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Abstract—In this paper we address the application of the the performance of the decoder in the former case, while
Bayesian Evidence Procedure to the estimation of wireless gdditive noise is injected in the channel equalizer in the
channels. The proposed scheme is based on Relevance Vectopyyer: the excessive components amount only to the random
Machines (RVM) originally proposed by M. Tipping. RVMs allow - . L .
to estimate channel parameters as well as to assess the numbefluc'ﬂ_ﬂ_ﬁIons of the packground n,O'S?' To amend this sitoatio
of multipath components constituting the channel within the €mpirical methods like cross-validation can be employee (s
Bayesian framework by locally maximizing the evidence intgral.  for example [3]). Cross-validation selects the optimal elod
We show that in the case of channel sounding using pulse- by measuring its performance over a validation data set and
compression techniques, it is possible to cast the channelotlel — gejacting the one that performs the best. In case of préactica

as a general linear model, thus allowing RVM methods to be ltiath ch | h dat t ft. ilakde d
applied. We extend the original RVM algorithm to the multipl e- muitipath channels, such data sets are often unavailalee du

observation/multiple-sensor scenario by proposing a newrgph-  t0 the time-variability of the channel impulse responsels. A
ical model to represent multipath components. Through the ternatively, one can employ model selection schemes in the

analysis of the Evidence Procedure we develop a thresholdin spirit of Ockham’s razor principle: simple models (in terms
algorithm that is used in estimating the number of componers. of the number of parameters involved) are preferred over

We also discuss the relationship of the Evidence Procedurent | E | the Akaike Inf Hi
the standard Minimum Description Length (MDL) criterion. more complex ones. t£xamples are the alke Intformation

We show that the maximum of the evidence corresponds to Criterion (AIC) and Minimum Description Length (MDL)
the minimum of the MDL criterion. The applicability of the  [4], [5]. In this paper we show how the Ockham'’s principle

proposed scheme is demonstrated with synthetic as well asale  can be effectively used to perform estimation of the channel
world channel measurements, and a performance increase ave 5rameters coupled with estimating the model order, be., t
the conventional MDL criterion applied to maximum-likelih ood
estimates of the channel parameters is observed. number of wavefronts.
Consider a certain class of parametric models (hypotheses)
'H; defined as the collection of prior distribution&w;|#;) for
the model parametenrs,. Given the measurement dafaand
a family of conditional distributiong(Z|w;, H;), our goal is
EEP understanding of wireless channels is an essentiglinfer the hypothesig? and the corresponding parameters
prerequisite to satisfy the ever-growing demand for fag that maximize the posterior
information access over wireless systems. A wireless atflann )
contains explicitly or implicitly all the information abéthe {w, H} = argmax {P(wz*7Hi|Z)}- 1)
propagation environment. To ensure reliable communinatio wi,Hs
the transceiver should be constantly aware of the chanatelst The key to solving (1) lies in inferring the corresponding
In order to make this task feasible, accurate channel mpdgdarametersw; and H; from the dataZ, which is often
which reproduce in a realistic manner the channel behaviar,nontrivial task. As far as the Bayesian methodology is
are required. However, efficient joint estimation of theruliel concerned, there are two ways this inference problem can be
parameters, e.g., number of the multipath components (imodelved [6, sec. 5]. In thpint estimation methadh(w;, H;|Z)
order), their relative delays, Doppler frequencies, diogs of is maximized directly with respect to the quantities of et
the impinging wavefronts, and polarizations is a partidyla w; and H,. This often leads to computationally-intractable
difficult task. It often leads to analytically intractablexch optimization algorithms. Alternatively, one can rewriteet
computationally very expensive optimization procedufidse posteriorp(w;, H;|Z) as
problem is often relaxed by assuming that the number of
multipath components is fixed, which simplifies optimizatio p(wi, H:|2) = p(wi|Z, Hi)p(Hi| Z) 2)
in many cases [1], [2]. However, both underspecifying arehd maximize each term on the right-hand side sequentially
overspecifying the model order leads to significant perfofrom right to left. This approach is known as thrarginal esti-
mance degradation: residual intersymbol interferenceaimmp mation methodMarginal estimation methods (MEM) are well
L . . . _ _ exemplified by Expectation-Maximization (EM) algorithms
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I. INTRODUCTION



for different model hypotheses. It is the maximization of Il. CHANNEL ESTIMATION USING PULSECOMPRESSION
p(H;|Z) that guides our model selection decision. Then, the TECHNIQUE

data analysis consists of two steps [8, ch. 28], [9]: Channel estimation usually consists of two steps: 1) send-

1) Inferring the parameters under the hypothésjs ing a specific sounding sequens¢) through the channel
and observing the responggt) at the other end, and 2)
plw| Z,H;) = p(Zlwi, Hi)p(wiHi) = estimating the channel parameters from the matched-filtere
) P.(Z|Hi) ) (3) received signalz(t) (Fig. 1). It is common to represent
Likelihood x Prior the multipath channel response as the sum of delayed and
Evidence weighted Dirac impulses, with each impulse representirg on
2) Comparing different model hypotheses using the modadividual multipath component (see, for example, [16,.sec
posterior 5]. Such special structure of the channel impulse response

‘ ‘ N — implies that the filtered signak(t) should have a sparse
p(HilZ) O(p(_Zm’)p(HZ) - o (4) structure. Unfortunately, this sparse structure is oftescared
Evidencex Hypothesis Priar by additive noise and temporal dispersion due to the finite

In the second stage(H,) measures our subjective prior ovepandwidth of the transmitter and receiver hardware. This
different hypotheses before the data is observed. In mamptivates the application of algorithms capable of recimger
cases it is reasonable to assign equal probabilities tereift this sparse structure from the measurement data.
hypotheses, thus reducing the hypothesis selection totsgle ~ Let us consider an equivalent baseband channel sounding
the model with the highest evidenpéZ|H,)™. The evidence Scheme shown in Fig. 1. The sounding signdl) (Fig. 2)

can be expressed as the f0||owing integra': consists of periodically repeated burst Wavefom’($), i.e.,
s(t) =32 u(t—iTy), whereu(t) has duratioril, < T
p(Z|H;) = /p(Z|wi,Hi)p(wi|Hi)d'wi. (5) andis formed as(t) = an\f;ol bmp(t —mT,). The sequence

. . _ _ bo ...bar—1 is the known sounding sequence consisting/bf
The evidence integral (5) plays a crucial role in the develophips, ang(t) is the shaping pulse of durati@®y, M T, = T.,.

ment of Schwarz's approach to model order estimation [18]rthermore, we assume that the receiver (Rx) is equipped
(Bayesian Information Criterion), as well as in a Bayesian

interpretation of Rissanen’s MDL principle and its vardets n(t) M t = nT,
(5], [11], [12]. Maximizing (5) with respect to the unknown s(t) | L N fj{\ ") }\
modelH; is known as the evidence maximization procedure, h{t) = ;“‘c’("”)‘* W= 1" I 20 )
or Evidence Procedure (EP) [13], [14]. ™ Channel \ Rx

f Equa_thns (3), (4) and (5) form the_ the_oretlcal fram_ewo_r'lgig_ 1: An equivalent baseband model of the radio channel
or our joint model and parameter estimation. The estinmatio . . .
algorithm is based on Relevance Vector Machines. Relevar\l%léh receiver matched filter (MF) front-end.
Vector Machines (RVM), originally proposed by M. Tipping
[15], are an example of the marginal estimation method th
for a set of hypothese{;, iteratively approximates (1) by
alternating between the model selection, i.e., maximiZkig
with respect toH;, and inferring the corresponding model
parameters from maximization of (3). RVMs have been ini- s

tially proposed to find sparse solutions to general linear m /\ [\ m [\
problems. However, they can be quite effectively adapted to ! § § U U\M ,
the estimation of the impulse response of wireless channels ‘ ‘ ‘

ith a planar antenna array consisting Bfsensors located
at positionssy,...,sp € R2? with respect to an arbitrary
reference point. Let us now assume that the maximum absolute

T,

thus resulting in an effective channel parameter estimatial T T,-MT, -
model selection scheme within the Bayesian framework.
The material presented in the paper is organized as follows: Fig. 2: Sounding sequencgt).

Section Il introduces the signal model of the wireless clednn

and the us_ed notation, Section Il explains the frameW?%ppler frequency of the impinging waves is much smaller
of the EP in the context of wireless channels. In Sectiqfan the inverse of a single burst duratiofiZ,. This low

IV'we explain how model selection is implemented withithopper frequency assumption is equivalent to assuming tha
the presented framework and discuss the relationship Betwithin a single observation window equivalent to the period

the EP and the MDL criterion for model selection. Finallygf the sounding sequence, we can safely neglect the influence
Section V presents some application results illustrating t ¢ ine Doppler shifts.

performance of the RVM-based estimator in synthetic as wellthe received signal vectay(t) € CP*! for a single burst

as in actual wireless environments. waveform is given as [2]:
L
lin the Bayesian literature, the evidence is also known adikiéhood y(t) = Z are(dy)e?*™ tu(t — ) + n(t).

