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Application of the Evidence Procedure to the
Estimation of Wireless Channels

Dmitriy Shutin∗, Gernot Kubin∗, Bernard H. Fleury∗∗

Abstract— In this paper we address the application of the
Bayesian Evidence Procedure to the estimation of wireless
channels. The proposed scheme is based on Relevance Vector
Machines (RVM) originally proposed by M. Tipping. RVMs allo w
to estimate channel parameters as well as to assess the number
of multipath components constituting the channel within the
Bayesian framework by locally maximizing the evidence integral.
We show that in the case of channel sounding using pulse-
compression techniques, it is possible to cast the channel model
as a general linear model, thus allowing RVM methods to be
applied. We extend the original RVM algorithm to the multipl e-
observation/multiple-sensor scenario by proposing a new graph-
ical model to represent multipath components. Through the
analysis of the Evidence Procedure we develop a thresholding
algorithm that is used in estimating the number of components.
We also discuss the relationship of the Evidence Procedure to
the standard Minimum Description Length (MDL) criterion.
We show that the maximum of the evidence corresponds to
the minimum of the MDL criterion. The applicability of the
proposed scheme is demonstrated with synthetic as well as real-
world channel measurements, and a performance increase over
the conventional MDL criterion applied to maximum-likelih ood
estimates of the channel parameters is observed.

I. I NTRODUCTION

DEEP understanding of wireless channels is an essential
prerequisite to satisfy the ever-growing demand for fast

information access over wireless systems. A wireless channel
contains explicitly or implicitly all the information about the
propagation environment. To ensure reliable communication,
the transceiver should be constantly aware of the channel state.
In order to make this task feasible, accurate channel models,
which reproduce in a realistic manner the channel behavior,
are required. However, efficient joint estimation of the channel
parameters, e.g., number of the multipath components (model
order), their relative delays, Doppler frequencies, directions of
the impinging wavefronts, and polarizations is a particularly
difficult task. It often leads to analytically intractable and
computationally very expensive optimization procedures.The
problem is often relaxed by assuming that the number of
multipath components is fixed, which simplifies optimization
in many cases [1], [2]. However, both underspecifying and
overspecifying the model order leads to significant perfor-
mance degradation: residual intersymbol interference impairs
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the performance of the decoder in the former case, while
additive noise is injected in the channel equalizer in the
latter: the excessive components amount only to the random
fluctuations of the background noise. To amend this situation,
empirical methods like cross-validation can be employed (see,
for example [3]). Cross-validation selects the optimal model
by measuring its performance over a validation data set and
selecting the one that performs the best. In case of practical
multipath channels, such data sets are often unavailable due
to the time-variability of the channel impulse responses. Al-
ternatively, one can employ model selection schemes in the
spirit of Ockham’s razor principle: simple models (in terms
of the number of parameters involved) are preferred over
more complex ones. Examples are the Akaike Information
Criterion (AIC) and Minimum Description Length (MDL)
[4], [5]. In this paper we show how the Ockham’s principle
can be effectively used to perform estimation of the channel
parameters coupled with estimating the model order, i.e., the
number of wavefronts.

Consider a certain class of parametric models (hypotheses)
Hi defined as the collection of prior distributionsp(wi|Hi) for
the model parameterswi. Given the measurement dataZ and
a family of conditional distributionsp(Z|wi,Hi), our goal is
to infer the hypothesiŝH and the corresponding parameters
ŵ that maximize the posterior

{ŵ, Ĥ} = argmax
wi,Hi

{

p(wi,Hi|Z)
}

. (1)

The key to solving (1) lies in inferring the corresponding
parameterswi and Hi from the dataZ, which is often
a nontrivial task. As far as the Bayesian methodology is
concerned, there are two ways this inference problem can be
solved [6, sec. 5]. In thejoint estimation method, p(wi,Hi|Z)
is maximized directly with respect to the quantities of interest
wi and Hi. This often leads to computationally-intractable
optimization algorithms. Alternatively, one can rewrite the
posteriorp(wi,Hi|Z) as

p(wi,Hi|Z) = p(wi|Z,Hi)p(Hi|Z) (2)

and maximize each term on the right-hand side sequentially
from right to left. This approach is known as themarginal esti-
mation method. Marginal estimation methods (MEM) are well
exemplified by Expectation-Maximization (EM) algorithms
and used in many different signal processing applications (see
[2], [3], [7]). MEMs are usually easier to compute, however
they are prone to land in a local rather than global optimum.
We recognize the first factor on the right-hand side of (2)
as a parameter posterior, while the other one is a posterior



2

for different model hypotheses. It is the maximization of
p(Hi|Z) that guides our model selection decision. Then, the
data analysis consists of two steps [8, ch. 28], [9]:

1) Inferring the parameters under the hypothesisHi

p(wi|Z,Hi) =
p(Z|wi,Hi)p(wi|Hi)

p(Z|Hi)
≡

Likelihood× Prior
Evidence

.

(3)

2) Comparing different model hypotheses using the model
posterior

p(Hi|Z) ∝ p(Z|Hi)p(Hi) ≡
Evidence× Hypothesis Prior.

(4)

In the second stage,p(Hi) measures our subjective prior over
different hypotheses before the data is observed. In many
cases it is reasonable to assign equal probabilities to different
hypotheses, thus reducing the hypothesis selection to selecting
the model with the highest evidencep(Z|Hi)

1. The evidence
can be expressed as the following integral:

p(Z|Hi) =

∫

p(Z|wi,Hi)p(wi|Hi)dwi. (5)

The evidence integral (5) plays a crucial role in the develop-
ment of Schwarz’s approach to model order estimation [10]
(Bayesian Information Criterion), as well as in a Bayesian
interpretation of Rissanen’s MDL principle and its variations
[5], [11], [12]. Maximizing (5) with respect to the unknown
modelHi is known as the evidence maximization procedure,
or Evidence Procedure (EP) [13], [14].

Equations (3), (4) and (5) form the theoretical framework
for our joint model and parameter estimation. The estimation
algorithm is based on Relevance Vector Machines. Relevance
Vector Machines (RVM), originally proposed by M. Tipping
[15], are an example of the marginal estimation method that,
for a set of hypothesesHi, iteratively approximates (1) by
alternating between the model selection, i.e., maximizing(5)
with respect toHi, and inferring the corresponding model
parameters from maximization of (3). RVMs have been ini-
tially proposed to find sparse solutions to general linear
problems. However, they can be quite effectively adapted to
the estimation of the impulse response of wireless channels,
thus resulting in an effective channel parameter estimation and
model selection scheme within the Bayesian framework.

The material presented in the paper is organized as follows:
Section II introduces the signal model of the wireless channel
and the used notation, Section III explains the framework
of the EP in the context of wireless channels. In Section
IV we explain how model selection is implemented within
the presented framework and discuss the relationship between
the EP and the MDL criterion for model selection. Finally,
Section V presents some application results illustrating the
performance of the RVM-based estimator in synthetic as well
as in actual wireless environments.

1In the Bayesian literature, the evidence is also known as thelikelihood
for the hypothesisHi.

II. CHANNEL ESTIMATION USING PULSE-COMPRESSION

TECHNIQUE

Channel estimation usually consists of two steps: 1) send-
ing a specific sounding sequences(t) through the channel
and observing the responsey(t) at the other end, and 2)
estimating the channel parameters from the matched-filtered
received signalz(t) (Fig. 1). It is common to represent
the multipath channel response as the sum of delayed and
weighted Dirac impulses, with each impulse representing one
individual multipath component (see, for example, [16, sec.
5]. Such special structure of the channel impulse response
implies that the filtered signalz(t) should have a sparse
structure. Unfortunately, this sparse structure is often obscured
by additive noise and temporal dispersion due to the finite
bandwidth of the transmitter and receiver hardware. This
motivates the application of algorithms capable of recovering
this sparse structure from the measurement data.

Let us consider an equivalent baseband channel sounding
scheme shown in Fig. 1. The sounding signals(t) (Fig. 2)
consists of periodically repeated burst waveformsu(t), i.e.,
s(t) =

∑∞
i=−∞ u(t− iTf), whereu(t) has durationTu ≤ Tf

and is formed asu(t) =
∑M−1

m=0 bmp(t−mTp). The sequence
b0 . . . bM−1 is the known sounding sequence consisting ofM
chips, andp(t) is the shaping pulse of durationTp, MTp = Tu.
Furthermore, we assume that the receiver (Rx) is equipped

η(t)

u
∗(−t)

RxChannelTx

t = nTs
MF

y(t) z(t) z[n]

s(t)
h(t) =

L∑

l=1

alcl(φl)e
j2πνltδ(t − τl)

Fig. 1: An equivalent baseband model of the radio channel
with receiver matched filter (MF) front-end.

with a planar antenna array consisting ofP sensors located
at positionss1, . . . , sP ∈ R2 with respect to an arbitrary
reference point. Let us now assume that the maximum absolute

Tp Tu =MTp Tf

s(t)
t

Fig. 2: Sounding sequences(t).

Doppler frequency of the impinging waves is much smaller
than the inverse of a single burst duration1/Tu. This low
Doppler frequency assumption is equivalent to assuming that,
within a single observation window equivalent to the period
of the sounding sequence, we can safely neglect the influence
of the Doppler shifts.

The received signal vectory(t) ∈ CP×1 for a single burst
waveform is given as [2]:

y(t) =

L∑

l=1

alc(φl)e
j2πνltu(t − τl) + η(t).
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Here,al, τl andνl are respectively the complex gain, the delay,
and the Doppler shift of thelth multipath component. TheP -
dimensional complex vectorc(φl) = [c1(φl), . . . , cP (φl)]

T is
the steering vector of the array. Provided the coupling between
the elements can be neglected, its components are given as
cp(φl) = fp(φl) exp(j2πλ−1〈e(φl), sp〉) with λ, e(φl) and
fp(φl) denoting the wavelength, the unit vector inR2 pointing
in the direction of the incoming wavefront determined by
the azimuthφl, and the complex electric field pattern of the
pth sensor, respectively. The additive termη(t) ∈ CP×1 is
a vector-valued complex white Gaussian noise process, i.e.,
the components ofη(t) are independent complex Gaussian
processes with double-sided spectral densityN0.

