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ABSTRACT

This paper introduces a novel wireless channel clustering tech-
nique based on the Saleh-Valenzuela channel model. The channel
impulse response is regarded as a realization of the probabilistic
channel model, based on which the prior density functions of clus-
ter arrival times are derived. Cluster analysis is done by means
of extending the Saleh-Valenzuela model to a non-stationary case
and re-interpreting it in terms of mixture models. The parameters
of the mixture are then learned with Hidden Markov Models. Once
trained, the HMM could be used to optimally cluster the channel
taps with Viterbi algorithm. The proposed method has been ap-
plied to simulated as well as measured channel impulse responses
and showed reasonably good performance.

1. INTRODUCTION

Wireless systems are subject to fading - time variations of the re-
ceiving conditions caused by multipath propagation and transceiver
movements. Due to the fading nature of the wireless channel, it is
imperative for the system to follow the variations of the receiving
conditions and adapt itself to sustain reasonable communication
quality.

Generally, the wireless channel consists of a series of attenu-
ated, time-delayed, phase shifted replicas of the transmitted signal.
In the baseband this will be represented as follows:

ht(τ ) =

N−1�

i=0

βi(t, τ ) exp (jθi(t, τ ))δ(τ − τi(t)) (1)

where βi(t, τ ) and τi(t) are the real amplitudes and excess delays
of the ith multipath component at the time t, respectively (see,
for example, [1], chapter 4). The phase term θi(t, τ ) lumps to-
gether all the mechanisms for phase shifts of a single multipath
component within the ith excess delay bin. Equation (1) is a start-
ing point into further analysis. The straight-forward procedure to
follow the channel is to follow each of the contributing reflections.
Obviously, it is a hard task to accomplish, since the number of con-
tributions could be significant, but if successful, it will provide a
detailed description of the channel dynamics. Although, it is com-
putationally impractical to follow all of the contributing paths, it
is still possible to follow at least several strongest[2, 3]. Alterna-
tively, a number of statistical models provide probability density
functions (PDFs) for the parameters of interest [4, 5], thus giving
probabilistic description of the channel behavior. However, for on-
line operation the communication system has to know the instanta-

neous parameter values. It would seem beneficial to join both ide-
ologies and devise a method to extract some information from the
instantaneous impulse response, based on the probabilistic model
of the channel. This could be accomplished if the channel impulse
response is regarded as a sample realization of the corresponding
probabilistic model.

Among a number of different statistical models, the Saleh-
Valenzuela (S.-V.) channel model[6] has attracted our attention,
because it provides a very promising framework for implementing
these ideas. The basic idea behind the S.-V. model is based on the
assumption that rays arrive in clusters. The clusters arrive with a
certain rate at random time instances, as well as the individual rays
within each cluster. Such a structure imposed on the impulse re-
sponse provides, first of all, a basis for hierarchical analysis (i.e.,
from impulse response to clusters and rays), and physical interpre-
tation of the clusters and model parameters. Although the S.-V.
model was initially developed for indoor channels, the same ideas
could still be valid for outdoor communications with wideband
and directional systems [7]. The clusters present in the impulse
response allow one to invoke an ample set of unsupervised cluster-
ing techniques based on the known statistical structure of the data.
Hidden Markov Models (HMM) is a promising candidate for such
a task.

We will show how to re-formulate the channel structure in
terms of the HMMs and how to learn the model parameters. The
rest of the paper is organized as follows: Section 2 describes the
parameter estimation algorithm and clustering procedure, along
with some practical considerations; Section 3 shows the applica-
tion of the proposed clustering algorithm to simulated channels;
and Section 4 provides some results of algorithm application to
the measured channel impulse responses.