for the hypothesisH;. =1



Here,a;, 7, andy, are respectively the complex gain, the delayy), . .., Ry (N — 1)Ts — 7)]%.
and the Doppler shift of th&h multipath component. The- In general, the channel estimation problem is posed as
dimensional complex vectat(¢;) = [c1(¢1), ..., cp(#)]T is  follows: given the measured sampled signajsp = 1... P,
the steering vector of the array. Provided the coupling betw determine the ordef. of the model and estimate optimally
the elements can be neglected, its components are givenish respect to some quality criterion) all multipath para
cp(dr) = fo(dr) exp(52nA e(edn), sp)) with X, e(¢;) and etersa;, 7, and ¢y, for I = 1...L. In this contribution we
I»(¢) denoting the wavelength, the unit vectorlRA pointing  restrict ourselves to the estimation of the model ol@long
in the direction of the incoming wavefront determined byith the vectorw,, rather than of the constituting parameters
the azimuthg;, and the complex electric field pattern of they, ¢;, anda;. We will also quantize, although arbitrarily fifie
pth sensor, respectively. The additive temp) € CP*! is the search space for the multipath delaysThus, we do not
a vector-valued complex white Gaussian noise process, itey to estimate the path delays with infinite resolution, but
the components of(t) are independent complex Gaussianather fix the delay values to be located on a grid with a
processes with double-sided spectral denaigy given mesh determining the quantization error. The size of
The receiver front-end consists of a matched filter (MRhe delay search spade and the resulting quantized delays
matched to the transmitted sequencg). Under the low 7 = {T1,...,T1,} form the initial model hypothesig{,
Doppler frequency assumption the terf?vt stays time- which would manifest itself in thd,y columns of the design
invariant within a single burst duration, i.e., equal to anppex matrix K. This allows to formulate the channel estimation
constant that can be incorporated in the complex gaifThe problem as a standard linear problem to which the RVM

signal z(t) at the output of the MF is then given as algorithm can be applied.
I As it can be seen, our idea lies in finding the closest approxi-
£ — Ry (t — ‘ g) Mmation of the continuous-time model (6) with the discreteet
=(t) ;alc(@) (t=m)+ &), © equivalent (8). By incorporating the model selection in the

. _analysis, we also strive to find the most compact representat
where Ry, (t) = [u(t')u*(t + t')dt" is the autocorrelation (in terms of the number of components), while preserving
function of the burst waveform(t) and§(t) = [ n(t')u*(t+  good approximation quality. Thus, our goal is to estimate th
t')dt’ is a spatially white P-dimensional vector with each -nannel parameters, as well as to determine how many
ellemenfc beingazero-mean \_/vide-sen_se stationary (WSS)GEH%ﬁItipath componentd, < L, are present in the measured
sian noise with autocorrelation function impulse response. The application of the RVM framework to

Ree(t) =E{& )&, (t + ')} = NoRuu(t), and solve this problem follows in the next section.

E{&,)&(t +1)} = 0. %

Here E{-} denotes the expectation operator. Equation (6) .

states that the MF output is a linear combinationo$caled

and delayed kernel functionB,,,(t — 7;), weighted across We begin our analysis following the steps outlined in

sensors as given by the components:@f;) and observed in Section I. In order to ease the algorithm description we

the presence of the colored noig). first assume thaf = 1, i.e., only a single sensor is used.
In practice, however, the output of the MF is sampled witkxtensions to the cas > 1 is carried out later in Section

the sampling period’, < T}, resulting inP N-tuples of the _III—B. TQ simplify the notations we also drop the subscript

MF output, whereN is the number of MF output samplesindexp in our further notations.

By collecting the output of each sensor into a vector, we canFrom (8) it follows that the observation vecteris a linear

E VIDENCE MAXIMIZATION , RELEVANCE VECTOR
MACHINES AND WIRELESS CHANNELS

rewrite (6) in a vector form: combination of the vectors from the column-space Kf
weighted according to the parametats and embedded in
zp=Kw,+§, p=1...P (8) the correlated noisé. In order to correctly assess the order

of the model, it is imperative to take the noise process into
account. It follows from (10) that the covariance matrix loé t

where we have defined

T
zp =[2p[0]; 2p[1]; - -, zp[N = 1], noise is proportional to the unknown spectral heityht which
wy, =[aicy(é1),. .., arcy(dn)], should therefore be estimated from the data. Thus, the model
&, =l&[0], &1, -, &[N — 1] hypotheses; should include the tern¥,. In the following

- _ analysis we assume that= NO_1 is Gamma-distributed [15],
The additive noise vector§,, p = 1...P, possess the ith the corresponding probability density function (pgiyen
following properties that will be exploited later: as
K" v—1
BE{¢,} =0,B{¢, &' =0form #k, and  (9) p(Blr,v) = Wﬂ exp(—r/3), (11)
H . .

E{§,€, } = X = NoA,whereA; j = Ruu((i — j)Ts)- (10) \ith parameters: and v predefined so that (11) accurately
Note that (10) follows directly from (7). The matrik’, also Feflects oura priori information aboutVy. In the absence of
called the design matrix, accumulates the shifted and sainpl , _ o o

. . . There is actually a limit beyond which it makes no sense to emtile
versions of the kernel f_uncuorRuu(t)- It is constructed gearch grid finer, since it will not decrease the variancehef éstimates,
as K = [ry,...,rz], with v, = [Ruu(—7), Ruu(Ts — which is lower-bounded by the Crammer-Rao bound [2].



anya priori knowledge one can make use of a non-informativene p(c, 5|z) is the hypothesis posterior. From this point we
(i.e., flat in the logarithmic domain) prior by fixing thecan start with the Bayesian two-step analysis as has been
parameters to small values= v = 10~ [15]. Furthermore, indicated before.

to steer the model selection mechanism, we introduce aa extr Assuming the parametees and3 are known, estimation of
parameter (hyperparameter), [ = 1... L, for each column model parameters consists of finding valueghat maximize

in K. This parameter measures the contribution or relevang@w|z, o, 3). Using Bayes’ rule we can rewrite this posterior
of the corresponding weight; in explaining the data from as

the likelihoodp(z|w;, H;). This is achieved by specifying the p(w|z, e, B) x p(zlw, e, B)p(w]|ex, ). (15)

prior p(w|a) for the model weights: . . . - :
Consider the Bayesian graphical model [17] in Fig. 3. This

a ) graph captures the relationship between different vaemi-
p(wla) = H P exp(—[wi| ). (12)  volved in (14). It is a useful tool to represent the depenitenc
=1 among the variables involved in the analysis in order todiact
High values ofa; will render the contribution of the cor- the joint density function into contributing marginals.
responding column in the matri¥ ‘irrelevant, since the
weight w; is likely to have a very small value (hence they
are termedrelevance hyperparametérsThis will enable us
to prune the model by setting the corresponding weight
to zero, thus effectively removing the corresponding calum
from the matrix and the corresponding delgyfrom the delay
search spac&. We also see thaﬂfl is nothing else as the
prior variance of the model weight;. Also note that the
prior (12) implicitly assumes statistical independencethod
multipath contributions.

To complete the Bayesian framework, we also specify
the prior over the hyperparameters. Similarly to the noigég. 3: Graph representing the discrete-time model of the
contribution, we assume the hyperparametet® be Gamma- wireless channel.
distributed with the corresponding pdf

Lo

L It immediately follows from the structure of the graph

alC,e) = =1 qun(— : 13) in Fig. 3 thatp(z|w, e, 3) = p(z|w,3) and p(w|a, §) =
plelC,e) 11;[1 T(e) ai " exp(—Car) (13) p(w|a), i.e., z anda are conditionally independent given
and 5, andw and 3 are conditionally independent given.
hus, (15) is equivalent to

where ( and ¢ are fixed at some values that ensure
appropriate form of the prior. Again, we can make this prior
non-informative by fixing¢ and e to small values, e.gg = p(wlz, a, ) x p(z|lw, B)p(w|a), (16)
¢=10"" . o

Now, let us define the hypothesis; more formally. Let where the second factor on the right-hand side is given in

P(S) be a power set consisting of all possible subsets of baé}g)' The first term is the likelihood ofv and 3 given the

vector indicesS = {1... Ly}, andi — P(i) be the indexing ata. From (8) it follows that
of P(S) such thatP(0) = S. Then for each index valuethe exp{—(z — Kw)" A" (z — Kw)}
hypothesisH; is the setH; = {3;;,j € P(i)}. Clearly, the p(zlw, B) = TN |G1A] :
initial hypothesisHy = {3;«;,j € S} includes all possible
potential basis functions.

Now we are ready to outline the learning algorithm th
estimates the model parameters 3, and hyperparametets
from the measurement data ®=(A+pK AN 'K)L (17)

p=pPBKIA 2, (18)

Since both right-hand factors in (16) are Gaussian dessitie
Eﬁ('w|z,o¢,ﬁ) is also a Gaussian density with the covariance
matrix & and mearu given as

A. Learning algorithm The matrix A = diag(a) is a diagonal matrix that contains

Basically, learning consists of inferring the valuesf the evidence parametets on its main diagonal. Clearly,
and the hypothesig; that maximize the posterior (2):is a maximuma-posteriori(MAP) estimate of the parameter
p(wi, Hi|Z) = p(w;, i, §|z). Here a; denotes the vector vectorw under the hypothesi;, with ® being the covariance
of all evidence hyperparameters associated withithehy- matrix of the resulting estimates. This completes the model
pothesis. The latter expression can also be rewritten as fitting step.
(14) Our next step is to find parametees and 5 that maxi-

mize the hypothesis posteripfa, 3]z) in (14). This density

The explicit dependence on the hypothesis inddas been function can be represented @y, 3|z) x p(z|a, B)p(a, 5),
dropped to simplify the notation. We recognize that the firstherep(z|a, ) is the evidence term anda, 5) = p(a)p(3)
termp(w|z, a, B) in (14) is the weight posterior and the otheis the hypothesis prior. As it was mentioned earlier, it igteu

p(w, a, B|z) = p(w|z, o, B)p(e, (| 2).



reasonable to choose non-informative priors since we would Hypothesis 7 | Cotameter 3 pl!

like to give all possible hypothesé¥; an equal chance of ol BT Eq. (17), (18)

being valid. This can be achieved by settigge, <, andv

to very small values. In fact, it can be easily concluded (see

derivations in the Appendix ) that maximum of the evidence

p(z]ex, B) coincides with the maximum ob(z|a, B)p(a, )

when( = ¢ = Kk = v = 0, which effectively results in the

noninformative hyperpriors foex and 3. Fig. 4: Iterative learning of the parameters; The supgusgj]
This formulation of prior distributions is related to autodenotes the iteration index.

