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ABSTRACT

This paper addresses application of the Bayesian evidence proce-
dure to the analysis of wireless channels. We use Relevance Vector
Machines– a kernel-based technique to locally maximize evidence
that turns out to be promising in the context of the wireless chan-
nel estimation. This approach not only allows to estimate channel
parameters, but also provides a tool to asses the number of multi-
path components. We show that in the case of channel sounding
using pulse-compression technique it is possible to design an opti-
mal kernel, as well as to estimate parameters of the additive noise
and base on it a thresholding level to implement model order esti-
mation. The applicability of the proposed scheme is demonstrated
with synthetic as well as real channel measurements.
Keywords: Channel parameter estimation, Bayesian analysis, ev-
idence maximization, sparse representations, model order estima-
tion.

1. INTRODUCTION

Deep understanding of the wireless channel is an essential prereq-
uisite to satisfy ever-growing demands for the fast information ac-
cess in wireless systems. A wireless channel contains explicitly or
implicitly all the information about the propagation environment.
To ensure reliable communication the transceiver should be con-
stantly aware of the channel state. In order to make this task feasi-
ble, accurate channel models that reproduce in a realistic manner
the channel behavior are required. However efficient estimation
of the channel parameters, e.g., number of the multipath compo-
nents, their relative delays, Doppler frequencies, directions of the
impinging wavefronts, and polarizations is often difficult. Most
often a joint estimation is desired, but this results in intractable op-
timization procedures, and thus separate estimation schemes are
used [1, 2]. Joint estimation of the model order (i.e. the number
of the multipath components) and other channel parameters is a
particularly difficult task. Both underspecifying and overspecify-
ing the model order leads to significant performance degradation:
residual intersymbol interference impairs the performance of the
decoder in the former case, while additive noise is injected in the
channel equalizer in the latter. The classical solution to this prob-
lem is found in the spirit of the Occham’s principle, i.e., several
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models are trained and then those that offer the ’simplest’ expla-
nation of the data in terms of number of parameters are selected.
Examples are Akaike Information Criterion (AIC) and Minimum
Description Length [3], that are special cases of the maximum like-
lihood model selection, or cross-validations, where the estimated
models are compared by their performance over the validation set
(see, for example [4]). Thus, if we were to use the latter in real-
time environments there were a need to train several models in par-
allel. On the other hand, incorporating a model selection scheme
in the estimation algorithm would eliminate this.

In this contribution we propose to use the evidence maximiza-
tion approach that can be applied both to the model selection (as
a Bayesian extension of the Maximum likelihood model selection)
as well as to the estimation of the channel parameters. Evidence
for a particular model hypothesis Hi given the data D is expressed
as the following integral:

p(D|Hi) =

Z

p(D|θ,Hi)p(θ|Hi)dθ, (1)

where θ describes the parameters of the candidate model. Max-
imizing this integral with respect to the unknown parameters and
models is known as evidence maximization procedure [5]. Al-
though generally closed form solutions to (1) can be difficult, ef-
fective maximization schemes can be constructed under some par-
ticular assumptions. In this paper we consider the Relevance Vec-
tor Machines (RVM) technique proposed by M. Tipping [6] that
effectively locally maximizes the evidence integral (1) for linear
kernel-based models. Developed originally for general linear prob-
lems, this technique can be quite effectively modified for the esti-
mation of the wireless channels, thus resulting in an effective chan-
nel parameter estimation and model selection scheme within the
Bayesian framework. RVM initially comes up with overcomplete
representation of the data with more kernels than it is needed, and
then using the evidence procedure finds which of the kernels are
’irrelevant’ to prune them.

The presented material is organized as follows: Section 2 in-
troduces the signal model and notation used in the paper, Section
3 explains the application of the RVM technique to the problem of
estimating wireless channels, and Section 4 presents some results
illustrating the performance of the RVM-based estimator as well
as its application to measured channel impulse responses.



2. SIGNAL MODEL

Let us consider the discrete-time channel sounding model shown
in Fig.1. The transmitted signal u[n] is used to sound the chan-

h[n] =
L∑

l=1

ωlδ[n− τl]

η[n]
u[n]

u
∗[−n]

y[n] z[k]
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Fig. 1. Model of the radio channel with receiver matched filter
front-end.

nel h[n] and is designed to have white-noise-like properties. It is
common to model the channel as a tapped-delay line with L taps,
each with a delay τl and a weight ωl, l = 1 . . . L, representing
the corresponding impinging waves. 1 The received signal y[n] is
therefore given by:

y[n] =
L

X

l=1

ωlu[n − τl] + η[n].

