ais known and fixed. Using Bayes theorem we rewrite this paster
as

p(z|w, 0)p(w|a)p(6) ©)
p(zla)

and maximize the numerator term on the right-hand side. iEtas
classical parameter estimation approach, and if it werdéandhe 0
that nonlinearly enters the likelihogdz|w, ), the optimal solution
would have been trivial. Here, in order to facilitate theioytation
we appeal to the EM algorithm [13]. The major steps of thioalg
rithm are summarized below.
E-Step.As an unobserved data we chase- [z7, ...

p(w,0la,z) =

,x1]" where

@)

and¢, are obtained by arbitrarily decomposing the total ngisech

x; =ws(0,)+€&,l=1,...,L,

ters@, on the other hand, are used to improve the fit of the model tahaté = 3", €,. It follows thata; is conditionally Gaussian, i.e.,

the measured data, and thus control the model order onlseirtt}i.

3. LEARING ALGORITHM

Before we begin explaining the estimation algorithm, lehas out-
line the probabilistic structure of the variables involiadhe anal-
ysis. From (2) it follows that|w, 8 is complex Gaussian, with the
meankK (f)w and covariance matrix, i.e.,

z|lw,0 ~ CN(K(O)w,X).

When additive noise is spatially whit® is simply a block-diagonal
covariance matri® = diag{Xo,...,Xp—1}.

The sparsity is enforced through the zero-mean priar|a)
over the model coefficientay. Parametersy, also called evidence
parameters, or hyperparameters, are inversely propattionthe
width of the corresponding pdf. Large valuesgfrender the contri-
bution of the corresponding column in the mathix(0) ‘irrelevant’,
since the corresponding weights are then likely to have a very
small value. We will consider the learning algorithm for tteeses
whenp(w|ea) is either Gaussian, or Laplace pdf.

1The considered approach allows to control the complexithefmodel
by removing some of the contributios$;). The learning algorithm, how-
ever, does allow to increase the model order if necessarsh&uaevelopment
of this idea stays outside the scope of this paper.

:]31|wl,01 ~ N(wls(el),El) WhereEL = E{&lng} = 512, and
d > 0Ois chosen so thaf_, 6; = 1. Based on (7) the Q-function

Q0,w|0,w) = E{ log[p(z|w, 0)]|6, w, z} is given as [13]:
Q0,w|0,1) = Qu(B1, w01, 1) =
l

8)
(@ — wis(6:)" ;! (@1 — wis(61))

M-

1

wherec is a constant independent @fandw, andz; is given as
9)

with @ and@ being some current parameter estimates. We now see
that the maximization of (8) with respect@andw is equivalent to

L smaller optimizations of); (0;, wl|él, w;) with respect td; and

w; only. This is how the matrix inversions, usually appearingnyg

the maximization of (6), can be avoided.

M-Step. Since parameterd; enter the Q-function nonlinearly, the
M-step can be solved using the SAGE algorithm [14], i.e., ug S
gest to update one parameter (or a subset of parametersinat,a t
while keeping the other fixed:

T = 'Lf)ls(él) + 51(2 - K(é)ﬁ)):

(10

N A .
0, «— argmax Q (0, W0, W),
0y



wi « argmax Qf (0, wi|01, n) (11)

w

where
Q;(Gh wl|él7 117[) = Ql(é)h wl|él, ’lZ)l) + log[p(wl|al)p(0;)],

A/ . . - N .
and@; andw; are improved versions of th andw;, respectively.

