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ABSTRACT
This paper addresses parameter estimation of superimposedsignals
jointly with their number within the Bayesian framework. Wecom-
bine sparse Bayesian machine learning methods with the state of
the art SAGE-based parameter estimation algorithm. Existing sparse
Bayesian methods allow to assess model order through priorsover
model parameters, but do not consider models nonlinear in parame-
ters. SAGE-based parameter estimation does allow nonlinear model
structures, but lacks a mechanism for model order estimation. Here
we show how Gaussian and Laplace priors can be applied to enforce
sparsity and determine the model order in case of superimposed sig-
nals, as well as develop an EM-based learning algorithm thateffi-
ciently estimate parameters of the superimposed signals aswell as
prior parameters that control the sparsity of the learned models. Our
work extends the existing approaches to complex data and models
nonlinear in parameters. We also present new analytical andempir-
ical studies of the Laplace sparsity priors applied to complex data.
The performance of the proposed algorithm is analyzed usingsyn-
thetic data.

Index Terms— Bayesian learning, evidence procedure, SAGE

1. INTRODUCTION

Design and analysis of state of the art communication systems equipped
with sensor arrays often require accurate models, which reproduce
in a realistic manner the structure and dynamics of the studied phe-
nomenon. Over the last decade a significant amount of effortshas
been put into the development of efficient estimation algorithms, ca-
pable tojointly estimate channel parameters, e.g., relative delays,
Doppler frequencies, directions of the impinging wave fronts, etc
[1–3]. However, joint estimation of the model parameters along
with the number of superimposed signals (i.e., model order)is a par-
ticularly difficult task. Often the model order is simply fixed to a
certain number. This approach does not always result in realistic
models, specially in time-varying environments. Thus, we are typ-
ically forced to abandon the “joint” estimation concept. However,
within the class of maximum-likelihood estimators it is possible to
provide a mechanism that seamlessly incorporates the modelselec-
tion scheme into the estimation framework. Estimation of the model
order can be solved in the spirit of Occham’s razor principle, i.e.,
several models are trained and then those that offer the bestbalance
between model ’simplicity’ (the smallest dimension of the parameter
space), and model performance (the highest likelihood) areselected.
Examples are the celebrated Akaike Information Criterion (AIC) [4],
Minimum Description Length (MDL) principle and its variants [5].
Bayesian methods provide the ingredients required to jointly esti-
mate signal parameters and their number.

Bayesian model order estimation, also referred to as sparseBa-
yesian learning, consists of smoothness or “simplicity” constraints,
imposed on the model parameters [6, 7]. These constraints are usu-
ally specified in terms of appropriate parameter priors. In Relevance
Vector Machines (RVM) [6] this prior is chosen to be zero-mean
Gaussian. This choice of priors leads to analytically tractable es-
timation and was shown in [8] to be equivalent to the Schwarz’s
model selection [5]. However Gaussian priors are effectiveonly un-
der very special conditions, like high SNR or large number ofob-
servations, and require some post-learning rules, or thresholds to re-
enforce sparseness [8]. Alternatively, one can make use of Laplace
priors that were shown to result in better sparsity enforcement [7,9]
at the expense of limited analytical tractability.

The above mentioned methods have been originally developed
for sparse regression and classification problems, assuming models
linear in parameters. In this paper we propose a sparse Bayesian
parameter estimation algorithm that

• allows efficient estimation of model parameters that enter the
model structure nonlinearly,

• accounts for non-white additive noise,

• assumes complex measurement data, and,

• unlike the above cited methods, does not require matrix in-
versions during the computations.

The paper is organized as follows: In Section 2 we introduce
the signal model; Section 3 covers the learning algorithm itself, and,
finally, Section 4 shows some application results for the simulated
models.