Here, η[n] is an additive white Gaussian noise process with zero
mean and variance σ2

η. The receiver front-end consists of a Matched
Filter (MF) matched to the transmitted sequence u[n]. The signal
z[k] at the output of the MF is then given as:

z[k] =

L
X

l=1

ωlRuu[k − τl] + ξ[k], (2)

where Ruu[k] =
P

n u[n]u∗[n + k] is the autocorrelation se-
quence of the transmitted sequence u[n] and ξ[k] =

P

n
η[n] ·

u∗[n + k] is a zero-mean wide-sense stationary noise with auto-
correlation function Rξξ [k] = σ2

ηRuu[k]. Equation (2) states that
the channel impulse response is a linear combination of L delayed
kernel functions Ruu[k − τl], observed in the presence of the col-
ored noise ξ[k]. By assuming that N samples of z[k] are available,
we can rewrite (2) in the vector form:

z = Kω + ξ, (3)

where we have defined z = [z[0], z[1], . . . , z[N − 1]]T , ω =
[ω1, ω1, . . . , ωL]T , ξ = [ξ[0], ξ[1], . . . , ξ[N − 1]]T . The matrix
K , also called a design matrix, accumulates delayed versions of
the kernel function Ruu[k] and is constructed as follows: K =
[r1, . . . , rL], with rl = [Ruu[−τl], Ruu[1 − τl], . . . , Ruu[N −
1 − τl]]

T . The goal is to estimate the channel parameters ωl , τl,
and noise properties, as well as to determine the order of the model
L. It should be stressed that each kernel rl is associated with the
corresponding delay τl. It follows that the number of resulting
kernels determines the model oder, while their indices determine
the corresponding multipath delays. We now show how the RVM
technique can be applied to the problem at hands.

1In this paper we consider Single-Input-Single-Output channels, thus
omitting aspects arising with multiple antennas.

3. APPLICATION OF EVIDENCE PROCEDURE TO THE
ANALYSIS OF WIRELESS CHANNELS

First of all we will make some assumptions that are crucial for
the further discussion. We assume that the model order is initially
overestimated, i.e. our initial hypothesis comprising L basis func-
tions is more complex than the true underlying reality. We will
also show that the color of the additive noise at the output of the
MF can be effectively accounted for in the algorithm. In fact, it can
be shown that the covariance matrix of ξ is given as Σ = σ2

ηΛ,
where Λ is fixed matrix with elements given as Λij = Ruu[i− j].
Thus, only the factor σ2

η has to be estimated within the proposed
framework, since Ruu[k] is known.

Now, we will redo the major steps of the RVM algorithm with
modifications to accommodate communication channels, where
needed. For a more detailed treatment of the RVM the interested
reader is referred to the original contribution [6]. Estimating pa-
rameters of interest consists in considering likelihood function
p(z|ω,Σ) = N (z|Kω,Σ) which is a multivariate complex nor-
mal distribution with the mean Kω and covariance matrix Σ.
Model weights ω are specified by means of the prior p(ω|α) =
N (ω|0, A−1), where A = diag{α} [6, 5]. We note that there is
an individual hyperparameter αl for each weight ωl. To complete
the specification of the priors, a hyperprior for α is introduced in
the form of a Gamma distribution:

p(α|a, b) =

L
Y

l=1

G(αl|a, b) =

L
Y

l=1

ba

Γ(a)
αa−1

l exp(−bαl).

A similar hierarchy is build to describe the additive noise pro-
cess ξ[n]. In this case the only random parameter is σ2

η . We
define β = σ−2

η , with hyperprior p(β|c, d) = G(β|c, d). The
hyperpriors of α and β are usually made non-informative, i.e.,
uniform by setting a, b, c, and d to very small values. The pre-
sented prior formulation for the given problem is quite common
in Bayesian estimation. RVM, as a Bayesian approach, advan-
tageously embodies two modeling steps, that are crucial for us:
1) model fitting (estimation of the ω), and 2) model compari-
son and selection (estimation of β and α). Those steps natu-
rally result in consideration of the posterior over all the unknown:
p(ω, α, β|z) = p(ω|z, α, β)p(α, β|z).

Model fitting consists in finding MAP estimates of the model
weights ω from the posterior p(ω|z, α, β) ∝ p(z|ω, β)p(ω|α)
with p(z|ω, β) ≡ p(z|ω,Σ). The former can be easily evaluated
analytically and results in a complex Gaussian distribution:

p(ω|z, α, β) = N (ω|µ,Φ), (4)

where µ is MAP estimate of the model weights ω with covariance
matrix Φ:

Φ = (A + βK
H
Λ

−1
K)−1, (5)

µ = βΦK
H
Λ

−1
z. (6)

Model selection step is unfortunately a bit more elaborate. It
involves analysis of the model posterior p(α, β|z). Alternative
models (hypotheses) are constructed as different subsets of αl’s
associated with the column-vectors rl in the design matrix K.
Some of the MAP estimates of αl will concentrate at very large
values, so effectively switching off the corresponding column in
K since p(ωl|αl) = N (ωl|0, α−1

l ). Straight-forward optimiza-
tion of p(α, β|z) is possible, but computationally prohibitive. In



[6] it was proposed to represent p(α, β|z) by the delta-function
at its mode {αMP , βMP }. Thus, RVM learning is the search
for the hyperparameter posterior mode, i.e. maximization of the
p(α, β|z) ∝ p(z|α, β)p(α)p(β). This can be further simplified
for the case of uniform hyperpriors: only the term p(z|α, β) has to
be maximized. This term is referred to as the evidence for the hy-
perparameters and its maximization as the evidence procedure[7].
Unfortunately, the maximizing values αMP and βMP can not be
found in a closed form and iterative approaches are needed to solve
this optimization task. Below, we provide the complete RVM algo-
rithm (Table 1) along with corresponding re-estimation equations.