matic relevance determination (ARD) [14], [18]. As a con-

sequence of this assumption, the maximization of the model

posterior is equivalent to the maximization of the evidencH1at results in the highest posterior (2). _
which is known as the Evidence Procedure [13]. lt'nmggcr:lzgn Zog‘(at\r?er,hwp?er\,;\)/;"r;gsez}/;'tg?;edlgrm'gr]] ]Eggt re-
. estimati Y iv ,or, i ,
The evidence termp(z|a, ) can be expressed as become numerically indistinguishable from infinity giveret
p(zlex, B) :/p(z|w,ﬁ)p(w|a)dw computer accurady The divergence of some of the hyper-
parameters enables us to approximate (1) by performing an
exp ( —2H (B 1A + KA—IKH)—IZ) (19) on-line model selection: starting from the initial hypaoste
= Ho, we prune the hyperparameters that become larger than a

3

mN[BTIA + KA*lKH| certain threshold as the iterations proceed by setting tteem
which is equivalent to (5), where conditional independesciinfinity. In turn, this sets the corresponding coefficient to
between variables have been used to simplify the integrang@ero, thus “switching off” theéth column in the kernel matrix
In the Bayesian literature this quantity is knownraarginal K and removing the delay; from the search spacg. This
likelihood and its maximization with respect to the unknowffectively implements the model selection by creatingl&ma
hyperparametersy and /3 is a type-Il maximum likelihood hypothesesH; < H, (with fewer basis functions) without
method [19]. To ease the optimization, several terms in (10§rforming an exhaustive search over all the possibilifiée
can be expressed as a function of the Weight posterior pargﬁhOiCe of the threshold will be discussed in Section V.
etersp and® as given by (17) and (18). Then, by taking the
derivatives of the logarithm of (19) with respectéoand3 B. Extensions to multiple channel observations

and by setting them to zero, we obtain its maximizing values | this subsection we extend the above analysis to multi-

Hypot hesi s Ul gl
updat e o0

Eqg. (20), (21)

as (see also Appendix ) ple channel observations or multiple antenna systems. When
1 detecting multipath components any additional channel-mea
o= —F->, (20) . o . .
Dy + |2 surement (either in time, by observing several periods ef th

B B sounding sequenceg(t), or in space, by using multiple sensor
g1 = [ @KTATK] + (2 — Kp)" A (2 — K“). antenna) can be used to increase detection quality. Of €purs
N (21) it is important to make sure that the multipath components
are time-invariant within the observation interval. Thesiba
In (20) 1, and ®@;; denote thdth element of, respectively, theidea how to incorporate several channel observations i qui
vector 1, and the main diagonal of the matri. Unlike the simple: in the original formulation each hyperparametgr
maximizing values obtained in the original RVM paper [15yvas used to control a single weight and thus the single
eq.(18)], (21) is derived for the extended, more generat casomponent. Having several channel observations, a single
of colored additive nois€ with the corresponding covariancehyperparametes; now controls weights representing contri-
matrix 5! A arising due to the MF processing at the receivebution ofthe samephysical multipath component, but present
Clearly, if the noise is assumed to be white, expressions (3A the different channel observations.
and (21) coincide with those derived in [15]. Also note that Usage of a single parameter in this case expresses the
a and § are dependent as it can be seen from (20) and (2thannel coherence property in the Bayesian framework. The
Thus, for a particular hypothesi¢; the learning algorithm corresponding graphical model that illustrates this ideaaf
proceeds by repeated application of (17) and (18), altechasingle hyperparametey; is depicted in Fig. 5. It is interesting
with the update of the corresponding evidence parametersto note that similar ideas, though in a totally different o,
and S from (20) and (21), as depicted in Fig. 4, until som&ere adapted to train neural networks by allowing a single
suitable convergence criterion has been satisfied. Prdvidehyperparameter to control a group of weights [18]. Note that
good initializationago] andglY is chosep, the scheme in Fig. it is also possible to introduce an individual hyperparanet
4 converges afteyj iterations to the stationary point of thea,; for each weightw, ;, but this eventually decouples the
system of coupled equations (17), (18), (20), and (21). Theproblem intoP separate one-dimensional problems and as the
the maximization (1) is performed by selecting the hypadthes

4In the finite sample size case, however, this will only hapipethe high
SNR regime. Otherwisey; will take large but still finite values. In Section
SLater in Section V we consider several rules for initialigzithe hyperpa- IV-A we elaborate more on the conditions that lead to corsecg/divergence
rameters. of this learning scheme.



It is shown in the Appendix that:
r

) = : (26)
25:1 <q)p-,ll + |Hp.,l|2>
1 P
No=p8"=+5 (Ztr[«@pKfA;le]Jr
. = 27)
+ Zl(zp — Kp,up)HAzjl(zp - Kpup)>
-

Fig. 5: Usage ofy; in a multiple-observation discrete-timeWhere /i1 is the ith element of the MAP estimate of the

wireless channel model to represéhtoherent channel mea-Parameter vectorv, given by (25), and®, is the ith
surements. element on the main diagonal &, from (24). Comparing the

latter expressions with those developed for the single rélan
case, we observe that (26) and (27) use multiple channels to
result any dependency between the consecutive channel§mirove the estimates of the noise spectral height and efann
ignored. weight hyperparameters. They also offer more insight iheo t
Now, let us return to (8). It can be seen that the weighlysical meaning of the hyperparametexrsOn the one hand,
w, capture the structure induced by multiple antennas. Ho#ae hyperparameters are used to regularize the matrixsiorer
ever, for the moment we ignore this structure and treat tké4), needed to obtain the MAP estimates of the parameters
components ofv, as a wide-sense stationary (WSS) proces.! and their corresponding variances. On the other hand,
over the individual channelg, = 1...P. We will also allow they act as the inverse of the second noncentral moments of
each sensor to have a different MF. This might not necegsatife coefficientsw,;, as can be seen from (26).
be the case for wireless channel sounding, but thus a more
general situation can be considered. Different matchestdilt V. MODEL SELECTION AND BASIS PRUNING

result in different design matricds’,, and thus different noise  The ability to select the best model to represent the mea-
covariance matriceX,, p = 1... P. We will however require syred data is an important feature of the proposed scheme,
that the variance of the input noise remains the same aggy thus it is paramount to consider in more detail how the
equalsNy = 3~' for all channels, so thaE, = NoA,, and model selection is effectively achieved. In Section Ill-Aew
the noise components are statistically independent anfeng fave briefly mentioned that during the learning phase many

channels. Then, by defining of the hyperparameters;’s tend to large values, meaning
A, 0] A 0 that the corresponding weights;’s will cluster around zero
P A according to the prior (12). This will allow us to set these
’ ’ coefficients to zero, thus effectively pruning the corresting
0 Ap] 0 A basis function from the design matrix. However the question
m how large a hyperparameter has to grow in order to prune its
K, 0 21 wy corresponding basis function has not yet been discusséuk In

original RVM paper [15], the author suggests using a thriesho
: ayy, to prune the model. The empirical evidence collected by
0 Kp| zZp wp the author suggests setting the threshold to “a sufficidatye
(22) number” (e.g.un = 10'2). However, our theoretical analysis
presented in the following section will show that such high
~ _ thresholds are only meaningful in very high SNR regimes, or
z=Kw+E&. (23) if the number of channel observatiofsis sufficiently large.

A crucial point of this system representation is that thI more general, and often more realistic, scenarios sugh hi

hyperparameters; are shared by’ channels as it can be see torifhgldfh:rz]:gg gjétizt.g?]pr?g%ﬁ; Tr?utﬁ’etzgﬁelst zjfntﬁi
in the structure of the matrix. This will have a corresponding udy lon p ! X
I . presented approach more rigorously.
effect on the hyperparameter re-estimation algorithm. . .
. . Below, we present two methods for implementing model se-
From the structural equivalence of (8) and (23) we can eas,Q/

. . o ““lection within the proposed algorithm. The first methodesgli
infer that equations (17) and (18) are modified as follows: on the statistical properties of the hyperparametersvhen

®,=(A+BKJA'K,) (24) the update equations (24), (25), (26), and (27) converge to a
— 3® KHA! -1 P 25 stationary point. The second method exploits the relakigns

Hp = OB Ky Ay 2y, p (25) that we will establish between the proposed scheme and the
The expressions for the hyperparameter updates becomdiaimum Description Length principle [4], [8], [20], [21],
bit more complicated but are still straight-forward to cartgp  thus linking the EP to this classical model selection apghoa

y R = ) w = ’

we rewrite equation (8) as



A. Statistical analysis of the hyperparameters in the statiy  of this mapping that illustrate how the solution trajectsri

point evolve. If condition (30) is satisfied, the sequence of sohs
The decision to keep or to prune a basis function from tHg’/} converges to a stationary point (Fig. 6(a)) given by

design matrix is based purely on the value of the correspndi{29)- Otherwise,{a!} diverges (Fig. 6(b)). Thus, (28) is a

gence properties of the iterative learning scheme depicted (r(7)" Br(r))2 . .
Fig. 4 using expressions (24), (25), (26), and (27), and thg — | TelrOTB=®  up cond. (30) is satisfied
resulting distribution of the hyperparameters once cagsece 00; otherwise

is achieved. (32)

We start our analysis of the evidence parametersby Practically, this means that for a given measuremgptand
making some simplifications to make the derivations trdetabknown noise matrix3, we can immediately decide whether a

« P channels are assumed. given basis function(7) should be included in the basis by
« The same MF is used to process each of thaensor simply checking if (30) is satisfied or not.
output signals, i.e. K, = K and ¥, = X = 37 !A, A similar analysis is performed in [22], where the behavior
p=1...P. of the likelihood function with respect to a single paraméte