2. SIGNAL MODEL

Let us assume that the receiver (Rx) is equipped with an antenna
array consisting ofP sensors located atx0, . . . ,xP−1 ∈ R

2 with
respect to an arbitrary reference point. Let us also assume that the
received signal can be represented as:

z(t) =
L
X

l=1

wlc(φl)R(t− τl) + ξ(t), (1)

wherez(t) ∈ C
P is a vectorized representation of the sensor output

at timet, L, is the number of superimposed signals, each having a
complex gainwl, relative delayτl, and arriving from a directionφl.
The waveformR(·) incorporates the transmitted signal along with
the influence of the transceiver front-end. TheP -dimensional steer-
ing vectorc(φl) is represented asc(φl) = [c0(φl), . . . , cP−1(φl)]

T ,



and, assuming the coupling between the antenna sensors can be ne-
glected, its components are given as

cp(φl) = fp(φl) exp(j2πλ−1
e
H(φl)xp),

with λ, e(φl), andfp(φl) denoting the wavelength, the unit vector in
R

2 pointing in the directionφl, and the complex electric field pattern
of thepth sensor, respectively. The additive noiseξ(t) is assumed to
be a spatially whiteP -dimensional vector with each element being a
zero-mean wide-sense stationary (WSS) complex Gaussian noise. In
practice the output of the sensor array is sampled with the sampling
periodTs, resulting inP N -tuples of the MF output, whereN is the
number of output samples. By stacking the sampled outputs ofP
sensors in one vectorz, (1) can be rewritten in the vector form as

z =

L
X

l=1

wls(θl) + ξ = K(θ)w + ξ, (2)

where we have definedθl = [φl, τl], θ = [θ1, . . . , θL], rl =
[R(−τl), R(Ts − τl), . . . , R((N − 1)Ts − τl)]

T ,

s(θl) =

2
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3
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5
, (3)

andξp = [ξp(0), . . . , ξp((N − 1)Ts)]
T . We will assume that

E{ξp} = 0, E{ξmξ
H
k } = 0, for m 6= k, and (4)

E{ξpξ
H
p } = Σp. (5)

The goal of the learning algorithm is to estimate the model parame-
ters which are: the order of the modelL and parameters{wl, θl}Ll=1.
Note that we treat the model parametersθ andw separately. As we
will show, it is w that are used to control the model complexity: by
setting some of them to zero we realize model selection1. Parame-
tersθ, on the other hand, are used to improve the fit of the model to
the measured data, and thus control the model order only indirectly.

3. LEARING ALGORITHM

Before we begin explaining the estimation algorithm, let usnow out-
line the probabilistic structure of the variables involvedin the anal-
ysis. From (2) it follows thatz|w, θ is complex Gaussian, with the
meanK(θ)w and covariance matrixΣ, i.e.,

z|w, θ ∼ CN (K(θ)w,Σ).

When additive noise is spatially white,Σ is simply a block-diagonal
covariance matrixΣ = diag{Σ0, . . . ,ΣP−1}.

The sparsity is enforced through the zero-mean priorp(w|α)
over the model coefficientsw. Parametersα, also called evidence
parameters, or hyperparameters, are inversely proportional to the
width of the corresponding pdf. Large values ofαl render the contri-
bution of the corresponding column in the matrixK(θ) ‘irrelevant’,
since the corresponding weightswl are then likely to have a very
small value. We will consider the learning algorithm for thecases
whenp(w|α) is either Gaussian, or Laplace pdf.

1The considered approach allows to control the complexity ofthe model
by removing some of the contributionss(θl). The learning algorithm, how-
ever, does allow to increase the model order if necessary, but the development
of this idea stays outside the scope of this paper.

In order to stay within the Bayesian framework we also need to
define the hyperpriorp(α). To avoid additional free parameters, we
assume this prior to be noninformative, i.e., flat, which corresponds
to the automatic relevance determination (ARD) concept, proposed
in [10, 11]. Similarly, we chose a priorp(θ) to be flat. However, as
we will see, the latter does not have a dramatic effect on the learning
algorithm and more elaborated priors can be easily integrated. This
completes the description of densities involved in the algorithm.