3.2. Sparsity priors

Inferring hyperparameters constitutes the essence of duehse-
lection. This is achieved through the “penalty” posterior

p(alz) o p(zla)p(a). (12)

Sincep(a) is assumed to be flat, the hyperparameterthat max-
imize p(a|z) can be found by maximizing the(z|a) alone. The

latter term is known asvidence. Maximization of the evidence with
respect tax can also be accomplished by means of completedata

which also leads to the simpler optimization procedureeé&tj

pele) = [ [ plalw.0)ptuwlap@)deds @3
can be used to locally maximize the evidep¢e|a). However, the
nonlinear dependency ofx|w, 0) on @ will still cause difficulties
in solving the integral (13). To simplify the computation weopt
several approximations. First we assume thi fixed até = (9/,
which makese functionally independent . Thus

p(zla) ~ / p(zhw, 8 )p(w|er)dw. (14)

Integral (14) can be solved using Laplace approximatiorhowf5],
which consists in approximating the integrand using secmnaigr
Taylor series arounds’ and then computing the integral.

3.2.1. Gaussian prior

Should the priop(w|«) be chosen to be complex Gaussian, i.e.,
w|o ~ N(0,diag{a} 1), then Laplace approximation is exact:

plele) = ple|w’, 0 )p(@'|a)r"|®|, (15)

where® is a diagonal matrix with thé&h element on the main di-

~/ ~/

agonal given a®,; = (o + s(0 )72, 's(6))"*. Note, that®
becomes diagonal only thanks to the unobserved daféhe same
approach applied to the incomplete datavould result in the full

matrix ®, and thus computationally heavier matrix inversion. Now,

by taking the logarithm of (15), and setting the partial datives
with respect tay; to zero, we find

1

- 16
|y |* + Pu (16)

aq

3.2.2. Laplacepriors

In case whem(w|«) is complex Laplace, i.e.,

207
pwla) = [T 2L exp{-2aifui]},

=1

the Laplace approximation to the evidence integral (14pifonger
exact. The resulting approximation has the form identiog(1i5),
but for Laplace prior®;; is given as

N Ny )
_ s(Bl)TEfls(al) ay
®”< 2 aal) (17)
where
. ~/ 1A 7 .
o = SO E) (@) T —a)s e

s(0)7S; s(8))

In (18) sign(-) is a sign function defined asgn(z) = z/|z|, and
(-)+ is a positive part operator defined 48)+ = a, if a > 0, and
(a)+ =0, if a < 0. Here, unlike the Gaussian prior case, there is no
need to define any additional thresholds— the hyperparamlztgs

the role of such a threshold directly. It can be found by dggao
zero the partial derivatives of (15) with respectatg which, using
(17) and (18), leads to hyperparameter update expression:

1

p— 4/\ N . 19
[T+ B8] (19)

(67
Onceq; is found, evaluation of the (18) will automatically remove
the “irrelevant” contributions.
The last ingredient that we need in our algorithm is an itz
tion strategy.

3.3. Algorithm initialization

As with any EM-based estimation algorithm, proper initiation
plays an important role here. Initialization includes deifinthe ini-
tial number of component& as well as the corresponding model
parameter§w, 6}, and hyperparametets. We also need to chose
constants); to evaluate the complete data in (9). Below, we pro-
pose a simple initialization procedure that deduce théainitilues
from the measured data First, we need to define the initial number
L of contributions in the model (2). According to our modelesel
tion strategy,L should be initially chosen to overestimate the true
model order so that the “irrelevant” contributions coulddoened at
the learning stages of the algorithm. Note that the compl@fiour

»algorithm increases only linearly with the number of cdmitions.

Concerning the selection of the factars we refer to [2] where it
was shown that by choosirdg = 1 the convergence rate of the algo-
rithm is maximized. Initialization of other parameters ibiamore
elaborated. We begin by setting and#, for all L components to
zero. Then, a single iteration of the learning algorithmag@rmed,

wheredw, = ®;,s(0,)S; ', is a closed-form solution to (11) in i.e., (9) followed by (10), with the latter optimization pemmed in-

case of Gaussian sparsity priors. Note, that Gaussianspnieed

additional thresholds to decide when is large enough to remove

the corresponding contribution. A useful approach thatireg only

the statistics of the additive noigehas been proposed in [8]. Once
the value ofa; is computed, we can decide if the corresponding

contribution should remain in the model, or should be pruileds
implementing model order estimation.

coherently for each element 6f.
In case of Gaussian sparsity priors, hyperparametgese ini-
tialized as in [8]: if|s(6:)7 2, &)|* > s(6:)"%; s(6,), then
GOVt ICl) [8, eq. (29)]; otherwise
(s@H= ") 2-s(0)H=Ts(0y)) = 7 ' '
the corresponding basis(él) is pruned at the initialization stage.
Having founda;, the gainw; is estimated using (11).