« The noise covariance matr® is known, andB = £~'.  studied. The obtained convergence results coincide wits ou
« We assume the presence of a single multipath comvhen P = 1. Expression (30) is, however, more general and
ponent, i.e.,L. = 1, with known delayr. Thus, the accounts for multiple channel observations and coloredenoi

design matrix is given a¥l = [r(7)], wherer(7) = In [22] the authors also suggest that testing (30) for a given
[Ruw(—7)s Ruu(Ts — 7), ..., Ry (N — 1)Ts — 7)]7 is  basis function-(7) is sufficient to find a sparse representation
the associated basis function. and no further pruning is necessary. In other words, eads bas
« The hyperparameter associated with this componentfigiction in the design matri¥ is subject to the test (30) and,
denoted asv. if the test fails, i.e., (30) does not hold for the basis fiorct

Our goal is to consider the steady-state soluting for under test, the basis function is pruned.
hyperparametet in this simplified scenario. In this case (24) In case of wireless channels, however, we have experi-
and (25) simplify to mentally observed that even in simulated high-SNR scesario
- i 1 such pruning results in a significantly overestimated nurobe
¢=(a+r(r)" Br(r))", multipath components. Moreover, it can be inferred from) (30

_ H _ r(1)" Bz, _ that, as the SNR increases, the number of functions pruned
tp = K" Bz, = 7 , =1...P. ) : R
a+r(r)" Br(r) with this approach decreases, resulting in less and lessespa
Inserting these two expressions into (26) yields representations. This motivates us to perform a more deftail
. ) analysis of (31).
1 S| BEy Let us slightly modify the assumptions we made earlier. We
= plotr) Br) (28) now assume that the multipath delays unknown. The design
a+ (1) Br(7) P ' P ¥ ' g

matrix is constructed similarly but this tim& = [r;], where

From (28) the solutiony, is easily found to be .
r; = [Ruu(=T0), ..., Ruu((N — 1)Ts — T})]

(r(r)" Br(r))? , , , _ ,
% Zp [r(r)H Bz,|? — r(r)HBr(r)’ is the b.aS|s funptmn associated with the defllaye_ T used.
_ _in our discrete-time model. Under these assumptions thet inp
A closer look at (29) reveals that the right-hand sidgignal 2, is nothing else but the basis functiotir) scaled

expression might not always be positive since the denowinang embedded in the additive complex zero-mean Gaussian
can be negative for some values of. This contradicts the pojse with covariance matrix, i.e.,

assumption that the hyperparameteis positive. A further
analysis of (28) reveals, that (26) converges to (29) if, and zp = wpr(7) + &, (32)
only if, the denominator of (29) is positive:

Ao =

(29)

Let us further assume that, € C, p = 1... P are unknown
1 H 9 H but fixed complex scaling factors. In further derivations we
P Z [r(7)" Bz,|” > r(r)" Br(r). (30) assume, unless explicitly stated otherwise, that the tiomndi
b (30) is satisfied for the basis;. By plugging (32) into (29)
OtherWise, the iterative |earning scheme depicted in F|geﬂ1d rearranging the result with respectdg)l we arrive at:
diverges, i.e.v, = oco. This can be inferred by interpreting

(26) as a nonlinear dynamic system that, at iteragipmaps ol — ri! Br(r)|? Zp |wp
oV~ into the updated valuel’!. The nonlinear mapping > PlrfiBr |2
is given by the right-hand side of (26), where the quantities 2y, Re{wprﬁBr(T)Sme}

®, and p, depend on the values of the hyperparameters
at iteration j — 1. In Fig. 6 we show several iterations

P|rH Br|? + (33)

H H
rB( £§)Bm
5Recall thata—! is the prior variance of the corresponding parameter l Zp pSp _ 1 '
This constrainsy to be nonnegative. P|rH Br|? r Br,




80

T Nonlinear mapping

11137 —— a“]:a[l']-]
|| — - lteration trajectory 1 | |
1.1f| —--- lteration trajectory 2 |---- o e

— Nonlinear mapping
70, - Q[l]:u[l'l]

— - Iteration trajectory 1
—--— lteration trajectory 2

60

1.09f

o]

] e >
107f —
1.06| |
LOBfveveees e oo o A
1.04| ‘ ‘

1.03f

(@) (b)

Fig. 6: Evolution of the two representative solution trajeies for two cases: (a)al’l} converges, (bfal’!} diverges.

Now, we consider two scenarios. In the first scenarie T; € variables with pdf's depending on the number of channel
7T, i.e., the discrete-time model matches the observed signathservationgd?, the basis functiom;, and the noise covariance
Although unrealistic, this allows to study the properti€sg! matrix 3. In the sequel we analyze their statistical properties.
more closely. In the second scenario, we study what happens i ' . 4 ' . .
the discrete-time model does not match perfectly the medsur fW3er|r§t condsutjeusl : '{_he first :_?rmthorl the m‘:l]htj[ﬂand side
signal. This case helps us to define how the model seIecu%n( ) is a deterministic quantity that equals the average

rules have to be adjusted to consider possible misalignofen awer of th? multipath component. TheHseconql one, on the
the path component delays in the model other hand, is random. The prodw¢{w,&,’ Br;} in (36) is
1) Model match:r = T3 In this situatio'n v = r(r), and recognized as the cross-correlation between the additisen

thus (33) can be further simplified according to term and_ the basis funcnon_. It is Gaussian distributed with
expectation and variance given as

2 2 R B
Oé;ol _ ZpllDwﬂ pr(i{wéip) Tl}+ 221) Re{wpéfBTl} — 0 and
L (34) PEiBr) [
B 68 B 25, Refup g Br\*| 2% bl
H - T H ) €1 Wp P T _ 7@%
P(Tl BTZ)Q L] B"'l E{( pP(TlfIB.rl) ) } - PQ(TZZHBT'Z)’

where the only random quantity is the additive noise t€gm
This allows us to study the statistical properties of thetdinirespectively, whereE{-} denotes the expectation operator.

stationary point in (31). Thus,a ! is distributed as
Equation (34) shows how the noise and multipath compo- S w2 23 |wy|?
nent contribute tax_!. If all w, are set to be zero, i.e., there as—l ~ j\/'( pl P ' 5o pH P ), (38)
is no multipath component, thern ! = o, ! reflects only the i P2(r;" Br)
noise contribution: which is a normal distribution with the mean given by the

average power of the multipath component and variance pro-
(35) portional to this power.

L B(S,e8)Br
no P(rfBr))? ~rABr .
(ri” Bri) it Now, let us consider the term; . In (35) the only random
On the other hand, in the absence of noise, i.e., in the iafinflement iss>” ) €p€f- This random matrix is known to have
. . p=
SNR case, the corresponding hyperparameggrincludes the 5 complex Wishart distribution [23], [24] with the scale mat

«Q

contribution of the multipath componént*: ¥ and P degrees of freedom. Let us denote
ot = Zolwel | 25, Reluy Br o _ BN g am e Y el (@)
s P P(rff Br)) €= VPrl Br r=c 2yt ¢

In a realistic case, both noise and multipath component are

present, anch ! consists of the sum of two contributionst €an be shown that: is Gamma-distributed, i.e.; ~

o
al = a;' + . L. Both quantitiesy. ' anda; ! are random G(P,o2), with the shape parametér and the scale parameter

> o2 given as
8Actually, the second term in the resulting expression Veessn a perfectly o2 =clle = ;
noise-free case, and ther ' = 3 wy|?/P. ¢ P(rfBr)



The pdf ofz reads the noise spectral height, = 3~! from the measurements.
LP-1 ) Assuming that we knows, and, as a consequence, the whole
721351/‘%. (40) matrix B then, for any basis function; in the design matrix
P(P) () K and the corresponding hyperparametgrwe can decide
The mean and the variance ofare easily computed to be with ana priori specified probability thata; is generated by

p(z|P,o?) =

) 1 the distribution (43). Indeed, IeJtt;1 be ap-quantile of (43)
E{a} = Po? = +ABr,’ such that the probability’(a~! < ay,') = p. Since (43) is
1’ (41) known exactly, we can easily compui@j1 and prune all the

basis functions for whichy, ' < ay;".

2) Model mismatch:r # 1;: The analysis performed
Taking the term—1/(r/ Br;) in (35) into account, we intro- above relies on the knowledge that the true multipath delay
duce a variabley, ': a zero mean random variable with ther belongs to7. Unfortunately, this is often unrealistic and
pdf the model mismatch ¢ 7 must be considered. To be able
P—1 to study how the model mismatch influences the value of the
@-Ble) " —e-mh/e? a2) ¢ have to make a f tions. Let
T(P)(02)P , yperparameters we have to make a few more assumptions. Le
us for simplicity select the model deld#; to be a multiple
which is equivalent to (40), but shifted so as to corresporal t of the chip periodZ},. We will also need to assume a certain
zero-mean distribution. However, it is known that only piesi shape of the correlation functioR,,,(¢) to make the whole
values ofa, ! occur in practice. The probability mass of thexnalysis tractable. It may be convenient to assume that the
negative part of (42) equals the probability that the caadit main lobe ofR,,(t) can be approximated by a raised cosine
(30) is not satisfied and the resulting, eventually diverges function with period27),. This approximation makes sense if
to infinity and is pruned. Taking this into account the pdf ofhe sounding pulse(t) defined in Sec. Il is a square root
a,' reads raised cosine pulse. Clearly, this approximation can akso b
~ 2 applied for other shapes of the main lobe, but the analysis of
pax?l(x) = Fod(2) + (1 = F) T (2)P; 1 (2P 0), - (43) quality of such approximation remains outside the scope of
whered(-) denotes a Dirac delta functio, is defined as  this paper.
0 Just as in the previous case, we can split the expression (33)
P, = / Po-1 (z|P, o?)dz, into the the multipath component contributiory !