3.1. EM-based learning algorithm

Our ultimate goal is to obtain the model parameters{w, θ}, and
hyperparametersα that maximize the posteriorp(w, θ,α|z). We
rewrite it asp(w, θ,α|z) = p(w, θ|α, z)p(α|z) and maximize
each term on the right-hand side sequentially from right to left, which
is known as themarginal estimation method [12, ch. 5]. The term
p(w, θ|α, z) is of interest when we only estimate model parame-
ters assuming fixed model order. The second termp(α|z) – the
“penalty”, comes into play when the model order is to be estimated.

We begin with the maximization ofp(w, θ|α, z) assuming that
α is known and fixed. Using Bayes theorem we rewrite this posterior
as

p(w, θ|α, z) =
p(z|w, θ)p(w|α)p(θ)

p(z|α)
(6)

and maximize the numerator term on the right-hand side. Thisis a
classical parameter estimation approach, and if it were notfor theθ

that nonlinearly enters the likelihoodp(z|w, θ), the optimal solution
would have been trivial. Here, in order to facilitate the optimization
we appeal to the EM algorithm [13]. The major steps of this algo-
rithm are summarized below.
E-Step.As an unobserved data we chosex = [xT1 , . . . ,x

T
L]T where

xl = wls(θl) + ξl, l = 1, . . . , L, (7)

andξl are obtained by arbitrarily decomposing the total noiseξ such
thatξ =

PL

l=1 ξl. It follows thatxl is conditionally Gaussian, i.e.,
xl|wl, θl ∼ N (wls(θl),Σl) whereΣl = E{ξlξ

H
l } = δlΣ, and

δ > 0 is chosen so that
P

l
δl = 1. Based on (7) the Q-function

Q(θ,w|θ̂, ŵ) = E
n

log[p(x|w, θ)]
˛

˛θ̂, ŵ, z
o

is given as [13]:

Q(θ,w|θ̂, ŵ) =
X

l

Ql(θl, wl|θ̂l, ŵl) =

c−
L
X

l=1

(x̂l − wls(θl))
H
Σ

−1
l (x̂l − wls(θl))

(8)

wherec is a constant independent ofθ andw, andx̂l is given as

x̂l = ŵls(θ̂l) + δl(z −K(θ̂)ŵ), (9)

with ŵ andθ̂ being some current parameter estimates. We now see
that the maximization of (8) with respect toθ andw is equivalent to
L smaller optimizations ofQl(θl, wl|θ̂l, ŵl) with respect toθl and
wl only. This is how the matrix inversions, usually appearing during
the maximization of (6), can be avoided.
M-Step. Since parametersθl enter the Q-function nonlinearly, the
M-step can be solved using the SAGE algorithm [14], i.e., we sug-
gest to update one parameter (or a subset of parameters) at a time,
while keeping the other fixed:

θ̂
′

l ← argmax
θl

Q′
l(θl, ŵl|θ̂l, ŵl), (10)



w′
l ← argmax

wl

Q′
l(θ̂

′

l, wl|θ̂l, ŵl) (11)

where

Q′
l(θl, wl|θ̂l, ŵl) = Ql(θl, wl|θ̂l, ŵl) + log[p(wl|αl)p(θl)],

andθ̂
′

l andŵ′
l are improved versions of thêθl andŵl, respectively.

3.2. Sparsity priors

Inferring hyperparameters constitutes the essence of the model se-
lection. This is achieved through the “penalty” posterior

p(α|z) ∝ p(z|α)p(α). (12)

Sincep(α) is assumed to be flat, the hyperparametersα that max-
imize p(α|z) can be found by maximizing thep(z|α) alone. The
latter term is known asevidence. Maximization of the evidence with
respect toα can also be accomplished by means of complete datax,
which also leads to the simpler optimization procedure. Indeed,

p(x|α) =

Z Z

p(x|w, θ)p(w|α)p(θ)dwdθ (13)

can be used to locally maximize the evidencep(z|α). However, the
nonlinear dependency ofp(x|w, θ) on θ will still cause difficulties
in solving the integral (13). To simplify the computation weadopt
several approximations. First we assume thatθ is fixed atθ = θ̂

′
,

which makesx functionally independent ofθ. Thus

p(x|α) ≈

Z

p(x|w, θ̂
′
)p(w|α)dw. (14)

Integral (14) can be solved using Laplace approximation method [5],
which consists in approximating the integrand using secondorder
Taylor series around̂w′ and then computing the integral.