The receiver front-end consists of a matched filter (MF)
matched to the transmitted sequenceu(t). Under the low
Doppler frequency assumption the termej2πνlt stays time-
invariant within a single burst duration, i.e., equal to a complex
constant that can be incorporated in the complex gainal. The
signalz(t) at the output of the MF is then given as

z(t) =

L∑

l=1

alc(φl)Ruu(t − τl) + ξ(t), (6)

where Ruu(t) =
∫

u(t′)u∗(t + t′)dt′ is the autocorrelation
function of the burst waveformu(t) andξ(t) =

∫
η(t′)u∗(t+

t′)dt′ is a spatially whiteP -dimensional vector with each
element being a zero-mean wide-sense stationary (WSS) Gaus-
sian noise with autocorrelation function

Rξξ(t) =E{ξp(t
′)ξ∗p(t + t′)} = N0Ruu(t), and

E{ξp(t
′)ξp(t + t′)} = 0.

(7)

Here E{·} denotes the expectation operator. Equation (6)
states that the MF output is a linear combination ofL scaled
and delayed kernel functionsRuu(t − τl), weighted across
sensors as given by the components ofc(φl) and observed in
the presence of the colored noiseξ(t).

In practice, however, the output of the MF is sampled with
the sampling periodTs ≤ Tp, resulting inP N -tuples of the
MF output, whereN is the number of MF output samples.
By collecting the output of each sensor into a vector, we can
rewrite (6) in a vector form:

zp = Kwp + ξp, p = 1 . . . P, (8)

where we have defined

zp =[zp[0], zp[1], . . . , zp[N − 1]]T ,

wp =[a1cp(φ1), . . . , aLcp(φL)]T ,

ξp =[ξp[0], ξp[1], . . . , ξp[N − 1]]T .

The additive noise vectorsξp, p = 1 . . . P , possess the
following properties that will be exploited later:

E{ξp} = 0, E{ξmξH
k } = 0, for m 6= k, and (9)

E{ξpξ
H
p } = Σ = N0Λ, whereΛi,j = Ruu((i − j)Ts). (10)

Note that (10) follows directly from (7). The matrixK, also
called the design matrix, accumulates the shifted and sampled
versions of the kernel functionRuu(t). It is constructed
as K = [r1, . . . , rL], with rl = [Ruu(−τl), Ruu(Ts −

τl), . . . , Ruu((N − 1)Ts − τl)]
T .

In general, the channel estimation problem is posed as
follows: given the measured sampled signalszp, p = 1 . . . P ,
determine the orderL of the model and estimate optimally
(with respect to some quality criterion) all multipath param-
etersal, τl, and φl, for l = 1 . . . L. In this contribution we
restrict ourselves to the estimation of the model orderL along
with the vectorwp, rather than of the constituting parameters
τl, φl, andal. We will also quantize, although arbitrarily fine2,
the search space for the multipath delaysτl. Thus, we do not
try to estimate the path delays with infinite resolution, but
rather fix the delay values to be located on a grid with a
given mesh determining the quantization error. The size of
the delay search spaceL0 and the resulting quantized delays
T = {T1, . . . , TL0} form the initial model hypothesisH0,
which would manifest itself in theL0 columns of the design
matrix K. This allows to formulate the channel estimation
problem as a standard linear problem to which the RVM
algorithm can be applied.

As it can be seen, our idea lies in finding the closest approxi-
mation of the continuous-time model (6) with the discrete-time
equivalent (8). By incorporating the model selection in the
analysis, we also strive to find the most compact representation
(in terms of the number of components), while preserving
good approximation quality. Thus, our goal is to estimate the
channel parameterswp as well as to determine how many
multipath componentsL ≤ L0 are present in the measured
impulse response. The application of the RVM framework to
solve this problem follows in the next section.

III. E VIDENCE MAXIMIZATION , RELEVANCE VECTOR

MACHINES AND WIRELESS CHANNELS

We begin our analysis following the steps outlined in
Section I. In order to ease the algorithm description we
first assume thatP = 1, i.e., only a single sensor is used.
Extensions to the caseP > 1 is carried out later in Section
III-B. To simplify the notations we also drop the subscript
index p in our further notations.

From (8) it follows that the observation vectorz is a linear
combination of the vectors from the column-space ofK,
weighted according to the parametersw and embedded in
the correlated noiseξ. In order to correctly assess the order
of the model, it is imperative to take the noise process into
account. It follows from (10) that the covariance matrix of the
noise is proportional to the unknown spectral heightN0, which
should therefore be estimated from the data. Thus, the model
hypothesesHi should include the termN0. In the following
analysis we assume thatβ = N−1

0 is Gamma-distributed [15],
with the corresponding probability density function (pdf)given
as

p(β|κ, υ) =
κυ

Γ(υ)
βυ−1 exp(−κβ), (11)

with parametersκ and υ predefined so that (11) accurately
reflects oura priori information aboutN0. In the absence of

2There is actually a limit beyond which it makes no sense to make the
search grid finer, since it will not decrease the variance of the estimates,
which is lower-bounded by the Crammer-Rao bound [2].
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anya priori knowledge one can make use of a non-informative
(i.e., flat in the logarithmic domain) prior by fixing the
parameters to small valuesκ = υ = 10−4 [15]. Furthermore,
to steer the model selection mechanism, we introduce an extra
parameter (hyperparameter)αl, l = 1 . . . L0, for each column
in K. This parameter measures the contribution or relevance
of the corresponding weightwl in explaining the dataz from
the likelihoodp(z|wi,Hi). This is achieved by specifying the
prior p(w|α) for the model weights:

p(w|α) =

L0∏

l=1

αl

π
exp(−|wl|2αl). (12)

High values ofαl will render the contribution of the cor-
responding column in the matrixK ‘irrelevant’, since the
weight wl is likely to have a very small value (hence they
are termedrelevance hyperparameters). This will enable us
to prune the model by setting the corresponding weightwl

to zero, thus effectively removing the corresponding column
from the matrix and the corresponding delayTl from the delay
search spaceT . We also see thatα−1

l is nothing else as the
prior variance of the model weightwl. Also note that the
prior (12) implicitly assumes statistical independence ofthe
multipath contributions.

To complete the Bayesian framework, we also specify
the prior over the hyperparameters. Similarly to the noise
contribution, we assume the hyperparametersαl to be Gamma-
distributed with the corresponding pdf

p(α|ζ, ǫ) =

L∏

l=1

ζǫ

Γ(ǫ)
αǫ−1

l exp(−ζαl), (13)

where ζ and ǫ are fixed at some values that ensure an
appropriate form of the prior. Again, we can make this prior
non-informative by fixingζ and ǫ to small values, e.g.,ǫ =
ζ = 10−4.

Now, let us define the hypothesisHi more formally. Let
P(S) be a power set consisting of all possible subsets of basis
vector indicesS = {1 . . . L0}, andi 7→ P(i) be the indexing
of P(S) such thatP(0) = S. Then for each index valuei the
hypothesisHi is the setHi = {β; αj , j ∈ P(i)}. Clearly, the
initial hypothesisH0 = {β; αj , j ∈ S} includes all possible
potential basis functions.

Now we are ready to outline the learning algorithm that
estimates the model parametersw, β, and hyperparametersα
from the measurement dataz.

A. Learning algorithm

Basically, learning consists of inferring the values ofwi

and the hypothesisHi that maximize the posterior (2):
p(wi,Hi|Z) ≡ p(wi, αi, β|z). Here αi denotes the vector
of all evidence hyperparameters associated with theith hy-
pothesis. The latter expression can also be rewritten as

p(w, α, β|z) = p(w|z, α, β)p(α, β|z). (14)

The explicit dependence on the hypothesis indexi has been
dropped to simplify the notation. We recognize that the first
termp(w|z, α, β) in (14) is the weight posterior and the other

onep(α, β|z) is the hypothesis posterior. From this point we
can start with the Bayesian two-step analysis as has been
indicated before.

Assuming the parametersα andβ are known, estimation of
model parameters consists of finding valuesw that maximize
p(w|z, α, β). Using Bayes’ rule we can rewrite this posterior
as

p(w|z, α, β) ∝ p(z|w, α, β)p(w|α, β). (15)

Consider the Bayesian graphical model [17] in Fig. 3. This
graph captures the relationship between different variables in-
volved in (14). It is a useful tool to represent the dependencies
among the variables involved in the analysis in order to factor
the joint density function into contributing marginals.

α1

w1

z[0] z[N − 1]

α2

w2

αL

wL

β

Fig. 3: Graph representing the discrete-time model of the
wireless channel.

It immediately follows from the structure of the graph
in Fig. 3 thatp(z|w, α, β) = p(z|w, β) and p(w|α, β) =
p(w|α), i.e., z andα are conditionally independent givenw
and β, andw and β are conditionally independent givenα.
Thus, (15) is equivalent to

p(w|z, α, β) ∝ p(z|w, β)p(w|α), (16)

where the second factor on the right-hand side is given in
(12). The first term is the likelihood ofw and β given the
data. From (8) it follows that

p(z|w, β) =
exp{−(z − Kw)HβΛ

−1(z − Kw)}
πN |β−1Λ| .

Since both right-hand factors in (16) are Gaussian densities,
p(w|z, α, β) is also a Gaussian density with the covariance
matrix Φ and meanµ given as

Φ = (A + βKH
Λ

−1K)−1. (17)

µ = βΦKH
Λ

−1z, (18)

The matrixA = diag(α) is a diagonal matrix that contains
the evidence parametersαl on its main diagonal. Clearly,µ
is a maximuma-posteriori (MAP) estimate of the parameter
vectorw under the hypothesisHi, with Φ being the covariance
matrix of the resulting estimates. This completes the model
fitting step.

Our next step is to find parametersα and β that maxi-
mize the hypothesis posteriorp(α, β|z) in (14). This density
function can be represented asp(α, β|z) ∝ p(z|α, β)p(α, β),
wherep(z|α, β) is the evidence term andp(α, β) = p(α)p(β)
is the hypothesis prior. As it was mentioned earlier, it is quite
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reasonable to choose non-informative priors since we would
like to give all possible hypothesesHi an equal chance of
being valid. This can be achieved by settingζ, ǫ, κ, and υ
to very small values. In fact, it can be easily concluded (see
derivations in the Appendix ) that maximum of the evidence
p(z|α, β) coincides with the maximum ofp(z|α, β)p(α, β)
when ζ = ǫ = κ = υ = 0, which effectively results in the
noninformative hyperpriors forα andβ.

This formulation of prior distributions is related to auto-
matic relevance determination (ARD) [14], [18]. As a con-
sequence of this assumption, the maximization of the model
posterior is equivalent to the maximization of the evidence,
which is known as the Evidence Procedure [13].