SNR L RMSE Avr{L}
Gaussian| Laplace | Gaussian| Laplace
5dB | L =3 | 0.0493 | 0.1095 2.80 17.82
L=9 | 0.1120 | 0.1241 7.75 22.87
15dB | L =3 | 0.0164 | 0.0352 3.13 18.82
L =91 0.0364 | 0.0422 9.19 28.06
25dB | L =3 | 0.0075 | 0.0123 3.75 23.19
L=9 | 0.0179 | 0.0161 12.64 44.08

Table 1: Averaged channel estimation performance.

In case of Laplace priors, the initial values of hyperpariame;
are first set to zero. Then, (18) is evaluated to obtain lir&tion
1wy, followed by the estimation of the corresponding hyperpeater
«y according to (19).

4. SIMULATION RESULTS

We begin demonstaring performance of the algorithm withsthe
thetic data, generated according to the model (1). It israssu
that the data is recorded over the time winddw= 0.31usec and
sampled atl/7, = 400MHz. Signal parameters are chosen by
drawing L samples from the corresponding distributions: detays
and anglesy; are drawn uniformly from the intervd0.1, 0.2]usec
and [—m /2, w/2], respectively. Signal gaing; are generated as
w; = %1, wherey); is uniformly distributed in the intervdl, 27].

This ensures that all components have the same power, aad thu[s]

equal chance of being detected under the same noise cotstrai
The initial number of components is set equal to the numbavai-
able signal samples. The performance of the algorithm issassl
based on the averaged number of detected components aswall a
the achieved RMSE between the synthetic and reconstrueteais
data. The corresponding simulation results are summaiizée
Table 1.

From the Table 1 we can see that with Gaussian priors and addi-

tional thresholding the resulting models are sufficienfisrse, and
approximate well the simulated channel. Laplace priorsherother

hand do not achieve the same sparseness and the number-of esti

mated components is significantly overestimated. Thislgiéadi-
cates that the Laplace approximation to the evidence iatéty) is
not adequate, i.e., the resulting values do not lead to theénmuan
of the evidence. We have observe that increasing empiyitad
value of the hyperparameter does lead to the improvemeheirg-
timation performance. Thus, additional rules to compenfatthe
insufficient approximation of the evidence might improve #igo-
rithm performance.

5. CONCLUSIONS

We have proposed an estimation algorithm that unites sy2ase
yesian learning with SAGE-based parameter estimationrighgo.
The proposed approach allows to efficiently estimate paensef
linearly superimposed complex signals, as well as hyparpaters
through which the sparsity of the model is controlled and ehad-
der estimation is realized. We have obtained the closed-éxpres-
sions for estimating hyperparameters that control thesiyaof the
learned model. Thus, estimation of hyperparameters alatigtie
other signal parameters does not increase much the corngmatat
complexity, but does allow to jointly estimate the modelerdThe
obtained analytical results for Gaussian priors extendptiegious

works to models nonlinear in parameters. The estimationtsedo
show that Gaussian priors with post-learning pruning cimesion
model parameters as well as the model order quite well. We hav
also shown some new analytical results of using Laplacespvitth
complex data to enforce sparsity. However, Laplace apprations
we use to obtain the closed-form expression for the hyparper
ter update does not approximate the maximum of the correspgpn
evidence integral. This indicates a need to either inventctions
rules, which will compensate for the insufficiency of the leage ap-
proximations, or find another computationally efficient waynax-
imize the evidence integral.
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