3.2.1. Gaussian prior

Should the priorp(w|α) be chosen to be complex Gaussian, i.e.,
w|α ∼ N (0,diag{α}−1), then Laplace approximation is exact:

p(x|α) = p(x|ŵ′, θ̂
′
)p(ŵ′|α)πL|Φ|, (15)

whereΦ is a diagonal matrix with thelth element on the main di-
agonal given asΦll = (αl + s(θ̂

′
)HΣ

−1
l s(θ̂

′
))−1. Note, thatΦ

becomes diagonal only thanks to the unobserved datax. The same
approach applied to the incomplete dataz would result in the full
matrixΦ, and thus computationally heavier matrix inversion. Now,
by taking the logarithm of (15), and setting the partial derivatives
with respect toαl to zero, we find

αl =
1

|ŵ′
l|

2 + Φll
, (16)

whereŵ′
l = Φlls(θ′

l)Σ
−1
l x̂l is a closed-form solution to (11) in

case of Gaussian sparsity priors. Note, that Gaussian priors need
additional thresholds to decide whenαl is large enough to remove
the corresponding contribution. A useful approach that requires only
the statistics of the additive noiseξ has been proposed in [8]. Once
the value ofαl is computed, we can decide if the corresponding
contribution should remain in the model, or should be pruned, thus
implementing model order estimation.

3.2.2. Laplace priors

In case whenp(w|α) is complex Laplace, i.e.,

p(w|α) =
L
Y

l=1

2α2
l

π
exp{−2αl|wl|},

the Laplace approximation to the evidence integral (14) is no longer
exact. The resulting approximation has the form identical to (15),
but for Laplace priorsΦll is given as

Φll =

 

s(θ̂
′

l)
T
Σ

−1
l s(θ̂

′

l)

2
+

αl
4|ŵl|

!−1

, (17)

where

ŵ′
l =

sign(s(θ̂
′

l)
T
Σ

−1
l x̂l)(|s(θ̂

′

l)
T
Σ

−1
l x̂l| − αl)+

s(θ̂
′

l)TΣ
−1
l s(θ̂

′

l)
. (18)

In (18) sign(·) is a sign function defined assign(x) = x/|x|, and
(·)+ is a positive part operator defined as:(a)+ = a, if a ≥ 0, and
(a)+ = 0, if a < 0. Here, unlike the Gaussian prior case, there is no
need to define any additional thresholds– the hyperparameter plays
the role of such a threshold directly. It can be found by equating to
zero the partial derivatives of (15) with respect toαl, which, using
(17) and (18), leads to hyperparameter update expression:

αl =
1

|ŵ′
l|+ Φll/8|ŵ′

l|
. (19)

Onceαl is found, evaluation of the (18) will automatically remove
the “irrelevant” contributions.

The last ingredient that we need in our algorithm is an initializa-
tion strategy.

3.3. Algorithm initialization

As with any EM-based estimation algorithm, proper initialization
plays an important role here. Initialization includes defining the ini-
tial number of componentsL as well as the corresponding model
parameters{w, θ}, and hyperparametersα. We also need to chose
constantsδl to evaluate the complete dataxl in (9). Below, we pro-
pose a simple initialization procedure that deduce the initial values
from the measured dataz. First, we need to define the initial number
L of contributions in the model (2). According to our model selec-
tion strategy,L should be initially chosen to overestimate the true
model order so that the “irrelevant” contributions could bepruned at
the learning stages of the algorithm. Note that the complexity of our
algorithm increases only linearly with the number of contributions.
Concerning the selection of the factorsδl, we refer to [2] where it
was shown that by choosingδl = 1 the convergence rate of the algo-
rithm is maximized. Initialization of other parameters is abit more
elaborated. We begin by settingwl andθl for all L components to
zero. Then, a single iteration of the learning algorithm is performed,
i.e., (9) followed by (10), with the latter optimization performed in-
coherently for each element ofθl.