The evidence termp(z|α, β) can be expressed as

p(z|α, β) =

∫

p(z|w, β)p(w|α)dw

=
exp

(

− zH(β−1
Λ + KA−1KH)−1z

)

πN |β−1Λ + KA−1KH |
,

(19)

which is equivalent to (5), where conditional independencies
between variables have been used to simplify the integrands.
In the Bayesian literature this quantity is known asmarginal
likelihood and its maximization with respect to the unknown
hyperparametersα and β is a type-II maximum likelihood
method [19]. To ease the optimization, several terms in (19)
can be expressed as a function of the weight posterior param-
etersµ andΦ as given by (17) and (18). Then, by taking the
derivatives of the logarithm of (19) with respect toα and β
and by setting them to zero, we obtain its maximizing values
as (see also Appendix )

αl =
1

Φll + |µl|2
, (20)

β−1 =
tr[ΦKH

Λ
−1K] + (z − Kµ)H

Λ
−1(z − Kµ)

N
.

(21)

In (20) µl andΦll denote thelth element of, respectively, the
vectorµ, and the main diagonal of the matrixΦ. Unlike the
maximizing values obtained in the original RVM paper [15,
eq.(18)], (21) is derived for the extended, more general case
of colored additive noiseξ with the corresponding covariance
matrix β−1

Λ arising due to the MF processing at the receiver.
Clearly, if the noise is assumed to be white, expressions (20)
and (21) coincide with those derived in [15]. Also note that
α andβ are dependent as it can be seen from (20) and (21).

Thus, for a particular hypothesisHi the learning algorithm
proceeds by repeated application of (17) and (18), alternated
with the update of the corresponding evidence parametersαi

and β from (20) and (21), as depicted in Fig. 4, until some
suitable convergence criterion has been satisfied. Provided a
good initializationα

[0]
i andβ[0] is chosen3, the scheme in Fig.

4 converges afterj iterations to the stationary point of the
system of coupled equations (17), (18), (20), and (21). Then,
the maximization (1) is performed by selecting the hypothesis

3Later in Section V we consider several rules for initializing the hyperpa-
rameters.

Hypothesis
update

Parameter
posteriors 

Hypothesis Hi

Eq. (17), (18)

Eq. (20), (21)

Φ
[j]
i , µ

[j]
i

α
[j]
i , β[j]

α
[0]
i , β[0]

Fig. 4: Iterative learning of the parameters; The superscript [j]
denotes the iteration index.

that results in the highest posterior (2).
In practice, however, we will observe that during the re-

estimation some of the hyperparametersαl diverge, or, in fact,
become numerically indistinguishable from infinity given the
computer accuracy4. The divergence of some of the hyper-
parameters enables us to approximate (1) by performing an
on-line model selection: starting from the initial hypothesis
H0, we prune the hyperparameters that become larger than a
certain threshold as the iterations proceed by setting themto
infinity. In turn, this sets the corresponding coefficientwl to
zero, thus “switching off” thelth column in the kernel matrix
K and removing the delayTl from the search spaceT . This
effectively implements the model selection by creating smaller
hypothesesHi < H0 (with fewer basis functions) without
performing an exhaustive search over all the possibilities. The
choice of the threshold will be discussed in Section IV.

B. Extensions to multiple channel observations

In this subsection we extend the above analysis to multi-
ple channel observations or multiple antenna systems. When
detecting multipath components any additional channel mea-
surement (either in time, by observing several periods of the
sounding sequenceu(t), or in space, by using multiple sensor
antenna) can be used to increase detection quality. Of course,
it is important to make sure that the multipath components
are time-invariant within the observation interval. The basic
idea how to incorporate several channel observations is quite
simple: in the original formulation each hyperparameterαl

was used to control a single weightwl and thus the single
component. Having several channel observations, a single
hyperparameterαl now controls weights representing contri-
bution of the samephysical multipath component, but present
in the different channel observations.

Usage of a single parameter in this case expresses the
channel coherence property in the Bayesian framework. The
corresponding graphical model that illustrates this idea for a
single hyperparameterαl is depicted in Fig. 5. It is interesting
to note that similar ideas, though in a totally different context,
were adapted to train neural networks by allowing a single
hyperparameter to control a group of weights [18]. Note that
it is also possible to introduce an individual hyperparameter
αp,l for each weightwp,l, but this eventually decouples the
problem intoP separate one-dimensional problems and as the

4In the finite sample size case, however, this will only happenin the high
SNR regime. Otherwise,αl will take large but still finite values. In Section
IV-A we elaborate more on the conditions that lead to convergence/divergence
of this learning scheme.
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z1[n]

z2[n]

zP [n]

αl

w2,l

wP,l

w1,l

β

Fig. 5: Usage ofαl in a multiple-observation discrete-time
wireless channel model to representP coherent channel mea-
surements.

result any dependency between the consecutive channels is
ignored.

Now, let us return to (8). It can be seen that the weights
wp capture the structure induced by multiple antennas. How-
ever, for the moment we ignore this structure and treat the
components ofwp as a wide-sense stationary (WSS) process
over the individual channels,p = 1 . . . P . We will also allow
each sensor to have a different MF. This might not necessarily
be the case for wireless channel sounding, but thus a more
general situation can be considered. Different matched filters
result in different design matricesKp, and thus different noise
covariance matricesΣp, p = 1 . . . P . We will however require
that the variance of the input noise remains the same and
equalsN0 = β−1 for all channels, so thatΣp = N0Λp, and
the noise components are statistically independent among the
channels. Then, by defining

Σ̃ = β−1






Λ1 0

. . .
0 ΛP




 , Ã =






A 0

. . .
0 A






︸ ︷︷ ︸

P×P block matrix

,

K̃ =






K1 0

. . .
0 KP




 , z̃ =






z1

...
zP




 , w̃ =






w1

...
wP




 ,

(22)

we rewrite equation (8) as

z̃ = K̃w̃ + ξ̃. (23)

A crucial point of this system representation is that the
hyperparametersαl are shared byP channels as it can be seen
in the structure of the matrix̃A. This will have a corresponding
effect on the hyperparameter re-estimation algorithm.

From the structural equivalence of (8) and (23) we can easily
infer that equations (17) and (18) are modified as follows:

Φp = (A + βKH
p Λ

−1
p Kp)

−1, (24)

µp = βΦpK
H
p Λ

−1
p zp, p = 1 . . . P. (25)

The expressions for the hyperparameter updates become a
bit more complicated but are still straight-forward to compute.

It is shown in the Appendix that:

αl =
P

∑P
p=1

(

Φp,ll + |µp,l|2
) , (26)

N0 = β−1 =
1

NP

(
P∑

p=1

tr[ΦpK
H
p Λ

−1
p Kp]+

+
P∑

p=1

(zp − Kpµp)
H
Λ

−1
p (zp − Kpµp)

) (27)

where µp,l is the lth element of the MAP estimate of the
parameter vectorwp given by (25), andΦp,ll is the lth
element on the main diagonal ofΦp from (24). Comparing the
latter expressions with those developed for the single channel
case, we observe that (26) and (27) use multiple channels to
improve the estimates of the noise spectral height and channel
weight hyperparameters. They also offer more insight into the
physical meaning of the hyperparametersα. On the one hand,
the hyperparameters are used to regularize the matrix inversion
(24), needed to obtain the MAP estimates of the parameters
wp,l and their corresponding variances. On the other hand,
they act as the inverse of the second noncentral moments of
the coefficientswp,l, as can be seen from (26).

IV. M ODEL SELECTION AND BASIS PRUNING

The ability to select the best model to represent the mea-
sured data is an important feature of the proposed scheme,
and thus it is paramount to consider in more detail how the
model selection is effectively achieved. In Section III-A we
have briefly mentioned that during the learning phase many
of the hyperparametersαl’s tend to large values, meaning
that the corresponding weightswl’s will cluster around zero
according to the prior (12). This will allow us to set these
coefficients to zero, thus effectively pruning the corresponding
basis function from the design matrix. However the question
how large a hyperparameter has to grow in order to prune its
corresponding basis function has not yet been discussed. Inthe
original RVM paper [15], the author suggests using a threshold
αth to prune the model. The empirical evidence collected by
the author suggests setting the threshold to “a sufficientlylarge
number” (e.g.,αth = 1012). However, our theoretical analysis
presented in the following section will show that such high
thresholds are only meaningful in very high SNR regimes, or
if the number of channel observationsP is sufficiently large.
In more general, and often more realistic, scenarios such high
thresholds are absolutely impractical. Thus, there is a need
to study the model selection problem in the context of the
presented approach more rigorously.

Below, we present two methods for implementing model se-
lection within the proposed algorithm. The first method relies
on the statistical properties of the hyperparametersαl, when
the update equations (24), (25), (26), and (27) converge to a
stationary point. The second method exploits the relationship
that we will establish between the proposed scheme and the
Minimum Description Length principle [4], [8], [20], [21],
thus linking the EP to this classical model selection approach.
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A. Statistical analysis of the hyperparameters in the stationary
point

The decision to keep or to prune a basis function from the
design matrix is based purely on the value of the corresponding
hyperparameterαl. In the following we analyze the conver-
gence properties of the iterative learning scheme depictedin
Fig. 4 using expressions (24), (25), (26), and (27), and the
resulting distribution of the hyperparameters once convergence
is achieved.

We start our analysis of the evidence parametersαl by
making some simplifications to make the derivations tractable:

• P channels are assumed.
• The same MF is used to process each of theP sensor

output signals, i.e.,Kp = K and Σp = Σ = β−1
Λ,

p = 1 . . . P .
• The noise covariance matrixΣ is known, andB = Σ

−1.
• We assume the presence of a single multipath com-

ponent, i.e.,L = 1, with known delayτ . Thus, the
design matrix is given asK = [r(τ)], wherer(τ) =
[Ruu(−τ), Ruu(Ts − τ), . . . , Ruu((N − 1)Ts − τ)]T is
the associated basis function.

• The hyperparameter associated with this component is
denoted asα.

Our goal is to consider the steady-state solutionα∞ for
hyperparameterα in this simplified scenario. In this case (24)
and (25) simplify to

φ = (α + r(τ)HBr(τ))−1,

µp = φKHBzp =
r(τ)HBzp

α + r(τ)HBr(τ)
, p = 1 . . . P.