2. CLUSTER ANALYSIS ALGORITHM

2.1. General description of the Saleh-Valenzuela model

The basic idea of the S.-V. model is easily understood from consid-
ering the impulse response in Fig. 1. The model assumes rays ar-
riving in clusters. The time between cluster arrivals is random and
distributed exponentially with a parameter Λ. Likewise, within the
cluster the time between successive ray arrivals is also exponen-
tially distributed with a parameter λ, λ >> Λ:

p(Tl|Tl−1) = Λ exp [−Λ(Tl − Tl−1)]

p(τk,l|τk−1,l) = λ exp [−λ(τk,l − τk−1,l)]
(2)



Here, Tl is the arrival time of the lth cluster, given the previous
arrival at Tl−1, Tl ≥ Tl−1. Likewise, τk,l is the arrival time of the
kth ray within the lth cluster, given the preceding ray at τk−1,l,
τk,l ≥ τk−1,l.
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Fig. 1. An example of a wireless channel impulse response.

The power gain β2
k,l is assumed by the model to be indepen-

dent of the associated delays and distributed exponentially as fol-
lows:

p(β2
k,l) = � β2

k,l � −1

exp (−β2
k,l/β2

k,l)

where the expected power gain β2
k,l is a function of the delay τ

β2
k,l = β2

0,0 exp � −Tl

Γ � exp � −τk,l − τ0,l

γ �
Here, β2

0,0 is the expected power gain of the first ray in the first
cluster. Γ and γ are power-delay time constants for the clusters
and the rays, respectively (see Fig. 1). Next, we formulate the
clustering algorithm.

2.2. PDFs of the cluster arrival times

Let us consider a snapshot of the time-varying channel impulse
response ht(τ ), for example, the one shown in Fig. 1. We will
drop explicitly the time dependency for notation simplicity and
write h(τ ) only. We can think of it as of a single realization of the
S.-V. model.

Let us also assume, that this particular realization has L clus-
ters, arriving at the unknown times Tl, l = 0, 1, . . . L−1. Without
any loss of generality, let us also assume that T0 ≡ 0, i.e., the first
cluster arrives at the moment τ = 0. Defining the time between
consecutive arrivals as ∆Tl = Tl − Tl−1, the positions of the
clusters are given as:

Tl =

l�

m=1

∆Tm (3)

From the original model it follows that the inter-arrival times
∆Tm’s are statistically independent exponentially distributed ran-
dom variables. This leads to the derivation of the PDFs pl(T ) of
the cluster arrival times. Indeed, from (3) it follows that pl(T ) is
a convolution of l exponential distributions. It can be shown that

pl(T ) is a chi-square distribution with 2l degrees of freedom:

pl(T ) =
Λl

(l − 1)!
T l−1 exp (−ΛT ) (4)

Expression (4) could be interpreted differently. For instance,
the case l = 1 gives the distribution of the arrival time of the
second cluster. But, the same function could also be used as a
likelihood of an arbitrary time instance τ belonging to the first
cluster. Indeed, p1(τ ) decays exponentially with its maximum at
zero, since by definition the first cluster starts at τ = 0.

Unlike the original formulation (2), expression (4) is not con-
ditioned on any of the previous arrival instances and, in this sense,
it is a prior distribution of the cluster arrival times. This property
makes it useful in the proposed clustering algorithm.

2.3. Parameter estimation and clustering

Now, when the PDFs of the cluster arrival times are known, we
proceed with the clustering algorithm. We start with the following
assumptions:

1. The samples come from a known number of L clusters.

2. The channel impulse response h(τ ) is defined on a finite or-
dered set D = {τ0, τ1, . . . , τN−1} of time instances where
the pulses were registered in the impulse response. Thus,
Tl ∈ D and τk,l ∈ D, ∀k, l

3. We extend the original model by assuming different Λl for
each cluster. Thus, each Λl uniquely specify the position
of the corresponding cluster allowing clusters to move in a
non-stationary environment.