—1/(r{' Bry)
o y L _h@OP Y, w235, Re{wyy (7)) Bri
andZ*(-) is the indicator function of the set of positive real &, = + 2} )
P Plr/Br|

numbers:
. 0 <0 (44)
7 (x) =
1 z>0. where
rfIBr(T)

A closer look at (43) shows that &3 increases the variance Y7T) = —5 ,
of the Gamma distribution decreases, with! concentrating i Bri
at zero. In the limiting case aB — oo, (43) converges to and the same noise contributiary* defined in (35). It can be
a Dirac delta function localized at zero, i.ex, = oco. This seen that the/(r) makes (44) differ from (36), and as such
allows natural pruning of the corresponding basis functioit is the key to the analysis of the model mismatch. Note that
This situation is equivalent to averaging out the noise has tthis function is bounded ds(7)| < 1, with equality following
number of channel observations grows. Practically, howevenly if — = T7;. Note also that in our case for — T;| < T,
P stays always finite, which means that (38) and (43) havetlee correlationy(7) is strictly positive.
certain finite variance. Due to the properties of the sounding sequen¢s®, the
The pruning problem can now be approached from theagnitude ofR,,(t) for |¢| > T, is sufficiently small and in
perspective of classical detection theory. To prune a basigr analysis of model mismatch can be safely assumed to be
function, we have to decide if the corresponding valueot  zero. Furthermore, if; is chosen to coincide with the multiple
has been generated by the noise distribution (43), i.entifle of the sampling period; = T, then it follows from (10)
hypothesisor by the pdf ofa;! + a;!, i.e., thealternative that the productr/’B = r/S~" = 3e/’ is a vector with all
hypothesis Computing the latter is difficult. The problemelements being zero except thh element, which is equal to
might be somewhat relaxed by taking the assumptiondlyat 3. Thus, the product Br(r) for | — Tj| < T,, must have
and o, ! are statistically independent. However proving tha form identical to that of the correlation functidty,, (t) for
plausibility of this assumption is difficult. Even if we werejt| < T,,. It follows that when|r — T;| > T,, the correlation
successful in finding the analytical expression for the pdf ¢/(7) can be assumed to be zero, and it makes sense to analyze
the alternative hypothesis, such model selection appr@sach(44) only when|r—1T;| < T,,. In Fig. 7 we plot the correlation
hampered by our inability to evaluate (38) since the gairfisnctions R, (t) and~(7) for this case.
wp's are not knowna priori. However, we can still use (43) Since the true value of is unknown, we assume this
to select a threshold. parameter to be random, uniformly distributed in the ingérv
Recall that the presented algorithm allows to learn (es8na[T; — T,,7; + T,,]. This in turn induces a corresponding

_ 0_2 2 _ )
Var{fr} = P( c) P(T’FB'T’[)Q

pagl(xlpa Ug) =

a;l

(45)



'17 ' | account and adjust the threshold accordingly, we propase th
= following approach.
The amount of interference added is measured by the
magnitude ofa ! in (44). It consists of two terms: the first
one is the multipath power, scaled by the factgr)?:

2
w.
w7 - vvfzé%fL- (48)
. - The second term is a cross product between the multipath
® ®) component and the additive noise, scalechify):
Fig. 7: Evaluated correlation functions B),,,(t) and b)y(7). 2% Re{wpngrl}
p

1(N—> T Br) (49)
distributions for the random variablegr) and~(7)2, which Both terms have the same physical interpretation as in (36),
enter, respectively, the second and first terms on the Hghtt but with scaling factorsy(r) depending on the true value of
side of (44). T

It can be shown that in this casér) ~ 5(0.5,0.5), where ~ We see that in (44) there are quite a few unknowns: we
B(0.5,0.5) is a Beta distribution [25] with both distribution do not know the true multipath delay, the multipath gains
parameters equal ty2. The corresponding pgf, (z) is given w,, as well as the instantaneous noise vagueTo be able
in this case as to circumvent this uncertainties, we consider the largeptam

1 size case, i.eP — oo and invoke the law of large numbers
py(2) = B(0.5,0.5) to approximate (48) and (49) by their expectations.

. . _ First of all, using (37) it is easy to see that
where B(-, ) is a Beta-function [26] withB(0.5,0.5) = .

af%(l—x)*%, (46)

It is also straight-forward to compute the pdf of the term B )22,, Re{w,¢, Br} .
A(r)2: , PGBy
_3 _1
py2(w) = Za73 (1= VE) R @7 The other term (48) converges4dr)>E{|w,|?} as P grows.
The corresponding empirical and theoretical pdf'sy¢f) SO, even in the high SNR regime and infinite number of
and~(r)? are shown in Fig. 8. channel observation® the term (48) does not go to zero.
In order to assess how large it is, we approximate the gains
as e o T Empiricaln (o)? of Fhe multipath_ comp_onean by the corresponding MAP
ab oy (@) o T (@) | estimatey, obtained with (25).
25l 1o | The correlation functiony(7) can also be taken into ac-
Jp '. count. Since we know the distributions of botfy) and~(7)?,
. : I 1 we can summarize these by the corresponding mean values.
158 Al 4 In fact, we will need the mean only foy(7)? since it enters
i T o ‘| the irreducible part ofy,*.
LT ool our case i compes as
0 0.2 0.4 0.6 0.8 1 C\'C! 0.‘2 0‘.4 0.‘6 0‘.8 1 1
@) (b) E{vy(1)?} :/ Lo i1 — Vo) 2de :g (50)
0 ™

Fig. 8: Comparison between the empirical and theoreticé$ pd Having obtained the mean, we can approximate the inter-

of a)y(7) and b)y(7)? for the cosine approximation case. TGerencea—1! due to the model mismatch as
compute the histogranV = 5000 samples were used. ° s
szo |ip|?

Now we have to find out how this information can be a;' =3/8x - p (51)
utilized to design an appropriate threshold. In the case of aryg (i) threshold that accounts for the model mismatch is
perfectly matched model the threshold is selected based ABn obtained as
the noise distribution (43). In the case of a model mismatch,
the term (44) measures the amount of the interference irgult dt‘hl =a;t + ozt_hl, (52)
from the model imperfection.

Indeed, if|7 — T;| > T,, then the resulting/(r) = 0, and
thus a;! = 0. The corresponding evidence parameter*
is then equal to the noise contributiar} ! only and will be . ) ) ]
pruned using the method we described for the matched moBe|!mproving the learning algorithm to cope with the model
case. If however,r — Tj| < T}, then a certain fraction of 1 Selection
will be added to the noise contributiary, !, thus causing the  In the light of the model selection strategy considered here
interference. In order to be able to take this interferemte i we anticipate two major problems arising with the learning

wherea,! is the threshold developed earlier for the matched
model case.
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algorithm discussed in Section Ill. The first one is the eatimof all, there is no need to compute matrix inversion at each
tion of the channel parameters that requires computation itd#ration. Second, the obtained values fhow reflect the

the posterior (24). Even for the modest sizes of the hypéthesontribution of a single basis function only, since they aver
H; (from 100 to 200 basis functions), the matrix inversionestimated while the contribution of other bases was cadcele
is computationally very intensive. This issue becomes evan(53).

more critical if we consider a hardware implementation of Now, at the end of each iteration, once the new value of the
the estimation algorithm. The second problem arises duertoise is obtained using (57), we can decide to prune some of
the non-vanishing correlation between the basis vectgrs the components, as described in Section IV-A.

constituting the design matri¥X. A very undesirable con-

sequence of t[hIS correlation is that the evidence parameter C. MDL principle and Evidence Procedure

associated with these vectors become also correlatedhasd t
no longer represent the contribution of a single basis fanct ~ The goal of this section is to establish a relationship betwe
As a consequence the developed model selection rules ardhfclassical information-theoretic criteria for modeeséion,
longer applicable. such as Minimum Description Length (MDL) [4], [5], [8],

It is, however, possible to circumvent these two difficitie[20], and the Evidence Procedure discussed here. For simpli
by modifying the learning algorithm as discussed below. THey we will only consider a single channel observation case,
basic idea consists of estimating the channel parameters ife., P = 1. Extension to the cas® > 1 is straightforward.
each basis independently. In other words, instead of splvin The MDL criterion was originally formulated from the
(24), (25), (26), and (27) jointly for alL. basis functions, we perspective of coding theory as a solution to the problem of
find a solution for each basis vector separately. First, thve nbalancing the code length and the resulting length of tha dat

data vectorr,,; for theith basis is computed as encode with this code. This concept however can naturally be
L transferred to general model selection problems.

T, =2, — Z —_ (53) In terms of parameter estimation theory, we can interpret

P P P the length of the encoded data as the parameter likelihood

k=1,k#l . . . .
7 evaluated at its maximum. The length of the code is equitalen

This new data vectorz,; now contains the information o what is known in the literature as tiséochastic complexity
relevant to _the basm_l only._ It_ is then used tq update the[ll]’ [20], [21]. The Bayesian interpretation of the stostia
corresponding posterior statistics as well as evidencamper complexity term obtained for likelihood functions from an
ters exclusively for thdth basis as follows: exponential family (see [20] for more details) is of partau
& = (g + BriA~tr) L, (54) in'Ferest fqr our problem at hand. The Description Length in

this case is given as

DL(H;) = —log(p(z|warap, H;) +

Note that expressions (54) and (55) are now scalars, unlike () 8(p(=lwarar, i)
their matrix counterparts (24) and (25). Similarly, we uggda

o1 = por A e, p=1...P. (55)

model performance

: L N
the evidence parameters as 5 log 5 log(p(warap|H;)) +log(/ T (warap))) -
P Y
o = . (56) stochastic complexity
58
Yot <<1>l + |up,l|2> (58)
Here I (wprap) is the Fisher information matrix of a single

Updates (54), (55), and (56) are performed for &ll sample evaluated at the MAP estimate of the model parameter
components sequentially. Once all components are updateggtor, andp(warap|H;) is the corresponding prior for this

we update the noise hyperparamei&y. vector.
P Thus, joint model and parameter estimation schemes should
No = (31 = tr[® (KA K+ aim at minimizing theDL so as to find the compromise
0=(") NP(; 2 (K) ] between the model fit (likelihood) and the number of the

P (57) parameters involved. The latter is directly proportiorathe
+ 2, — Kp )IA Yz, — Kpu,) |. stochastic complexity term.

z::( ? ) (= b We will now show, that the EP employed in our model
The ab dati d iUt inale it t_selection scheme results in a very similar expression.