Inserting these two expressions into (26) yields

α−1 =
1

α + r(τ)HBr(τ)
+

∑

p

∣
∣
∣

r(τ)HBzp

α+r(τ)HBr(τ)

∣
∣
∣

2

P
. (28)

From (28) the solutionα∞ is easily found to be

α∞ =
(r(τ)HBr(τ))2

1
P

∑

p |r(τ)HBzp|2 − r(τ)HBr(τ)
. (29)

A closer look at (29) reveals that the right-hand side
expression might not always be positive since the denominator
can be negative for some values ofzp. This contradicts the
assumption that the hyperparameterα is positive5. A further
analysis of (28) reveals, that (26) converges to (29) if, and
only if, the denominator of (29) is positive:

1

P

∑

p

|r(τ)HBzp|2 > r(τ)HBr(τ). (30)

Otherwise, the iterative learning scheme depicted in Fig. 4
diverges, i.e.,α∞ = ∞. This can be inferred by interpreting
(26) as a nonlinear dynamic system that, at iterationj, maps
α[j−1] into the updated valueα[j]. The nonlinear mapping
is given by the right-hand side of (26), where the quantities
Φp and µp depend on the values of the hyperparameters
at iteration j − 1. In Fig. 6 we show several iterations

5Recall thatα−1 is the prior variance of the corresponding parameterw.
This constrainsα to be nonnegative.

of this mapping that illustrate how the solution trajectories
evolve. If condition (30) is satisfied, the sequence of solutions
{α[j]} converges to a stationary point (Fig. 6(a)) given by
(29). Otherwise,{α[j]} diverges (Fig. 6(b)). Thus, (28) is a
stationary point only provided the condition (30) is satisfied:

α∞ =







(r(τ)HBr(τ))2
P

p |r(τ)H Bzp|2

P
−r(τ)HBr(τ)

; cond. (30) is satisfied

∞; otherwise.
(31)

Practically, this means that for a given measurementzp, and
known noise matrixB, we can immediately decide whether a
given basis functionr(τ) should be included in the basis by
simply checking if (30) is satisfied or not.

A similar analysis is performed in [22], where the behavior
of the likelihood function with respect to a single parameter is
studied. The obtained convergence results coincide with ours
whenP = 1. Expression (30) is, however, more general and
accounts for multiple channel observations and colored noise.
In [22] the authors also suggest that testing (30) for a given
basis functionr(τ) is sufficient to find a sparse representation
and no further pruning is necessary. In other words, each basis
function in the design matrixK is subject to the test (30) and,
if the test fails, i.e., (30) does not hold for the basis function
under test, the basis function is pruned.

In case of wireless channels, however, we have experi-
mentally observed that even in simulated high-SNR scenarios
such pruning results in a significantly overestimated number of
multipath components. Moreover, it can be inferred from (30)
that, as the SNR increases, the number of functions pruned
with this approach decreases, resulting in less and less sparse
representations. This motivates us to perform a more detailed
analysis of (31).

Let us slightly modify the assumptions we made earlier. We
now assume that the multipath delayτ is unknown. The design
matrix is constructed similarly but this timeK = [rl], where

rl = [Ruu(−Tl), . . . , Ruu((N − 1)Ts − Tl)]
T

is the basis function associated with the delayTl ∈ T used
in our discrete-time model. Under these assumptions the input
signal zp is nothing else but the basis functionr(τ) scaled
and embedded in the additive complex zero-mean Gaussian
noise with covariance matrixΣ, i.e.,

zp = wpr(τ) + ξp. (32)

Let us further assume thatwp ∈ C, p = 1 . . . P are unknown
but fixed complex scaling factors. In further derivations we
assume, unless explicitly stated otherwise, that the condition
(30) is satisfied for the basisrl. By plugging (32) into (29)
and rearranging the result with respect toα−1

∞ we arrive at:

α−1
∞ =

|rH
l Br(τ)|2∑p |wp|2

P |rH
l Brl|2

+

2
∑

p Re{wpr
H
l Br(τ)ξH

p Brl}
P |rH

l Brl|2
+

rH
l B

(
∑

p ξpξ
H
p

)

Brl

P |rH
l Brl|2

− 1

rH
l Brl

.

(33)
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Fig. 6: Evolution of the two representative solution trajectories for two cases: (a){α[j]} converges, (b){α[j]} diverges.

Now, we consider two scenarios. In the first scenarioτ = Tl ∈
T , i.e., the discrete-time model matches the observed signal.
Although unrealistic, this allows to study the properties of α−1

∞

more closely. In the second scenario, we study what happens if
the discrete-time model does not match perfectly the measured
signal. This case helps us to define how the model selection
rules have to be adjusted to consider possible misalignmentof
the path component delays in the model.

1) Model match:τ = Tl: In this situation,rl = r(τ), and
thus (33) can be further simplified according to

α−1
∞ =

∑

p |wp|2
P

+
2
∑

p Re{wpξpBrl}
P (rH

l Brl)
+

+
rH

l B
(
∑

p ξpξ
H
p

)

Brl

P (rH
l Brl)2

− 1

rH
l Brl

,

(34)

where the only random quantity is the additive noise termξp.
This allows us to study the statistical properties of the finite
stationary point in (31).

Equation (34) shows how the noise and multipath compo-
nent contribute toα−1

∞ . If all wp are set to be zero, i.e., there
is no multipath component, thenα−1

∞ = α−1
n reflects only the

noise contribution:

α−1
n =

rH
l B

(
∑

p ξpξ
H
p

)

Brl

P (rH
l Brl)2

− 1

rH
l Brl

. (35)

On the other hand, in the absence of noise, i.e., in the infinite
SNR case, the corresponding hyperparameterα−1

∞ includes the
contribution of the multipath component6 α−1

s :

α−1
s =

∑

p |wp|2
P

+
2
∑

p Re{wpξ
H
p Brl}

P (rH
l Brl)

. (36)

In a realistic case, both noise and multipath component are
present, andα−1

∞ consists of the sum of two contributions
α−1
∞ = α−1

s + α−1
n . Both quantitiesα−1

s andα−1
n are random

6Actually, the second term in the resulting expression vanishes in a perfectly
noise-free case, and thenα−1

s =
P

p |wp|2/P .

variables with pdf’s depending on the number of channel
observationsP , the basis functionrl, and the noise covariance
matrix Σ. In the sequel we analyze their statistical properties.

We first considerα−1
s . The first term on the right-hand side

of (36) is a deterministic quantity that equals the average
power of the multipath component. The second one, on the
other hand, is random. The productRe{wpξ

H
p Brl} in (36) is

recognized as the cross-correlation between the additive noise
term and the basis functionrl. It is Gaussian distributed with
expectation and variance given as

E

{

2
∑

p Re{wpξ
H
p Brl}

P (rH
l Brl)

}

= 0, and

E

{(

2
∑

p Re{wpξ
H
p Brl}

P (rH
l Brl)

)2}

=
2
∑

p |wp|2
P 2(rH

l Brl)
,

(37)

respectively, whereE{·} denotes the expectation operator.
Thus,α−1

s is distributed as

α−1
s ∼ N

(
∑

p |wp|2
P

,
2
∑

p |wp|2
P 2(rH

l Brl)

)

, (38)

which is a normal distribution with the mean given by the
average power of the multipath component and variance pro-
portional to this power.

Now, let us consider the termα−1
n . In (35) the only random

element is
∑P

p=1 ξpξ
H
p . This random matrix is known to have

a complex Wishart distribution [23], [24] with the scale matrix
Σ andP degrees of freedom. Let us denote

c =
Brl√

PrH
l Brl

and x = cH
P∑

p=1

ξpξ
H
p c. (39)

It can be shown thatx is Gamma-distributed, i.e.,x ∼

G(P, σ2
c ), with the shape parameterP and the scale parameter

σ2
c given as

σ2
c = cH

Σc =
1

P (rH
l Brl)

.
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The pdf ofx reads

p(x|P, σ2
c ) =

xP−1

Γ(P )(σ2
c )P

e−x/σ2
c . (40)

The mean and the variance ofx are easily computed to be

E{x} = Pσ2
c =

1

rH
l Brl

,

Var{x} = P (σ2
c )2 =

1

P (rH
l Brl)2

.
(41)

Taking the term−1/(rH
l Brl) in (35) into account, we intro-

duce a variablẽα−1
n : a zero mean random variable with the

pdf

pα̃−1
n

(x|P, σ2
c ) =

(x − E{x})P−1

Γ(P )(σ2
c )P

e−(x−E{x})/σ2
c , (42)

which is equivalent to (40), but shifted so as to correspond to a
zero-mean distribution. However, it is known that only positive
values ofα−1

n occur in practice. The probability mass of the
negative part of (42) equals the probability that the condition
(30) is not satisfied and the resultingα∞ eventually diverges
to infinity and is pruned. Taking this into account the pdf of
α−1

n reads

pα−1
n

(x) = Pnδ(x) + (1 − Pn)I+(x)p̃α−1
n

(x|P, σ2
c ), (43)

whereδ(·) denotes a Dirac delta function,Pn is defined as

Pn =

∫ 0

−1/(rH
l

Brl)

p̃α−1
n

(x|P, σ2
c )dx,

andI+(·) is the indicator function of the set of positive real
numbers:

I+(x) =

{
0 x ≤ 0
1 x > 0.

A closer look at (43) shows that asP increases the variance
of the Gamma distribution decreases, withα−1

n concentrating
at zero. In the limiting case asP → ∞, (43) converges to
a Dirac delta function localized at zero, i.e.,αn = ∞. This
allows natural pruning of the corresponding basis function.
This situation is equivalent to averaging out the noise, as the
number of channel observations grows. Practically, however,
P stays always finite, which means that (38) and (43) have a
certain finite variance.

The pruning problem can now be approached from the
perspective of classical detection theory. To prune a basis
function, we have to decide if the corresponding value ofα−1

has been generated by the noise distribution (43), i.e., thenull
hypothesis, or by the pdf ofα−1

s + α−1
n , i.e., thealternative

hypothesis. Computing the latter is difficult. The problem
might be somewhat relaxed by taking the assumption thatα−1

s

and α−1
n are statistically independent. However proving the

plausibility of this assumption is difficult. Even if we were
successful in finding the analytical expression for the pdf of
the alternative hypothesis, such model selection approachis
hampered by our inability to evaluate (38) since the gains
wp’s are not knowna priori. However, we can still use (43)
to select a threshold.

Recall that the presented algorithm allows to learn (estimate)

the noise spectral heightN0 = β−1 from the measurements.
Assuming that we knowβ, and, as a consequence, the whole
matrix B then, for any basis functionrl in the design matrix
K and the corresponding hyperparameterαl, we can decide
with ana priori specified probabilityρ thatαl is generated by
the distribution (43). Indeed, letα−1

th be aρ-quantile of (43)
such that the probabilityP (α−1 ≤ α−1

th ) = ρ. Since (43) is
known exactly, we can easily computeα−1

th and prune all the
basis functions for whichα−1

l ≤ α−1
th .