In case of Gaussian sparsity priors, hyperparametersαl are ini-
tialized as in [8]: if |s(θ̂l)

H
Σ

−1
l x̂l)|

2 > s(θ̂l)
H
Σ

−1
l s(θ̂l), then

αl =
(s(θ̂l)

H
Σ

−1

l
s(θ̂l))

2

(|s(θ̂l)
HΣ

−1

l
x̂l)|

2−s(θ̂l)
HΣ

−1

l
s(θ̂l))

[8, eq. (29)]; otherwise,

the corresponding basiss(θ̂l) is pruned at the initialization stage.
Having foundαl, the gainwl is estimated using (11).



SNR L RMSE Avr{L̂}
Gaussian Laplace Gaussian Laplace

5dB L = 3 0.0493 0.1095 2.80 17.82
L = 9 0.1120 0.1241 7.75 22.87

15dB L = 3 0.0164 0.0352 3.13 18.82
L = 9 0.0364 0.0422 9.19 28.06

25dB L = 3 0.0075 0.0123 3.75 23.19
L = 9 0.0179 0.0161 12.64 44.08

Table 1: Averaged channel estimation performance.

In case of Laplace priors, the initial values of hyperparameterαl
are first set to zero. Then, (18) is evaluated to obtain initialization
ŵl, followed by the estimation of the corresponding hyperparameter
αl according to (19).

4. SIMULATION RESULTS

We begin demonstaring performance of the algorithm with thesyn-
thetic data, generated according to the model (1). It is assumed
that the data is recorded over the time windowT = 0.31µsec and
sampled at1/Ts = 400MHz. Signal parameters are chosen by
drawingL samples from the corresponding distributions: delaysτl
and anglesφl are drawn uniformly from the interval[0.1, 0.2]µsec
and [−π/2, π/2], respectively. Signal gainswl are generated as
wl = ejψl , whereψl is uniformly distributed in the interval[0, 2π].
This ensures that all components have the same power, and thus
equal chance of being detected under the same noise constraints.
The initial number of components is set equal to the number ofavail-
able signal samples. The performance of the algorithm is assessed
based on the averaged number of detected components as well as on
the achieved RMSE between the synthetic and reconstructed sensor
data. The corresponding simulation results are summarizedin the
Table 1.

From the Table 1 we can see that with Gaussian priors and addi-
tional thresholding the resulting models are sufficiently sparse, and
approximate well the simulated channel. Laplace priors on the other
hand do not achieve the same sparseness and the number of esti-
mated components is significantly overestimated. This clearly indi-
cates that the Laplace approximation to the evidence integral (14) is
not adequate, i.e., the resulting values do not lead to the maximum
of the evidence. We have observe that increasing empirically the
value of the hyperparameter does lead to the improvement in the es-
timation performance. Thus, additional rules to compensate for the
insufficient approximation of the evidence might improve the algo-
rithm performance.

5. CONCLUSIONS

We have proposed an estimation algorithm that unites sparseBa-
yesian learning with SAGE-based parameter estimation algorithm.
The proposed approach allows to efficiently estimate parameters of
linearly superimposed complex signals, as well as hyperparameters
through which the sparsity of the model is controlled and model or-
der estimation is realized. We have obtained the closed-form expres-
sions for estimating hyperparameters that control the sparsity of the
learned model. Thus, estimation of hyperparameters along with the
other signal parameters does not increase much the computational
complexity, but does allow to jointly estimate the model order. The
obtained analytical results for Gaussian priors extend theprevious

works to models nonlinear in parameters. The estimation results do
show that Gaussian priors with post-learning pruning can estimation
model parameters as well as the model order quite well. We have
also shown some new analytical results of using Laplace priors with
complex data to enforce sparsity. However, Laplace approximations
we use to obtain the closed-form expression for the hyperparame-
ter update does not approximate the maximum of the corresponding
evidence integral. This indicates a need to either invent corrections
rules, which will compensate for the insufficiency of the Laplace ap-
proximations, or find another computationally efficient wayto max-
imize the evidence integral.
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