€ above updating procedures constitule a singie eratio ) o g 5nce again come back to the evidence term (19). To

of the modified learning algorithm. This iteration is repssht lifv th . h h
until some suitable convergence criterion is satisfied eNloat exempt y the main message that we want to convey here, we
will compute the integral in (19) differently. For each méde

it This opens a potential to it both SAGE and EvideniPOINeSis defined as in Secton Il let us defveu,) =
: . . ; “log(p(z|w;, 8;)) — log(p(w;|a;)). Then equation (19) can
Procedure, allowing to implement simultaneous parameter e expressed as
model order estimation within the SAGE framework.
This iterative method, also known as successive interéeren
cancellation, allows solving both anticipated problemisstF p(zle, Bi) = /eXp(_A(wi))dwi' (59)

p=1
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Now we proceed by computing the integral (59) using eorresponds to a certain hypothekisconsisting of|P;| basis
Laplace method [8, ch. 27], also known as a saddle-poiinctions. An edge emanating from a node is associated with a
approximation. The essence of the method consists of cooertain basis function from the hypothegis. Should the path
puting the second order Taylor series around the argumant tthrough the graph include this edge, the correspondingbasi
maximizes the integrand in (59), which is the MAP estimatinction would be pruned, leading to a new smaller hypothesi
of the model parameteps; given in (18). In our casé\(w;) Clearly, the optimal path through the graph should be the one
is known to be quadratic, since bathz|w;, 8;) andp(w;|ca;) that minimizes th@L criterion. Now, let us propose a strategy

are Gaussian, so the approximation is exact. to find the optimal model without evaluating all possiblehzat
It is then easily verified that for the hypothesis with through the graph.
|P(#)| = L basis functions At the initial stage, we start in the leftmost node, which

corresponds to the full hypothestg,. We then proceed with
p(z|a;,B;) = /eXp(—(wz' — )@ (w; — py))dw; the learning using the iterative scheme depicted in Fig. 4 to
L obtain the estimates of the evidence parameigrs € P(0),
x exp(=A(p;)) = exp(=A(py))m|®il, for each basis function ift{,. Once convergence is achieved,
(60) we evaluate the correspondind description lergth for this
By taking the logarithm of (60) and changing the sign of thbypothesis using (62). Since the optimal path should dserea
resulting expression we arrive at the final expression fer tthe DL, the hypothesis at the next sta@g is selected by
negativelog-evidence moving along the edge that corresponds to the basis function
with the largest value ofx (i.e., the basis function with
—log(p(z|ew, B)) = — log(p(z|ps;, B:))— ] the smaIIe;t evidence). For t.he newly selected hypothesis
log(p(ps;|x)) — L log() — log(|®1]). (61) H; we again estlma_te_the evidence parametersand the
S\PIH X 8 S corresponding description lengibL;. If DLy, < DL;, then
Noting that®; has been computed usidg data samples, and the hypothesigH, achieves the minimum of the description
that in this casdog(|®;/N|) = log(|I7"'(1;)|), we rewrite length and it is then selected it as a solution. Otherwige, if.

(61) as DLy > DL;, we continue along the graph, each time pruning
basis function with the smallest evidence and comparieg th
DL(H;) = — log(p(2|p,, 5;)) + abasis .
(H:) gp(zlp:, 1)) description length at each stage. We proceed so untiDthe
model performance 62) does not decrease any more, or until we stop at the last node
Llog(=) — log(p(p;]ae:)) + log(|I1 (), that has no basis functions at all. Such_ an empty hypo_the5|s
s corresponds to the case when there is no structure in the
model complexity observed data. In other words it corresponds to the case when

We note that (58) and (62) are essentially similar, with tl‘F@e al_gorithm fa_xiled to find_ any multipath compo_nents. This
distinction that the latter accounts for complex data. Thlﬁgchnlque requires searching betw@m 0 a maximum Of_
we conclude that maximizing evidence (or minimizing thé‘o(l’(ﬁ'l)/2 possible hypotheses, while a total search requires

. P
negativelog-evidence) is equivalent to minimizing thieL. testing a total ok different models.

Let us now consider how this can be exploited in OUN\, A PPLICATION OF THERVM TO WIRELESS CHANNELS
case. In general, the MDL concept assumes presence of

multiple estimatednodels. The model that minimizes thg, 1 he application of the proposed channel estimation scheme
functional is then picked as the optimal one. In our cas§oUPled with the considered model selection approach resjui
evaluation of theDL functional for all possible hypothesesO major components: 1) it needs a proper construction of
H; is way too complex. In order to make this procedure motBe kernel de.S|gn matrix thatlls dgnse enough to ensure.good
efficient, we can exploit the estimated evidence informmatio 9€lay resolution, and 2) the iterative nature of the alganit

Consider the graph shown in Fig. 9. Each node on the graj§ifluires a good initialization. _
The construction of the design matriX can be done with

various approaches, depending on how machriori infor-
mation we have about the possible positions of the multipath
components. The columns of the mathk contain the shifted
versions of the kerneR,,(nTs — T;), | = 1...Lg, where
T, are the possible positions of the multipath components
" that form the search spac. The delaysT; can be selected
uniformly to cover the whole delay span or might be chosen so
. as to sample some areas of the impulse response more densely,
where multipath components are likely to appear. Note that
‘ ‘ ‘ | the delaysT; are not constrained to fall on a regular grid.
[P(S) = Lo [P@)] = Lo 1| [P(@)| = Lo —2 | [ P@I=0 ] The power-delay profile (PDP) may be a good indicator of
how to place the multipath components. Initialization o th

Fig. 9: Model selection by evidence evaluation. model hyperparameters can also be done quite effectively. |
the sequel we propose two different initialization tecluas,.

D
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The simplest one consists of evaluating the condition (3@utocorrelation functio®,,,,(¢) is also represented with cubic
for all the basis functions in the already created designirmatsplines, allowing a proper construction of the design ki
K. For those basis functions that satisfy condition (30), theecording to the predefined delaysTn Realizations of the
corresponding evidence parameter is initialized using).(2&hannel parameters; , are randomly generated according to
Other basis functions are removed from the design matiikx2).
K. Such initialization assumes that there is no interferenceThe performance of the algorithm is also evaluated under
between the neighboring basis functions. It makes sensedifferent SNR’s at the output of the MF, defined as
employ it when the minimal spacing between the elements in 1/a
7 is at most half the duration of the sounding pulge SNR= 10log;, (T) (63)

In the case when the spacing is denser, it is better to use 0
independent evidence initialization. This type of initiation For simplicity, we assumed that in the case> 1 all sim-
is in fact coupled with the construction of the design mafix ulated multipath components have the same expected power
and relies on the successive interference cancellatioenseh @ '- Although this is not always a realistic assumption, it
discussed in the Section IV-B. To make the procedure wor&hsures that all simulated multipath components presethein
we need to set the initial channel coefficients to zero, i.dneasurement will be “treated” equally.
u, = 0. The basis vectors, are computed as usual according
to the delay search spa@e Th_e mmah;atlon |ter:_:1t|ons stgrt B. Numerical simulations
by computing (53). The basig; that is best aligned with
the residuake,; is then selected. If the selected satisfies ~ Lét us now demonstrate the performance of the model
condition (30), it is included in the design matri, and selection schemes discussed in Section IV on synthetic, as
the corresponding parametebs, 1,,;, and o, are computed well as on measured channels.
according to (54), (55), and (56), respectively. Thesesstap 1) Multipath detection with the perfect model matdFirst
continued until all bases with delays from the search sacewe consider the distribution of the hyperparameters onee th
are initialized, or until the basis vector that does notséati stationary point has been reached. In order to do that, we
the condition (30) is encountered. apply the learning algorithm to the full hypothesi§. The

Of course, in order to be able to use this initializatiodelays in#, are evenly positioned over the length of the
scheme, it is crucial to get a good initial noise estimatee THMpulse response? = {IT;l = 0...N — 1}, i.e., Lo =
initial noise paramete’V” can in most cases be estimated"- Here, we simulate the channel with a single multipath
from the tails of the channel impulse response, where m&mponent, i.e.L = 1, having the delayr’ equal to a
tipath components are unlikely to be present or too weak fultiple of the sampling period. Thus, in the design matrix
be detected. Generally, we have observed that the algoiithrd< corresponding to the full hypothesid, there will be a
less sensitive to the initial values of the hyperparamaters basis function that coincides with the contribution of theet
but proper initialization of the noise spectral height isaal. Multipath component. Once the parameters have been lgarned

Now we can describe the simulation setup used to ass¥4 partition all the hyperparametetsinto those attributed to

the performance of the proposed algorithm. the noise, i.e.qv,, and one parameter that corresponds to the
multipath componenty, i.e., the one associated with the delay
. T=1.
A. Simulation setup In a next step, we compare the obtained histogram of

The generation of the synthetic channel is done following, ' with the theoretical pdfp,:(z) given in (43). The
the block-diagram shown in Fig. 1: a single peria@) of corresponding results are shown in Fig. 10(a). A very good
the sounding sequencét) is filtered by the channel with the match between the empirical and theoretical pdf's can be
impulse responsé(t), and complex white Gaussian noise i®bserved.
added to the channel outputs to produce the received signabimilarly, we investigate the behavior of the negativg-
y(t). The received signal is then run through the MF. Thevidence versus the size of the hypothesis. We consider a
continuous-time signals at the output of the MF are repitesensimilar simulation setup as above, however with more thah ju
with cubic splines. The resulting spline representatiothen one multipath component to make the results more realistic.
used to obtain the sampled outpyfin], p = 1...P, with Figure 10(b) depicts the evaluated negative-evidence (61)
n = 0...N — 1. Output signalsz,[n] are then used as theas a function of the model order, evaluated for a single
input to the estimation algorithm. realization, when the true number of componentd is- 20,