2) Model mismatch:τ 6= Tl: The analysis performed
above relies on the knowledge that the true multipath delay
τ belongs toT . Unfortunately, this is often unrealistic and
the model mismatchτ /∈ T must be considered. To be able
to study how the model mismatch influences the value of the
hyperparameters we have to make a few more assumptions. Let
us for simplicity select the model delayTl to be a multiple
of the chip periodTp. We will also need to assume a certain
shape of the correlation functionRuu(t) to make the whole
analysis tractable. It may be convenient to assume that the
main lobe ofRuu(t) can be approximated by a raised cosine
function with period2Tp. This approximation makes sense if
the sounding pulsep(t) defined in Sec. II is a square root
raised cosine pulse. Clearly, this approximation can also be
applied for other shapes of the main lobe, but the analysis of
quality of such approximation remains outside the scope of
this paper.

Just as in the previous case, we can split the expression (33)
into the the multipath component contributionα−1

s

α−1
s =

|γ(τ)|2∑p |wp|2
P

+
2
∑

p Re{wpγ(τ)ξH
p Brl}

P |rH
l Brl|

,

(44)

where

γ(τ) =
rH

l Br(τ)

rH
l Brl

, (45)

and the same noise contributionα−1
n defined in (35). It can be

seen that theγ(τ) makes (44) differ from (36), and as such
it is the key to the analysis of the model mismatch. Note that
this function is bounded as|γ(τ)| ≤ 1, with equality following
only if τ = Tl. Note also that in our case for|τ − Tl| < Tp

the correlationγ(τ) is strictly positive.
Due to the properties of the sounding sequenceu(t), the

magnitude ofRuu(t) for |t| > Tp is sufficiently small and in
our analysis of model mismatch can be safely assumed to be
zero. Furthermore, ifrl is chosen to coincide with the multiple
of the sampling periodTl = lTs, then it follows from (10)
that the productrH

l B = rH
l Σ

−1 = βeH
l is a vector with all

elements being zero except thelth element, which is equal to
β. Thus, the productrH

l Br(τ) for |τ − Tl| < Tp must have
a form identical to that of the correlation functionRuu(t) for
|t| < Tp. It follows that when|τ − Tl| ≥ Tp the correlation
γ(τ) can be assumed to be zero, and it makes sense to analyze
(44) only when|τ −Tl| < Tp. In Fig. 7 we plot the correlation
functionsRuu(t) andγ(τ) for this case.

Since the true value ofτ is unknown, we assume this
parameter to be random, uniformly distributed in the interval
[Tl − Tp, Tl + Tp]. This in turn induces a corresponding
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Fig. 7: Evaluated correlation functions a)Ruu(t) and b)γ(τ).

distributions for the random variablesγ(τ) andγ(τ)2, which
enter, respectively, the second and first terms on the right-hand
side of (44).

It can be shown that in this caseγ(τ) ∼ B(0.5, 0.5), where
B(0.5, 0.5) is a Beta distribution [25] with both distribution
parameters equal to1/2. The corresponding pdfpγ(x) is given
in this case as

pγ(x) =
1

B(0.5, 0.5)
x− 1

2 (1 − x)−
1
2 , (46)

whereB(·, ·) is a Beta-function [26] withB(0.5, 0.5) = π.
It is also straight-forward to compute the pdf of the term

γ(τ)2:

pγ2(x) =
1

π
x− 3

4 (1 −√
x)−

1
2 . (47)

The corresponding empirical and theoretical pdf’s ofγ(τ)
andγ(τ)2 are shown in Fig. 8.
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Fig. 8: Comparison between the empirical and theoretical pdf’s
of a) γ(τ) and b)γ(τ)2 for the cosine approximation case. To
compute the histogramN = 5000 samples were used.

Now we have to find out how this information can be
utilized to design an appropriate threshold. In the case of a
perfectly matched model the threshold is selected based on
the noise distribution (43). In the case of a model mismatch,
the term (44) measures the amount of the interference resulting
from the model imperfection.

Indeed, if |τ − Tl| ≥ Tp, then the resultingγ(τ) = 0, and
thus α−1

s = 0. The corresponding evidence parameterα−1
∞

is then equal to the noise contributionα−1
n only and will be

pruned using the method we described for the matched model
case. If however,|τ −Tl| < Tp, then a certain fraction ofα−1

s

will be added to the noise contributionα−1
n , thus causing the

interference. In order to be able to take this interference into

account and adjust the threshold accordingly, we propose the
following approach.

The amount of interference added is measured by the
magnitude ofα−1

s in (44). It consists of two terms: the first
one is the multipath power, scaled by the factorγ(τ)2:

γ(τ)2
∑

p |wp|2
P

. (48)

The second term is a cross product between the multipath
component and the additive noise, scaled byγ(τ):

γ(τ)
2
∑

p Re{wpξ
H
p Brl}

P (rH
l Brl)

. (49)

Both terms have the same physical interpretation as in (36),
but with scaling factorsγ(τ) depending on the true value of
τ .

We see that in (44) there are quite a few unknowns: we
do not know the true multipath delayτ , the multipath gains
wp, as well as the instantaneous noise valueξ. To be able
to circumvent this uncertainties, we consider the large sample
size case, i.e,P → ∞ and invoke the law of large numbers
to approximate (48) and (49) by their expectations.

First of all, using (37) it is easy to see that

E

{

γ(τ)
2
∑

p Re{wpξ
H
p Brl}

P (rH
l Brl)

}

= 0.

The other term (48) converges toγ(τ)2E{|wp|2} asP grows.
So, even in the high SNR regime and infinite number of
channel observationsP the term (48) does not go to zero.
In order to assess how large it is, we approximate the gains
of the multipath componentwp by the corresponding MAP
estimateµp obtained with (25).

The correlation functionγ(τ) can also be taken into ac-
count. Since we know the distributions of bothγ(τ) andγ(τ)2,
we can summarize these by the corresponding mean values.
In fact, we will need the mean only forγ(τ)2 since it enters
the irreducible part ofα−1

s .
In our case it is computed as:

E{γ(τ)2} =

∫ 1

0

x

π
x− 3

4 (1 −√
x)−

1
2 dx =

3

8
(50)

Having obtained the mean, we can approximate the inter-
ferenceα̂−1

s due to the model mismatch as

α̂−1
s = 3/8 ×

∑P−1
p=0 |µp|2

P
, (51)

The final threshold that accounts for the model mismatch is
then obtained as

α̂−1
th = α̂−1

s + α−1
th , (52)

whereα−1
th is the threshold developed earlier for the matched

model case.

B. Improving the learning algorithm to cope with the model
selection

In the light of the model selection strategy considered here
we anticipate two major problems arising with the learning
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algorithm discussed in Section III. The first one is the estima-
tion of the channel parameters that requires computation of
the posterior (24). Even for the modest sizes of the hypothesis
Hi (from 100 to 200 basis functions), the matrix inversion
is computationally very intensive. This issue becomes even
more critical if we consider a hardware implementation of
the estimation algorithm. The second problem arises due to
the non-vanishing correlation between the basis vectorsrl

constituting the design matrixK. A very undesirable con-
sequence of this correlation is that the evidence parameters αl

associated with these vectors become also correlated, and thus
no longer represent the contribution of a single basis function.
As a consequence the developed model selection rules are no
longer applicable.

It is, however, possible to circumvent these two difficulties
by modifying the learning algorithm as discussed below. The
basic idea consists of estimating the channel parameters for
each basis independently. In other words, instead of solving
(24), (25), (26), and (27) jointly for allL basis functions, we
find a solution for each basis vector separately. First, the new
data vectorxp,l for the lth basis is computed as

xp,l = zp −
L∑

k=1,k 6=l

rkµp,l. (53)

This new data vectorxp,l now contains the information
relevant to the basisrl only. It is then used to update the
corresponding posterior statistics as well as evidence parame-
ters exclusively for thelth basis as follows:

Φl = (αl + βrH
l Λ

−1rl)
−1, (54)

µp,l = βΦlr
H
l Λ

−1xp,l, p = 1 . . . P. (55)

Note that expressions (54) and (55) are now scalars, unlike
their matrix counterparts (24) and (25). Similarly, we update
the evidence parameters as

αl =
P

∑P
p=1

(

Φl + |µp,l|2
) . (56)

Updates (54), (55), and (56) are performed for allL
components sequentially. Once all components are updated,
we update the noise hyperparameterN0:

N0 = (β−1) =
1

NP

(
P∑

p=1

tr[Φ(K)H
Λ

−1K]+

+

P∑

p=1

(zp − Kµp)
H
Λ

−1(zp − Kµp)

)

.

(57)

The above updating procedures constitute a single iteration
of the modified learning algorithm. This iteration is repeated
until some suitable convergence criterion is satisfied. Note that
the procedure described here is an instance of the SAGE algo-
rithm. This opens a potential to unite both SAGE and Evidence
Procedure, allowing to implement simultaneous parameter and
model order estimation within the SAGE framework.

This iterative method, also known as successive interference
cancellation, allows solving both anticipated problems. First

of all, there is no need to compute matrix inversion at each
iteration. Second, the obtained values ofα now reflect the
contribution of a single basis function only, since they were
estimated while the contribution of other bases was canceled
in (53).

Now, at the end of each iteration, once the new value of the
noise is obtained using (57), we can decide to prune some of
the components, as described in Section IV-A.

C. MDL principle and Evidence Procedure

The goal of this section is to establish a relationship between
the classical information-theoretic criteria for model selection,
such as Minimum Description Length (MDL) [4], [5], [8],
[20], and the Evidence Procedure discussed here. For simplic-
ity we will only consider a single channel observation case,
i.e., P = 1. Extension to the caseP > 1 is straightforward.

The MDL criterion was originally formulated from the
perspective of coding theory as a solution to the problem of
balancing the code length and the resulting length of the data
encode with this code. This concept however can naturally be
transferred to general model selection problems.

In terms of parameter estimation theory, we can interpret
the length of the encoded data as the parameter likelihood
evaluated at its maximum. The length of the code is equivalent
to what is known in the literature as thestochastic complexity
[11], [20], [21]. The Bayesian interpretation of the stochastic
complexity term obtained for likelihood functions from an
exponential family (see [20] for more details) is of particular
interest for our problem at hand. The Description Length in
this case is given as

DL(Hi) = − log(p(z|wMAP ,Hi)
︸ ︷︷ ︸

model performance

+

L

2
log

N

2π
− log(p(wMAP |Hi)) + log(

√

|I1(wMAP )|)
︸ ︷︷ ︸

stochastic complexity

.