For a given impulse response the time instance τj could pos-
sibly belong to any of the L clusters. Mathematically speaking, it
belongs to a mixture of L density functions:

p(τj |Λ) =
L�

l=1

p(τj |Λl, ωl)p(ωl)

p(τj |Λl, ωl) =
Λl

l

(l − 1)!
τ l−1

j exp (−Λlτj)

(5)

Here, p(ωl)’s are the prior probabilities for each of the clus-
ters, ωl ≡ l is a cluster index, and p(τj|Λl, ωl) is a likelihood of
the τj belonging to the lth cluster. The parameters of the mixture
(5) could be effectively learned with HMMs. HMMs are exten-
sively used in many applications involving the modeling of the
sequential data. To determine the HMM we have to specify its ba-
sic elements: the number of states L, the state transition matrix A,
the initial state distribution πl, and the observation PDFs pl(τ ),
l = 1 . . . L. The most suiting to our case would be the classical
left-right model [8]. The choice of this type of the HMM is based
on the following reasoning: each state in the HMM is associated
with the corresponding cluster. Assuming sequential cluster ar-
rivals, the jumps backward or over several states are now allowed.
This dictates the special form of the transition matrix A, charac-
teristic for the left-right models. The initial state distribution is
also fixed, since by definition we start in the first cluster. In our
formulation the observation sequence is formed from the delays
τj , drawn from the mixture (5). Each component in the mixture is
the corresponding observation PDF. Thus, pl(τj) ≡ p(τj |Λl, ωl).

The training of HMM consists in estimating the model param-
eters given the observation sequence. This task is achieved by



EM-like algorithms and has been treated in a number of sources
(see [9, 10], for example). There is a slight modification to the pa-
rameter re-estimation formulas that accounts for of the non-normal
form of the observation distribution p(τj |Λl, ωl). Once the param-
eters are learned the HMM can be used to optimally cluster the taps
of the impulse response. Since each state corresponds to the clus-
ter, the most probable state sequence given the observations and
the model parameters will tell us which taps have been emitted at
which state, i.e., from which cluster they come. This is solved by
the Viterbi procedure[8].

One could also be interested in the expected time of the cluster
arrival, which in this case will be given as

τ·,l = E{τ |l} = � ∞

0

τp(τ |Λl, ωl)dτ = l/Λl (6)

2.4. Practical considerations

The practical implementation of the algorithm is quite straight-
forward except for some particularities.

The distributions in the form (4) are very loose, meaning there
is a significant uncertainty in classifying the points belonging to
the late clusters. To amend this we regularize the classification al-
gorithm by introducing an additional weighting function w(τ |Λl, ωl)

used as a window to truncate the original density p(τj |Λ̃(k)
l , ωl):

w(τj |µl, αl) =
1

αl

√
2π

exp(−0.5(τj − µl)
2/α2

l )

Assuming functional independance of the window parameters µl

and αl from Λl, the former can be easily estimated from the data
within the same HMM framework by setting the derivatives of
the corresponding likelihood function with respect to µl and αl

to zero.
It is crucial to operate on a sparse impulse response. Otherwise

no clusters can be defined, since a uniform sequence of instances
τj does not form clusters. Sparseness can be enforced by thresh-
olding channel coefficients with power gains smaller than the noise
level and then selecting local maxima.

Due to the iterative nature of the algorithm, the choice of the
initial values is an important step. In our implementation the initial
values were set as follows:

a
(0)
ll = 0.95, Λ̃

(0)
l = l � maxj (τj)

L + 1
, for l = 1 . . . L

3. SIMULATION RESULTS

To test the algorithm we simulate an impulse response according
to the original S.-V. model (Fig. 2). The parameters used in the
simulation are summarized in Table 1.

L = 4; Λ = 5.7 · 106, [sec−1]; λ = 1.0 · 108, [sec−1]

1/Γ = 3.0 · 106, [sec−1]; 1/γ = 1.0 · 107, [sec−1]

β2
0,0 = 5.0 · 10−8, [W]; noise floor = 1.0 · 10−9, [W]

Table 1. Parameters used in the simulation.