For all P channel observations we use the same MF, aagid the number of channel observationgis- 5.
thus® = ®,, K = K, andX = X,, p = 1... P. Without Note that, as the SNR increases, there are fewer components
loss of generality, we assume a shaping pulse of the durat@&sbject to the initial pruning, i.e., those that do not $atis
T, = 10nsec. The sampling period is assumed toZhe= condition (30). We also observe that the minimum of the neg-
T,/Ns, where N, is the number of samples per chip used iative log-evidence (i.e., maximum of the evidence) becomes
the simulations. The sounding wavefoutt) consists ofM/ = more pronounced as the SNR increases, which has an effect
255 chips. We also assume the maximum delay spread in afldecreasing the variance of the model order estimates.
simulations to ber,,,..q = 1.27usec. With these parameters, In order to find the best possible performance of the
a one-sample/chip resolution resultshh= 128 samples. The algorithm, we first perform some simulations assuming that
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Fig. 10: Evidence-based model selection criteria. a) Eicgdibar plot) and theoretical (solid line) pdf's of hyparameters
a; ! (SNR = 10dB, and P = 10). To compute the histograny = 500 samples was used.; b) Negatikes-evidence as a
function of the model order (number of paths) for differetdRSvalues P = 5, and L = 20).

the discrete-time model (8) perfectly matches the contisuo thresholds obtained with lower.
time model (6), i.e.n € 7, I = 1,..., L. This is realized  The next plot in Fig.11(c) shows the multipath detection
by drawing uniformlyL out of N possible delay values in therate when the model is selected based on the evaluation of the
interval [0, Ts(N —1)]. Again,7 = {IT;1 =0... N—1}. The negativelog-evidence under different model hypotheses (neg-
number of multipath components in the simulated channelsagive log-evidence model selection). It is interesting to note
set toL = 5 and the channel is sampled wit, = 2 samples that in this case the reported curves behave quite diffigrent
per chip. from those shown in Fig. 11(a). First, we see that for the case
In this simulation we evaluate the detection performandé = 1 the behavior of this method is slightly better, compared
by counting the errors made by the algorithms. Two types t§f the threshold-based method in Fig. 11(a). ButPagrows,
errors can occur: (a) ansertion error- an erroneous detectionthe performance of the multipath detection does not inereas
of a non-existing component; (b) deletion error- a loss of proportionally, but rather exhibits a threshold-like beba In
an existing component. The case when an estimated dglayother words, multipath detection based on the negdtize
matches one of the true simulated delays is callddtawe evidence and alike MDL-based model selection requires the
further define thenultipath detection ratas the ratio between SNR above a certain threshold in order to operate reliably.
the number of hits to the true number of componehtglus Furthermore, this threshold is independent of the number of
the number of insertion errors. It follows that the detettiate Cchannel observations.
is equal tol only if the number of hits equals the true number Thus from Fig. 11(a) and Fig. 11(c) we can conclude
of components. If, however, the algorithm makes any deletithat the quantile-based method performs better in a sense
or insertion errors, the detection rate is then stronglyllema that it can always be improved by increasing the number
than1. We study the detection rates for both model selecti@f channel observations. Further, model selection usimg th
schemes versus different SNR's. The presented results #mesholding approach can be performed on-line, concturren
averaged oveB00 independent channel realizations. with parameters estimation, while in the other case maltipl

We start with the model selection approach based on tRdels have to be learned.
threshold selection using the-quantile of the noise distri- Now, let us consider how the EP performs when the
bution - quantile-based model selection. The results shiawnmultipath component delays are on the real line, rather than
Fig. 11(a) are obtained fgr= 1—10% and different numbers on a discrete grid. Clearly, this case corresponds moreeto th
of channel observationB. It can be seen that, a8 increases, real-life situation.
the detection rate significantly improves. To obtain theiitss ~ 2) Multipath detection with the model mismatdh:the real
shown in Fig. 11(b) we fix the number of channel observatiomgorld the delays of the multipath components do not necessar
at P = 5 and vary the value of the quantife It can be seen ily coincide with the elements il used to approximate the
that asp approaches unity, the threshold is placed higherpntinuous-time model (6). By using the discrete-time ni@de
meaning that fewer noise components can be mistakemdy approximate the continuous-time counterparts, we would
detected as multipath components, thus slightly improttireg necessarily expect some performance degradation in tefms o
detection rate. However higher thresholds require a higham increased number of components. This problem is sinilar t
SNR to achieve the same detection rate, as compared for the problem that occurs in fractional delay filters (FDF)][27



15

1007 1007 1007
90t 90t 90t
80t 80f 80t
£ 8 2
Q . Q = Q =
g g g
5 60f 5 60f 5 60f
g g g
2 sof £ sof 2 sof
° =] °
£ 4o} £ 40t £ 4o0f
2 g 2
£ 30f 5 30) El
= 20l ® 20 : ——p=1-107] = |
| —e—P=10
——p=1-10 -
10t 10t 6 10t ——P=5
——p=1-10 ——Pp=1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR, dB SNR, dB SNR, dB

@) (b) (©

Fig. 11: Multipath detection rates based on the EP. (a) Qleamased model selection versis p =1 — 1076, L = 5; (b)
Quantile-based model selection versusP = 5, L = 5; (¢) Negativelog-evidence-based detection versiis

An FDF aims at approximating a delay that is not a multiplgon.
of the sampling period. As shown in [27], such filters have We start with channels sampled wifii, = 1 sample/chip
infinite impulse response. Though FIR approximations exisesolution andP = 5 channel observations. We see that the
they require several samples to represent a single delay. shown methods have different probabilities of path dedecti
Since there is an inevitable mismatch between tH{€ig.12(a)), i.e., they require different SNR to achieve same
continuous-time and discrete-time models, it is worth @gki path detection probability. The threshold-based methauds c
how densely we should quantize the delay line to form thee, however, adjusted by selecting the quantiégpropriately.
design matrix in order to achieve the best performance. ItAs we see, withp = 1 — 1075, the threshold-based and
convenient to select the delaysinof the discrete-time model SAGE+MDL methods achieve the same probabilities of path
as a multiple of the sampling peridd. As the sampling rate detection. The resulting probabilities of correct pathrastion
increases the true delay values get closer to some elenmentare shown in Fig. 12(b). Note that for low SNR comparison of
7T, thus approaching the continuous-time model (6). the methods is meaningless, since too few paths are detected
We simulate a channel with a single multipath componehtowever, above SNR=~ 15dB, with all methods we can
that has a random delay, uniformly distributed in the indérvachieve similar high path detection probability, whichoals
[0, Tspread)- direct comparison of the correct path extraction probtdi
The criterion used here to assess the performance of ¥e can hence infer that, in this regime, model selection with
algorithm is the probability of correct path extraction.igh negativelog-evidence is superior to other methods, since it
probability is defined to be the conditional probability tha has higher probabilities of path extraction. In other waids
given any path is detected, the algorithm finds exactly omeeans that at higher SNR this method will introduce fewer
component with the absolute difference between the estinagrtifacts.
and the true delay less than the chip pulse duréfiprNotice What is also important is that as the SNR increases, the cor-
that the probability of correct path extraction is condigo on rect path extraction rate drops. This happens simply becaus
the path detection, i.e., it is evaluated for the cases when bur model has a fixed resolution in the delay. As the result,
estimation algorithm is able to find at least one componentat the higher SNR several components from the our model
It is also interesting to compare the performance of the Effe used to approximate a single one with a delay between
with other parameter estimation techniques. Here we censithe sampling instances. This leads to the degradation of the
the SAGE algorithm [2] that has become a popular multéorrect path extraction rate since the number of components
path parameter estimation technique. The SAGE algorithia,overestimated.
however, does not provide any information about the numberNow, let us increase the sampling rate and study the
of multipath components. To make the comparison fair, wease N, = 2 (Fig. 12(c), and Fig. 12(d)). We see that the
augment it with the standard MDL criterion [4], [5] to perfor probabilities of path extraction are now higher for all math.
model selection. A slight difference between the two EP initialization sclesm
Thus, we are going to compare three different modeln also be observed. Note however that the performance
selection algorithms: the quantile-based (or threshalsed) increase is higher for the SAGE+MDL and negatile-
scheme with a pre-selected quantje = 1 — 1075, the evidence algorithms, which both rely on the same model
SAGE+MDL method, and negatiMeg-evidence method. We selection concept.
are also going to use the threshold-based method to demorfinally, the last case withV, = 4 is shown in Fig. 12(e)
strate the difference between two EP initialization schemeand Fig. 12(f). Again SAGE+MDL and negativeg-evidence
the joint initialization, and the independent initialiwat, dis- schemes achieve higher correct path extraction probabilit
cussed in Section V. In all simulations the negativg- as compared to the threshold-based method. The performance
evidence method was initialized using independent imggal of the latter also increases with the sampling rate, but un-
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Fig. 12: Comparison of the model selection schemes in aesipgth scenario. (a,c,e) path detection probability, and,fib
probability of correct path extraction fa? = 5, and (a,b)N, = 1; (c,d) N, = 2; and (e,f)N, = 4.

fortunately not as fast as that of the Description Lengtlis smaller thar0.0001%. The corresponding detection results
based model selection. Theses plots also demonstrate fthredifferent number of channel observations are showndn Fi
difference between the two proposed initializations of thes.
EP. In Fig. 12(e) we see that in this case the independeniWWhen P = 1 (see Fig. 13(a)), the independent initializa-
initialization outperforms the joint one. As already mengd, tion results in only9 basis functions constituting the initial
this distinction becomes noticeable, once the basis fanstin  hypothesisH,. The final estimated number of components
K exhibit significant correlation, what is the case fér > 2. is found to beL = 8. As expected, increasing the number
of channel observation® makes it possible to detect and
C. Results for measured channels estimate components with smaller SNR. For the cage ef 5

We also apply the proposed algorithm to the measur¥(f detect alreadyl. = 12 components (Fig. 13(b)), and
data collected in in-door environments. Channel measuf@l I = 32, L = 15 components (Fig. 13(c)). This shows
ments were done with the MIMO channel sounder PropSouH’tf‘t mcreasmg.the number of observations not necessarily
manufactured by Elektrobit Oy. The basic setup for chanri@fings & proportional increase of the detected componiénts,
sounding is equivalent to the block-diagram shown in Figuggesting that there might be a limit given by the true numbe
1. In the conducted experiment the sounder operated at ffgnultipath components.
carrier frequency;.2GHz with a chip period off}, = 10nsec.