(58)

HereI1(wMAP ) is the Fisher information matrix of a single
sample evaluated at the MAP estimate of the model parameter
vector, andp(wMAP |Hi) is the corresponding prior for this
vector.

Thus, joint model and parameter estimation schemes should
aim at minimizing theDL so as to find the compromise
between the model fit (likelihood) and the number of the
parameters involved. The latter is directly proportional to the
stochastic complexity term.

We will now show, that the EP employed in our model
selection scheme results in a very similar expression.

Let us once again come back to the evidence term (19). To
exemplify the main message that we want to convey here, we
will compute the integral in (19) differently. For each model
hypothesis defined as in Section III, let us define∆(wi) =
− log(p(z|wi, βi)) − log(p(wi|αi)). Then equation (19) can
be expressed as

p(z|αi, βi) =

∫

exp(−∆(wi))dwi. (59)
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Now we proceed by computing the integral (59) using a
Laplace method [8, ch. 27], also known as a saddle-point
approximation. The essence of the method consists of com-
puting the second order Taylor series around the argument that
maximizes the integrand in (59), which is the MAP estimate
of the model parametersµi given in (18). In our case∆(wi)
is known to be quadratic, since bothp(z|wi, βi) andp(wi|αi)
are Gaussian, so the approximation is exact.

It is then easily verified that for the hypothesisHi with
|P(i)| = L basis functions

p(z|αi,βi) =

∫

exp(−(wi − µi)
H

Φ
−1
i (wi − µi))dwi

× exp(−∆(µi)) = exp(−∆(µi))π
L|Φi|,

(60)

By taking the logarithm of (60) and changing the sign of the
resulting expression we arrive at the final expression for the
negativelog-evidence

− log(p(z|αi, βi)) = − log(p(z|µi, βi))−
log(p(µi|αi)) − L log(π) − log(|Φi|).

(61)

Noting thatΦi has been computed usingN data samples, and
that in this caselog(|Φi/N |) = log(|I−1

1 (µi)|), we rewrite
(61) as

DL(Hi) = − log(p(z|µi, βi))
︸ ︷︷ ︸

model performance

+

L log(
N

π
) − log(p(µi|αi)) + log(|I1(µi)|)

︸ ︷︷ ︸

model complexity

,
(62)

We note that (58) and (62) are essentially similar, with the
distinction that the latter accounts for complex data. Thus
we conclude that maximizing evidence (or minimizing the
negativelog-evidence) is equivalent to minimizing theDL.

Let us now consider how this can be exploited in our
case. In general, the MDL concept assumes presence of
multiple estimatedmodels. The model that minimizes theDL
functional is then picked as the optimal one. In our case,
evaluation of theDL functional for all possible hypotheses
Hi is way too complex. In order to make this procedure more
efficient, we can exploit the estimated evidence information.

Consider the graph shown in Fig. 9. Each node on the graph

H1

H2

H3

HL0

H2L0+1

H2L0+2

H3L0−1

H3L0

H0 Hemp

|P(S)| = L0 |P(i)| = L0 − 1 |P(i)| = L0 − 2 |P(i)| = 0

Fig. 9: Model selection by evidence evaluation.

corresponds to a certain hypothesisHi consisting of|Pi| basis
functions. An edge emanating from a node is associated with a
certain basis function from the hypothesisHi. Should the path
through the graph include this edge, the corresponding basis
function would be pruned, leading to a new smaller hypothesis.
Clearly, the optimal path through the graph should be the one
that minimizes theDL criterion. Now, let us propose a strategy
to find the optimal model without evaluating all possible paths
through the graph.

At the initial stage, we start in the leftmost node, which
corresponds to the full hypothesisH0. We then proceed with
the learning using the iterative scheme depicted in Fig. 4 to
obtain the estimates of the evidence parametersαl, l ∈ P(0),
for each basis function inH0. Once convergence is achieved,
we evaluate the correspondind description lengthDL0 for this
hypothesis using (62). Since the optimal path should decrease
the DL, the hypothesis at the next stageHi is selected by
moving along the edge that corresponds to the basis function
with the largest value ofα (i.e., the basis function with
the smallest evidence). For the newly selected hypothesis
Hi we again estimate the evidence parametersαi and the
corresponding description lengthDLi. If DL0 < DLi, then
the hypothesisH0 achieves the minimum of the description
length and it is then selected it as a solution. Otherwise, i.e., if
DL0 > DLi, we continue along the graph, each time pruning
a basis function with the smallest evidence and comparing the
description length at each stage. We proceed so until theDL
does not decrease any more, or until we stop at the last node
that has no basis functions at all. Such an empty hypothesis
corresponds to the case when there is no structure in the
observed data. In other words it corresponds to the case when
the algorithm failed to find any multipath components. This
technique requires searching betweenL0 to a maximum of
L0(L0+1)/2 possible hypotheses, while a total search requires
testing a total of2L0 different models.

V. A PPLICATION OF THERVM TO WIRELESS CHANNELS

The application of the proposed channel estimation scheme
coupled with the considered model selection approach requires
two major components: 1) it needs a proper construction of
the kernel design matrix that is dense enough to ensure good
delay resolution, and 2) the iterative nature of the algorithm
requires a good initialization.

The construction of the design matrixK can be done with
various approaches, depending on how mucha priori infor-
mation we have about the possible positions of the multipath
components. The columns of the matrixK contain the shifted
versions of the kernelRuu(nTs − Tl), l = 1 . . . L0, where
Tl are the possible positions of the multipath components
that form the search spaceT . The delaysTl can be selected
uniformly to cover the whole delay span or might be chosen so
as to sample some areas of the impulse response more densely,
where multipath components are likely to appear. Note that
the delaysTl are not constrained to fall on a regular grid.
The power-delay profile (PDP) may be a good indicator of
how to place the multipath components. Initialization of the
model hyperparameters can also be done quite effectively. In
the sequel we propose two different initialization techniques.
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The simplest one consists of evaluating the condition (30)
for all the basis functions in the already created design matrix
K. For those basis functions that satisfy condition (30), the
corresponding evidence parameter is initialized using (29).
Other basis functions are removed from the design matrix
K. Such initialization assumes that there is no interference
between the neighboring basis functions. It makes sense to
employ it when the minimal spacing between the elements in
T is at most half the duration of the sounding pulseTp.

In the case when the spacing is denser, it is better to use
independent evidence initialization. This type of initialization
is in fact coupled with the construction of the design matrixK

and relies on the successive interference cancellation scheme
discussed in the Section IV-B. To make the procedure work,
we need to set the initial channel coefficients to zero, i.e.,
µp ≡ 0. The basis vectorsrl are computed as usual according
to the delay search spaceT . The initialization iterations start
by computing (53). The basisrl that is best aligned with
the residualxp,l is then selected. If the selectedrl satisfies
condition (30), it is included in the design matrixK, and
the corresponding parametersΦl, µp,l, andαl are computed
according to (54), (55), and (56), respectively. These steps are
continued until all bases with delays from the search spaceT
are initialized, or until the basis vector that does not satisfy
the condition (30) is encountered.

Of course, in order to be able to use this initialization
scheme, it is crucial to get a good initial noise estimate. The
initial noise parameterN [0]

0 can in most cases be estimated
from the tails of the channel impulse response, where mul-
tipath components are unlikely to be present or too weak to
be detected. Generally, we have observed that the algorithmis
less sensitive to the initial values of the hyperparametersα,
but proper initialization of the noise spectral height is crucial.

Now we can describe the simulation setup used to assess
the performance of the proposed algorithm.

A. Simulation setup

The generation of the synthetic channel is done following
the block-diagram shown in Fig. 1: a single periodu(t) of
the sounding sequences(t) is filtered by the channel with the
impulse responseh(t), and complex white Gaussian noise is
added to the channel outputs to produce the received signal
y(t). The received signal is then run through the MF. The
continuous-time signals at the output of the MF are represented
with cubic splines. The resulting spline representation isthen
used to obtain the sampled outputzp[n], p = 1 . . . P , with
n = 0 . . .N − 1. Output signalszp[n] are then used as the
input to the estimation algorithm.

For all P channel observations we use the same MF, and
thusΦ = Φp, K = Kp, andΣ = Σp, p = 1 . . . P . Without
loss of generality, we assume a shaping pulse of the duration
Tp = 10nsec. The sampling period is assumed to beTs =
Tp/Ns, whereNs is the number of samples per chip used in
the simulations. The sounding waveformu(t) consists ofM =
255 chips. We also assume the maximum delay spread in all
simulations to beτspread = 1.27µsec. With these parameters,
a one-sample/chip resolution results inN = 128 samples. The

autocorrelation functionRuu(t) is also represented with cubic
splines, allowing a proper construction of the design matrix K

according to the predefined delays inT . Realizations of the
channel parameterswl,p are randomly generated according to
(12).

The performance of the algorithm is also evaluated under
different SNR’s at the output of the MF, defined as

SNR= 10 log10

(1/α

N0

)

. (63)

For simplicity, we assumed that in the caseL > 1 all sim-
ulated multipath components have the same expected power
α−1. Although this is not always a realistic assumption, it
ensures that all simulated multipath components present inthe
measurement will be “treated” equally.

B. Numerical simulations

Let us now demonstrate the performance of the model
selection schemes discussed in Section IV on synthetic, as
well as on measured channels.

1) Multipath detection with the perfect model match:First
we consider the distribution of the hyperparameters once the
stationary point has been reached. In order to do that, we
apply the learning algorithm to the full hypothesisH0. The
delays inH0 are evenly positioned over the length of the
impulse response:T = {lTs; l = 0 . . .N − 1}, i.e., L0 =
N . Here, we simulate the channel with a single multipath
component, i.e.,L = 1, having the delayτ ′ equal to a
multiple of the sampling periodTs. Thus, in the design matrix
K corresponding to the full hypothesisH0 there will be a
basis function that coincides with the contribution of the true
multipath component. Once the parameters have been learned,
we partition all the hyperparametersα into those attributed to
the noise, i.e.,αn, and one parameter that corresponds to the
multipath componentαs, i.e., the one associated with the delay
Tl = τ ′.

In a next step, we compare the obtained histogram of
α−1

n with the theoretical pdfpα−1
n

(x) given in (43). The
corresponding results are shown in Fig. 10(a). A very good
match between the empirical and theoretical pdf’s can be
observed.