This example shows the case when the 1st and 2nd clusters

are strongly overlapping, 3rd cluster only partially overlaps with
the two previous ones, and cluster 4 is clearly distant from the
preceding neighbors.
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Fig. 2. Impulse response with overlapping clusters.

Cluster index, l 1 2 3 4
True τ·,l × 10−6 ,[sec] 0.16 0.23 0.46 0.81

Estimated τ·,l × 10−6,[sec] 0.07 0.20 0.43 0.81

Estimated Λ̃l × 106, [sec−1] 17.7 10.0 6.8 4.9

Table 2. Comparison of true and estimated expectations of cluster
arrival times for the channel shown in Fig.2.

The clustering results are shown in Fig.2 by the correspond-
ing state transition curve superimposed on the plot. By compar-
ing the expected cluster arrival times computed according to (6)
with the true ones, known from the simulations, we can judge the
performance of the clustering algorithm. The corresponding val-
ues are summarized in Table 2. We can see that the algorithm
fails to properly distinguish the strongly overlapping, however the
estimated arrival time of the 4th cluster is very close to the true
value. We can also compute an empirical cluster arrival rate Λemp

as an average of the Λ̃l ( excluding the Λ̃1 since the arrival rate
is measured with respect to the first cluster). For this simulation,
Λemp = 7.2 · 106 sec−1 which is overestimated in this case.

4. APPLICATION OF THE CLUSTERING ALGORITHM
TO THE MEASURED CHANNEL IMPULSE RESPONSES

This section presents some results of the application of the clus-
tering algorithm to channel impulse responses obtained from the
field-trial Multiple-Input-Multiple-Output (MIMO) channel mea-
surements, performed by Forschungszentrum Telekommunikation
Wien, FTW, Vienna, Austria, under the supervision of Helmut
Hofstetter1[11]. For our purposes we select only a Single-Input-
Single-Output (SISO) subset by taking one transmitting and one
receiving antenna from the array.

1The authors wish to thank Forschungszentrum Telekommunikation
Wien for providing MIMO channel measurements data.



Fig.3 shows consecutive measurements of the channel impulse
response as the transmitter moves. The channel snapshot was taken
every 20msec while the transmitter was moving at ≈ 1m/s. This
particular example shows a subset from 2000 consecutive channel
snapshots which is equivalent to 40sec of measurements.
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Fig. 3. Measured channel impulse response (non-stationary be-
havior).

The visual inspection of the impulse responses reveals several
prominent stripes. It is reasonable to assume the existence of clus-
ters in a neighborhood of these peaks. Assuming four cluster, we
perform clustering on every 5th channel snapshot from the mea-
surement data. At each step the algorithm was pre-initialized with
the parameters estimated on the preceding snapshot. Fig.4 shows
the estimates of expected time of arrival for four clusters (scattered
traces) with superimposed linear regression lines.
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Fig. 4. Expected time of cluster arrivals with superimposed linear
regressions.

The variance of the estimates is explained by the uncertainty
due to the noise,present in the measurements, and final number of
taps in the channel impulse response.

5. CONCLUSION

Clustering the channel impulse responses could be an interesting
approach to extract important channel parameters. Based initially
on the S.-V. channel model, the expressions for the PDFs of the
cluster arrival times are derived. The latter turn out to be chi-
square distributions with 2l degrees of freedom, where l is the
cluster index. These could be thought of as a prior distributions
over cluster arrival times. The HMM framework is used to learn
the parameters of the distribution and classify the taps in the im-
pulse response. By exploiting the property of the chi-square dis-
tributions the expected time of cluster arrivals can be effectively
computed. This value can then used as the cluster center.

To fully exploit this approach, the stationarity restriction has
been relaxed, i.e., an independent parameter for each distribution
has been used. This allows a better adaptation of the clustering
algorithm to the non-stationary scenarios.

The algorithm has been applied to simulated, as well as to real
data and, in both cases, it has shown reasonable performance.
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