The output of the matched filter was sampled with the period VI. CONCLUSION

T, = T, /2, thus resulting in a resolution @fsamples per chip.  This paper demonstrates the application of the Evidence
The sounding sequence consistedf= 255 chips, resulting Procedure to the analysis of wireless channels. The origi-
in the burst waveform duration df, = M T, = 0.255usec.  nal formulation of this method, known as Relevance Vector

Based on visual inspection of the PDP of the measuréthchines, was reformulated to cope with the estimation of
channels, the delayg; in the search spacg are positioned wireless channels. We extended the method to the complex
uniformly in the interval betweef50nsec and 000nsec, with domain and colored additive noise. We further extended the
spacing between adjacent delays equdltorhis corresponds RVM to multiple channels by proposing a new graphical
to the delay search spa@e consisting ofl51 elements. The Bayesian model, where a single evidence parameter controls
initial estimate of the noise floor is obtained from the tdiltee each multipath component observed with multiple channels.
measured PDP. The algorithm stops once the relative chafigeour knowledge this is a new concept that can be useful not
of the evidence parameters between two successive itesationly for estimation, but also for simulating wireless chalsn
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Evidence parameters were originally introduced to control
the sparsity of the model. Assuming a single path scenario we
were able to find the statistical laws that govern the values
of the evidence parameters once the estimation algorittsn ha
converged to the stationary point. It was shown that in low
SNR scenarios the evidence parameters do not attain infinite
values, as has been assumed in the Tipping's original RVM
formulation, but stay finite with values depending on the
particular SNR level. This knowledge enabled us to develop
model selection rules based on the discovered statistea |
behind the evidence parameters.

In order to be able to apply these rules in practice, we
also proposed a modified learning algorithm that exploiés th
principle of successive interference cancellation. Thizdm
ification not only allows to avoid computationally intensiv
matrix inversions, but also removes the interference betwe
the neighboring basis functions in the design matrix.

Model mismatch case was also considered in our analysis.
We were able to assess the possible influence of the finite
algorithm resolution and, to some extent, take it into aotou
by adjusting the corresponding model selection rules.

We also showed the relationship between the EP and the
classical model selection based on the MDL criterion. It was
found that the maximum of the evidence corresponds to the
minimum of the corresponding description length criterion
Thus, EP can be used as the classical MDL-like model
selection scheme, but also allows faster and more efficient
threshold-based implementation.

The EP framework was also compared with the multipath
estimation using the SAGE algorithm augmented with the
MDL criterion.

According to the simulation results, the Description Léngt
based methods, i.e., negatikes-evidence and SAGE+MDL
method, give better results in terms of the achieved prdibabi
ties of correct path extraction. They also improve fastathas
sampling rate grows. However, these model selection gieste
require learning multiple models in parallel, which, of ceg,
imposes additional computational load. The thresholathas
method, on the other hand, allow to perform model selection
on-line, thus being more efficient, but its performancedase
with the growing sampling rate is more modest. The perfor-
mance of the threshold-based method also depends on the
value of the quantile. In our simulations we sgt= 1—1079,
which results in the same probability of the path detectisn a
in the SAGE+MDL algorithm. However, other valuesotan
be used, thus giving a way to further optimize the perforreanc
of the threshold-based method.

The comparison between the SAGE and EP schemes clearly
shows that estimating evidence parameters really pays off.
Introducing them in the computation of the model complexity
as it is done in the negatieg-evidence approach, results in
the best performance, compared to the other two methods.
Although the negativéog-evidence methods needs a slightly
higher SNR to reliably detect channels, it however results i
the highest probability of the path extraction.

To summarize, we think that the EP is a very promising
method that can be superior to the standard model selection
algorithms like MDL, both in accuracy and in computational
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efficiency. It also offers a number of possibilities: thedmnce Making use of this result, we can write
parameters can also be estimated within the SAGE framework, -

thus extending the list of multipath parameters and engblin ~ 9£(@.512) 9 log|B AT 18-
on-line model selection within the SAGE algorithm. As the  9log(ew)  9logay

consequence, this would allow to adapt the design matr|x L

by estimating the delays, from the data. The threshold- 27 (B +KA 'K Z eloga; — Cay) }
based method also opens perspectives for on-line remggdelin 1=1

i.e., adding or removing components during the estimation 810g|A|P dlog|®, |

of the model parameters, which might result in much better dlog o Z Dlog — ()

and sparser models. Since the evidence paremeters reftect th

contribution of the multipath components, they might algo b _,0(B-BKA+K BK)AKHB) )
useful in applications, where it is necessary to define some -z dlog Z,

measure of confidence for a multipath component. ) ] ) L
where in the latter expression the Woodbury inversion igent

[28] was used to expand the tertB ' + KA 'K )~

After taking the derivative we arrive at
APPENDIX

( 5|Z — -1 P
— = A tr | P
To derive the update expressions for the evidence parasneted log(a;) { dlog al} + 1; { P Olog al}
in the multiple channels case, we first rewrite (19) using
the definitions _(22). Since both terms un(_jer the integral are (e — Cay) — HBEK® 5(A +K BK)«i)f{HBE _
Gaussian densities, the result can be easily evaluated as Jlog ay

»

p(Zla, B) = /p(2|ﬁ], B)p(w|a)dw P-Y [alE”@p} + (e — Cay)—
=1

exp (~ (9 1A+ KA K")1z) (69 ’

sHBK & E,dK" Bs.

~ ~ ~—1~H
TPNFTIA+ KA K Here E;; is a matrix with thelth element on the main diag-
For the sake of completeness we also consider hypermodghl equal tol, and all other elements being zero. Similarly,
priors p(a, 3) in the derivation of the hyperparameter updatg,; is the P-times repetmon ofE;; on its main diagonal. By
expressions. Thus, our goal is to find the valuesoofand noting thatj = s Bz, we arrive at
£ that maximizeL(a, §)2) = log(p(2|ev, B)p(ex, 5)). This is

achieved by taking the partial derivatives 6(a75|2) with 0L(a, B|Z)
respect toa and 3, and equating them to zero [19]. It is dlog(ay) P- ;tf [alE”q) }
convenient to maximizeL(«, 3|z) with respect tolog(«;) N;‘ _
and log(3) since the derivatives of the prior terms in the (e —Ca) = p" v Eyp = 0.
logarithmic domain are simpler. Solving for a;, we obtain the final expression for the hyper-
First we prove the following matrix identity that we will parameter update
exploit later Pac
o) =

—1y 41 H -1 1 g H
|IB"'||A'||[A+ K"BK|=|B "+ KA "K"|. (65) 2521(@p71l+|up71|2)+<

Proof. Note that by setting’ = ¢ = 0 we effectively remove the
|IB7Y|A7Y|A+ K¥YBK| = influence of the priop(«|(, €).
B YA K [(KA'K")~! + B]K]| = We proceed similarly to calculate the updatesof
|BHATY|K[|(KAT'K™)™! + B||[K"| = ﬁlz Zalongpl Zalogl%l _ k8)
K| A7 K7 |[(KAT K™)~ + BIB™!| = alog 9log 9log B
[KAT K" (KA K") ™' B +1]| = ~Ha(B BK(A+K" BK) K" By
|Bil+KA71KH| w Blogﬁ ==
n ialogﬁ A, Zt [q)la@ J+
Now, we can begin with the deriyzitlion of thNe update of the = dlog 8 P 9logp
hyperparameters;. Let us defineB ~ = 3! A. According 1
to (65) we see that (v—KB) — ~HaﬁA 3
S 1 310g5
|IB +KA 'K | = 1

L L ~Ha(ﬁA 'KA+K"pA T K) K" BA” )2:
B AT A+ K"BK| =B |AT @], dlog 3




A+ KIBAK,)
Odlog 3
(v—rp)—2"BA 2+ 2" BAT KOK " BA 2+
oA+ K"pATK)
dlog 3
2MBAT KBKBA 2 =

P ) 8(
PN - ue)'e, ®,|+
p=1

KE"BA "2+

HEA K

P
PN =t [KHOA, K, ®, |+
p=1
(v—rB) —2HA "2 + 2HBA Kfu
+i KA K+ g K7 A 2.

Thus we arrive at the final expression:

OL(a, BlZ) (e At
Tg(ﬂ) —PN—ZtI' |:Kp ﬁAp Kp@p +

P

p=1

(v—kB) = > (2p — Kpp,)" A, (2p — Kpp,)) = 0.

p=1
Solving for 3 we finally obtain

P
§=(PN+v)| S tr [KIA K, @[+
p=1
P -1
Z(Zp - Kpl‘p)HAzjl(zp - Kyp,) + 5

p=1

Here again the choice = v = 0 removes the influence of the

prior p(8|x,v) on the evidence maximization.
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