Similarly, we investigate the behavior of the negativelog-
evidence versus the size of the hypothesis. We consider a
similar simulation setup as above, however with more than just
one multipath component to make the results more realistic.
Figure 10(b) depicts the evaluated negativelog-evidence (61)
as a function of the model order, evaluated for a single
realization, when the true number of components isL = 20,
and the number of channel observations isP = 5.

Note that, as the SNR increases, there are fewer components
subject to the initial pruning, i.e., those that do not satisfy
condition (30). We also observe that the minimum of the neg-
ative log-evidence (i.e., maximum of the evidence) becomes
more pronounced as the SNR increases, which has an effect
of decreasing the variance of the model order estimates.

In order to find the best possible performance of the
algorithm, we first perform some simulations assuming that
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Fig. 10: Evidence-based model selection criteria. a) Empirical (bar plot) and theoretical (solid line) pdf’s of hyperparameters
α−1

n (SNR = 10dB, andP = 10). To compute the histogramN = 500 samples was used.; b) Negativelog-evidence as a
function of the model order (number of paths) for different SNR values (P = 5, andL = 20).

the discrete-time model (8) perfectly matches the continuous-
time model (6), i.e.,τl ∈ T , l = 1, . . . , L. This is realized
by drawing uniformlyL out of N possible delay values in the
interval[0, Ts(N−1)]. Again,T = {lTs; l = 0 . . .N−1}. The
number of multipath components in the simulated channels is
set toL = 5 and the channel is sampled withNs = 2 samples
per chip.

In this simulation we evaluate the detection performance
by counting the errors made by the algorithms. Two types of
errors can occur: (a) aninsertion error– an erroneous detection
of a non-existing component; (b) adeletion error– a loss of
an existing component. The case when an estimated delayT̂l

matches one of the true simulated delays is called ahit. We
further define themultipath detection rateas the ratio between
the number of hits to the true number of componentsL plus
the number of insertion errors. It follows that the detection rate
is equal to1 only if the number of hits equals the true number
of components. If, however, the algorithm makes any deletion
or insertion errors, the detection rate is then strongly smaller
than1. We study the detection rates for both model selection
schemes versus different SNR’s. The presented results are
averaged over300 independent channel realizations.

We start with the model selection approach based on the
threshold selection using theρ-quantile of the noise distri-
bution - quantile-based model selection. The results shownin
Fig. 11(a) are obtained forρ = 1−10−6 and different numbers
of channel observationsP . It can be seen that, asP increases,
the detection rate significantly improves. To obtain the results
shown in Fig. 11(b) we fix the number of channel observations
at P = 5 and vary the value of the quantileρ. It can be seen
that asρ approaches unity, the threshold is placed higher,
meaning that fewer noise components can be mistakenly
detected as multipath components, thus slightly improvingthe
detection rate. However higher thresholds require a higher
SNR to achieve the same detection rate, as compared for the

thresholds obtained with lowerρ.
The next plot in Fig.11(c) shows the multipath detection

rate when the model is selected based on the evaluation of the
negativelog-evidence under different model hypotheses (neg-
ative log-evidence model selection). It is interesting to note
that in this case the reported curves behave quite differently
from those shown in Fig. 11(a). First, we see that for the case
P = 1 the behavior of this method is slightly better, compared
to the threshold-based method in Fig. 11(a). But asP grows,
the performance of the multipath detection does not increase
proportionally, but rather exhibits a threshold-like behavior. In
other words, multipath detection based on the negativelog-
evidence and alike MDL-based model selection requires the
SNR above a certain threshold in order to operate reliably.
Furthermore, this threshold is independent of the number of
channel observationsP .

Thus from Fig. 11(a) and Fig. 11(c) we can conclude
that the quantile-based method performs better in a sense
that it can always be improved by increasing the number
of channel observations. Further, model selection using the
thresholding approach can be performed on-line, concurrent
with parameters estimation, while in the other case multiple
models have to be learned.

Now, let us consider how the EP performs when the
multipath component delays are on the real line, rather than
on a discrete grid. Clearly, this case corresponds more to the
real-life situation.

2) Multipath detection with the model mismatch:In the real
world the delays of the multipath components do not necessar-
ily coincide with the elements inT used to approximate the
continuous-time model (6). By using the discrete-time models
to approximate the continuous-time counterparts, we would
necessarily expect some performance degradation in terms of
an increased number of components. This problem is similar to
the problem that occurs in fractional delay filters (FDF) [27].
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Fig. 11: Multipath detection rates based on the EP. (a) Quantile-based model selection versusP : ρ = 1 − 10−6, L = 5; (b)
Quantile-based model selection versusρ: P = 5, L = 5; (c) Negativelog-evidence-based detection versusP .

An FDF aims at approximating a delay that is not a multiple
of the sampling period. As shown in [27], such filters have
infinite impulse response. Though FIR approximations exist,
they require several samples to represent a single delay.

Since there is an inevitable mismatch between the
continuous-time and discrete-time models, it is worth asking
how densely we should quantize the delay line to form the
design matrix in order to achieve the best performance. It is
convenient to select the delays inT of the discrete-time model
as a multiple of the sampling periodTs. As the sampling rate
increases the true delay values get closer to some elements in
T , thus approaching the continuous-time model (6).

We simulate a channel with a single multipath component
that has a random delay, uniformly distributed in the interval
[0, τspread].

The criterion used here to assess the performance of the
algorithm is the probability of correct path extraction. This
probability is defined to be the conditional probability that,
given any path is detected, the algorithm finds exactly one
component with the absolute difference between the estimated
and the true delay less than the chip pulse durationTp. Notice
that the probability of correct path extraction is conditioned on
the path detection, i.e., it is evaluated for the cases when the
estimation algorithm is able to find at least one component.

It is also interesting to compare the performance of the EP
with other parameter estimation techniques. Here we consider
the SAGE algorithm [2] that has become a popular multi-
path parameter estimation technique. The SAGE algorithm,
however, does not provide any information about the number
of multipath components. To make the comparison fair, we
augment it with the standard MDL criterion [4], [5] to perform
model selection.

Thus, we are going to compare three different model
selection algorithms: the quantile-based (or threshold-based)
scheme with a pre-selected quantileρ = 1 − 10−6, the
SAGE+MDL method, and negativelog-evidence method. We
are also going to use the threshold-based method to demon-
strate the difference between two EP initialization schemes:
the joint initialization, and the independent initialization, dis-
cussed in Section V. In all simulations the negativelog-
evidence method was initialized using independent initializa-

tion.
We start with channels sampled withNs = 1 sample/chip

resolution andP = 5 channel observations. We see that the
shown methods have different probabilities of path detection
(Fig.12(a)), i.e., they require different SNR to achieve the same
path detection probability. The threshold-based methods can
be, however, adjusted by selecting the quantileρ appropriately.
As we see, withρ = 1 − 10−6, the threshold-based and
SAGE+MDL methods achieve the same probabilities of path
detection. The resulting probabilities of correct path extraction
are shown in Fig. 12(b). Note that for low SNR comparison of
the methods is meaningless, since too few paths are detected.
However, above SNR≈ 15dB, with all methods we can
achieve similar high path detection probability, which allows
direct comparison of the correct path extraction probabilities.
We can hence infer that, in this regime, model selection with
negativelog-evidence is superior to other methods, since it
has higher probabilities of path extraction. In other wordsthis
means that at higher SNR this method will introduce fewer
artifacts.

What is also important is that as the SNR increases, the cor-
rect path extraction rate drops. This happens simply because
our model has a fixed resolution in the delay. As the result,
at the higher SNR several components from the our model
are used to approximate a single one with a delay between
the sampling instances. This leads to the degradation of the
correct path extraction rate since the number of components
is overestimated.

Now, let us increase the sampling rate and study the
caseNs = 2 (Fig. 12(c), and Fig. 12(d)). We see that the
probabilities of path extraction are now higher for all methods.
A slight difference between the two EP initialization schemes
can also be observed. Note however that the performance
increase is higher for the SAGE+MDL and negativelog-
evidence algorithms, which both rely on the same model
selection concept.

Finally, the last case withNs = 4 is shown in Fig. 12(e)
and Fig. 12(f). Again SAGE+MDL and negativelog-evidence
schemes achieve higher correct path extraction probabilities
as compared to the threshold-based method. The performance
of the latter also increases with the sampling rate, but un-
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Fig. 12: Comparison of the model selection schemes in a single path scenario. (a,c,e) path detection probability, and (b,d,f)
probability of correct path extraction forP = 5, and (a,b)Ns = 1; (c,d) Ns = 2; and (e,f)Ns = 4.

fortunately not as fast as that of the Description Length-
based model selection. Theses plots also demonstrate the
difference between the two proposed initializations of the
EP. In Fig. 12(e) we see that in this case the independent
initialization outperforms the joint one. As already mentioned,
this distinction becomes noticeable, once the basis functions in
K exhibit significant correlation, what is the case forNs & 2.

C. Results for measured channels

We also apply the proposed algorithm to the measured
data collected in in-door environments. Channel measure-
ments were done with the MIMO channel sounder PropSound
manufactured by Elektrobit Oy. The basic setup for channel
sounding is equivalent to the block-diagram shown in Fig.
1. In the conducted experiment the sounder operated at the
carrier frequency5.2GHz with a chip period ofTp = 10nsec.
The output of the matched filter was sampled with the period
Ts = Tp/2, thus resulting in a resolution of2 samples per chip.
The sounding sequence consisted ofM = 255 chips, resulting
in the burst waveform duration ofTu = MTp = 0.255µsec.

Based on visual inspection of the PDP of the measured
channels, the delaysTl in the search spaceT are positioned
uniformly in the interval between250nsec and1000nsec, with
spacing between adjacent delays equal toTs. This corresponds
to the delay search spaceT consisting of151 elements. The
initial estimate of the noise floor is obtained from the tail of the
measured PDP. The algorithm stops once the relative change
of the evidence parameters between two successive iterations

is smaller than0.0001%. The corresponding detection results
for different number of channel observations are shown in Fig.
13.

When P = 1 (see Fig. 13(a)), the independent initializa-
tion results in only9 basis functions constituting the initial
hypothesisH0. The final estimated number of components
is found to beL = 8. As expected, increasing the number
of channel observationsP makes it possible to detect and
estimate components with smaller SNR. For the case ofP = 5
we detect alreadyL = 12 components (Fig. 13(b)), and
for P = 32, L = 15 components (Fig. 13(c)). This shows
that increasing the number of observations not necessarily
brings a proportional increase of the detected components,thus
suggesting that there might be a limit given by the true number
of multipath components.

VI. CONCLUSION

This paper demonstrates the application of the Evidence
Procedure to the analysis of wireless channels. The origi-
nal formulation of this method, known as Relevance Vector
Machines, was reformulated to cope with the estimation of
wireless channels. We extended the method to the complex
domain and colored additive noise. We further extended the
RVM to multiple channels by proposing a new graphical
Bayesian model, where a single evidence parameter controls
each multipath component observed with multiple channels.
To our knowledge this is a new concept that can be useful not
only for estimation, but also for simulating wireless channels.
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(a) P = 1; Estimated number of multipath componentsL = 8.
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(b) P = 5; Estimated number of multipath componentsL = 12.
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(c) P = 32; Estimated number of multipath componentsL = 15.

Fig. 13: Multipath detection results for quantile-based method
with ρ = 1 − 10−6.

Evidence parameters were originally introduced to control
the sparsity of the model. Assuming a single path scenario we
were able to find the statistical laws that govern the values
of the evidence parameters once the estimation algorithm has
converged to the stationary point. It was shown that in low
SNR scenarios the evidence parameters do not attain infinite
values, as has been assumed in the Tipping’s original RVM
formulation, but stay finite with values depending on the
particular SNR level. This knowledge enabled us to develop
model selection rules based on the discovered statistical laws
behind the evidence parameters.

In order to be able to apply these rules in practice, we
also proposed a modified learning algorithm that exploits the
principle of successive interference cancellation. This mod-
ification not only allows to avoid computationally intensive
matrix inversions, but also removes the interference between
the neighboring basis functions in the design matrix.

Model mismatch case was also considered in our analysis.
We were able to assess the possible influence of the finite
algorithm resolution and, to some extent, take it into account
by adjusting the corresponding model selection rules.

We also showed the relationship between the EP and the
classical model selection based on the MDL criterion. It was
found that the maximum of the evidence corresponds to the
minimum of the corresponding description length criterion.
Thus, EP can be used as the classical MDL-like model
selection scheme, but also allows faster and more efficient
threshold-based implementation.

The EP framework was also compared with the multipath
estimation using the SAGE algorithm augmented with the
MDL criterion.

According to the simulation results, the Description Length-
based methods, i.e., negativelog-evidence and SAGE+MDL
method, give better results in terms of the achieved probabili-
ties of correct path extraction. They also improve faster asthe
sampling rate grows. However, these model selection strategies
require learning multiple models in parallel, which, of course,
imposes additional computational load. The threshold-based
method, on the other hand, allow to perform model selection
on-line, thus being more efficient, but its performance increase
with the growing sampling rate is more modest. The perfor-
mance of the threshold-based method also depends on the
value of the quantileρ. In our simulations we setρ = 1−10−6,
which results in the same probability of the path detection as
in the SAGE+MDL algorithm. However, other values ofρ can
be used, thus giving a way to further optimize the performance
of the threshold-based method.

The comparison between the SAGE and EP schemes clearly
shows that estimating evidence parameters really pays off.
Introducing them in the computation of the model complexity,
as it is done in the negativelog-evidence approach, results in
the best performance, compared to the other two methods.
Although the negativelog-evidence methods needs a slightly
higher SNR to reliably detect channels, it however results in
the highest probability of the path extraction.

To summarize, we think that the EP is a very promising
method that can be superior to the standard model selection
algorithms like MDL, both in accuracy and in computational
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efficiency. It also offers a number of possibilities: the evidence
parameters can also be estimated within the SAGE framework,
thus extending the list of multipath parameters and enabling
on-line model selection within the SAGE algorithm. As the
consequence, this would allow to adapt the design matrix
by estimating the delaysτl from the data. The threshold-
based method also opens perspectives for on-line remodeling,
i.e., adding or removing components during the estimation
of the model parameters, which might result in much better
and sparser models. Since the evidence paremeters reflect the
contribution of the multipath components, they might also be
useful in applications, where it is necessary to define some
measure of confidence for a multipath component.

APPENDIX

To derive the update expressions for the evidence parameters
in the multiple channels case, we first rewrite (19) using
the definitions (22). Since both terms under the integral are
Gaussian densities, the result can be easily evaluated as

p(z̃|α, β) =

∫

p(z̃|w̃, β)p(w̃|α)dw̃

=
exp

(

− z̃H(β−1
Λ̃ + K̃Ã

−1
K̃

H
)−1z̃

)

πPN |β−1Λ̃ + K̃Ã
−1

K̃
H |

.

(64)

For the sake of completeness we also consider hypermodel
priors p(α, β) in the derivation of the hyperparameter update
expressions. Thus, our goal is to find the values ofα, and
β that maximizeL(α, β|z̃) = log(p(z̃|α, β)p(α, β)). This is
achieved by taking the partial derivatives ofL(α, β|z̃) with
respect toα and β, and equating them to zero [19]. It is
convenient to maximizeL(α, β|z̃) with respect tolog(αl)
and log(β) since the derivatives of the prior terms in the
logarithmic domain are simpler.

First we prove the following matrix identity that we will
exploit later

|B−1||A−1||A + KHBK| = |B−1 + KA−1KH |. (65)

Proof:

|B−1||A−1||A + KHBK| =

|B−1||A−1||KH [(KA−1KH)−1 + B]K| =

|B−1||A−1||K||(KA−1KH)−1 + B||KH | =

|K||A−1||KH ||[(KA−1KH)−1 + B]B−1| =

|KA−1KH [(KA−1KH)−1B−1 + I]| =

|B−1 + KA−1KH |

Now, we can begin with the derivation of the update of the
hyperparametersαl. Let us defineB̃

−1
= β−1

Λ̃. According
to (65) we see that

|B̃−1
+ K̃Ã

−1
K̃

H | =

|B̃−1||Ã−1||Ã + K̃
H

B̃K̃| =|B̃−1||Ã−1||Φ̃−1|.

Making use of this result, we can write

∂L(α, β|z̃)

∂ log(αl)
=

∂

∂ log αl

{

− log |B̃−1||Ã−1||Φ̃−1|−

z̃H(B̃
−1

+ K̃Ã
−1

K̃
H

)−1z̃ +

L∑

l=1

(ǫ log αl − ζαl)

}

=

∂ log |A|P
∂ log αl

+

P∑

p=1

∂ log |Φp|
∂ log αl

+ (ǫ − ζαl)

−z̃H ∂(B̃ − B̃K̃(Ã + K̃
H

B̃K̃)−1K̃
H

B̃)

∂ log αl
z̃,

where in the latter expression the Woodbury inversion identity
[28] was used to expand the term(B̃

−1
+ K̃Ã

−1
K̃

H
)−1.

After taking the derivative we arrive at

∂L(α, β|z̃)

∂ log(αl)
= P tr

[

A−1 ∂A

∂ log αl

]

+

P∑

p=1

tr
[

Φ
−1
p

∂Φp

∂ log αl

]

+(ǫ − ζαl) − z̃HB̃K̃Φ̃
∂(Ã + K̃

H
B̃K̃)

∂ log αl
Φ̃K̃

H
B̃z̃ =

P −
P∑

p=1

tr
[

αlEllΦp

]

+ (ǫ − ζαl)−

z̃HB̃K̃Φ̃αlẼllΦ̃K̃
H

B̃z̃.

HereEll is a matrix with thelth element on the main diag-
onal equal to1, and all other elements being zero. Similarly,
Ẽll is theP -times repetition ofEll on its main diagonal. By
noting thatµ̃ = Φ̃K̃

H
B̃z̃, we arrive at

∂L(α, β|z̃)

∂ log(αl)
= P −

P∑

p=1

tr
[

αlEllΦp

]

+

(ǫ − ζαl) − µ̃HαlẼllµ̃ = 0.

Solving for αl, we obtain the final expression for the hyper-
parameter update

αl =
P + ǫ

∑P
p=1

(

Φp,ll + |µp,l|2
)

+ ζ
.

Note that by settingζ = ǫ = 0 we effectively remove the
influence of the priorp(α|ζ, ǫ).

We proceed similarly to calculate the update ofβ

∂L(α, β|z̃)

∂ log(β)
=

P∑

p=1

∂ log |Bp|
∂ log β

+

P∑

p=1

∂ log |Φp|
∂ log β

+ (υ − κβ)

−z̃H ∂(B̃ − B̃K̃(Ã + K̃
H

B̃K̃)−1K̃
H

B̃)

∂ log β
z̃ =

P∑

p=1

∂ log βN |Λ−1
p |

∂ log β
+

P∑

p=1

tr
[

Φ
−1
p

∂Φp

∂ log β

]

+

(υ − κβ) − z̃H ∂βΛ̃
−1

∂ log β
z̃+

z̃H ∂(βΛ̃
−1

K̃(Ã + K̃
H

βΛ̃
−1

K̃)−1K̃
H

βΛ̃
−1

)

∂ log β
z̃ =
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PN −
P∑

p=1

tr
[

Φ
−1
p Φp

∂(A + KH
p βΛ

−1
p Kp)

∂ log β
Φp

]

+

(υ − κβ) − z̃HβΛ̃
−1

z̃ + z̃HβΛ̃
−1

K̃Φ̃K̃
H

βΛ̃
−1

z̃+

z̃HβΛ̃
−1

K̃
∂(Ã + K̃

H
βΛ̃

−1
K̃)

∂ log β
K̃

H
βΛ̃

−1
z̃+

z̃HβΛ̃
−1

K̃Φ̃K̃
H

βΛ̃
−1

z̃ =

PN −
P∑

p=1

tr
[

KH
p βΛ

−1
p KpΦp

]

+

(υ − κβ) − z̃HβΛ̃
−1

z̃ + z̃HβΛ̃
−1

K̃µ̃

+µ̃HK̃
H

βΛ̃
−1

K̃µ̃ + µ̃HK̃
H

βΛ̃
−1

z̃.

Thus we arrive at the final expression:

∂L(α, β|z̃)

∂ log(β)
= PN −

P∑

p=1

tr
[

KH
p βΛ

−1
p KpΦp

]

+

(υ − κβ) −
P∑

p=1

(zp − Kpµp)
HβΛ

−1
p (zp − Kpµp) = 0.

Solving for β we finally obtain

β = (PN + υ)

(
P∑

p=1

tr
[

KH
p Λ

−1
p KpΦp

]

+

P∑

p=1

(zp − Kpµp)
H
Λ

−1
p (zp − Kpµp) + κ

)−1

.

Here again the choiceκ = υ = 0 removes the influence of the
prior p(β|κ, υ) on the evidence maximization.
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