Table 1 RVM application algorithm

Initialize α[0], (σ2
η)[0]; Construct K for τ = {τ1, τ1, . . . , τL}

Initial hypothesis: H0 = {α1, . . . , αL}

while α and σ2
η have not converged

1) Model fitting: Compute µ[i] and Φ
[i] from (6) and (5),

respectively.

2) Model selection:

for all αl ∈ Hi

(α−1
l )[i+1] = Φ

[i]
ll + |µ

[i]
l |2 (7)

endfor

(σ2
η)[i+1] =

tr[Φ[i]KH
Λ

−1K]

N
+

+
1

N
(z − Kµ

[i])H
Λ

−1(z − Kµ
[i])

(8)

% — New hypothesis —

for all αl ∈ Hi

if αl ≥ αthreshold then Hi = Hi \ {αl}

endfor

endwhile

Here, Φll is the lth element on the main diagonal of the Φ matrix,
and µl is the lth element in the parameter vector µ. We also used
σ2

η ≡ β−1 in the final expressions.

3.1. Selection of the thresholding level αthreshold

One of the main advantages of the RVM algorithm is the abil-
ity to estimate parameters and select the best representation of
the data in terms of the model order. This requires two ingredi-
ents: knowledge of the noise parameters and thresholding level
αthreshold, which is in general a function of the former. RVM has
a superiority of being able to estimate the noise parameters from
the data. Thus, assuming that the noise can be estimated we de-
vise the thresholding by analyzing the steady-state behavior of (7).
Based on this analysis we can infer that α−1

l ’s that correspond
to the noise rather than multipath component, α−1

noise, are coming
from a Gamma distribution G(α−1

noise|M, C). Values of M and C
are inferred by the analysis of the resulting steady state and by
means of Monte-Carlo simulations. It was found that the desired
distribution can be approximated with C = 4/medianl(α

−1
l )

and M = 1/2. Then, αthreshold is defined such that probability

I Lch τl,×10−7sec ωl

127 256 τl ∈ U(7.65, 15.3)
ωl = ejφ,

φ ∈ U(0, 2π)

Table 2: Parameter settings used in the Monte-Carlo simulations

P [α−1
noise < α−1

threshold] = ρ where ρ is a predefined probability of
αl corresponding to the noise rather than signal.

4. NUMERICAL EXAMPLES

The performance of the proposed algorithm is demonstrated with
simulated as well as measured channel impulse responses. The
channels are simulated as shown in Fig.1. An I-chip-long pseudo-
noise PN sequence is used to sound the channel with L multipath
components. It is assumed that the channel realization is corrupted
with complex zero-mean white Gaussian noise with spectral den-
sity σ2

η . The MF output is sampled with frequency Fs = 100MHz
that results in Lch samples with one sample-per-chip resolution.
The design matrix K is composed of the shifted autocorrelations
of the PN sequence as explained in Section 2, with initial hypoth-
esis H0 comprising all of the sampling instances.

The performance of the algorithm is evaluated versus Signal-
to-Noise Ratio (SNR) at the output of the MF, defined as:

SNRout = 10 log10

“IA2

σ2
η

”

, A2 =
1

L

X

l

ω2
l .

4.1. Simulated channels

In this subsection we present some multipath detection results for
synthetic channels performed with Monte-Carlo simulations. The
parameters involved in the simulations are specified in Table 2. We
denote U(a, b) to be a uniform distribution in the interval [a, b].
Initialization of the RVM algorithm consists in specifying initial
variance (σ2

η)[0] and hyperparameters α[0]. The components of the
α[0] all have identical values set to the inverse of the second non-
central moment of z[n]. The initial value of the input noise (σ2

η)[0]

has to be somehow known or measured. We also used ρ = 0.999
to compute αthreshold. In order to evaluate the performance of the
proposed scheme it is necessary to come up with an appropriate
quality criteria. There are in fact two types of errors the algorithm
can make: (a) insertion error– it erroneously detects a non-existing
component; (b) deletion error– it misses an existing component.
The situation when a component has been found exactly on its po-
sition is a hit. We use the number of hits, deletions and insertions
as the measure of the algorithm performance. Figure 2 shows the
obtained results versus different SNRout values. The presented re-
sults are averaged over 500 Monte-Carlo runs. It can be seen that
RVM algorithm is able to estimate the model order, provided the
SNRout is high enough. We will stress that the case shown repre-
sents the situation when the the design matrix contains the kernel
rl positioned at the simulated delay τl, which corresponds to the
discrete-time model (2) matching the measurement. Misalignment
will result in the increased number of components, and as the re-
sult, overall performance degradation. In fact the problem lies in
the nature of kernel-based models: the design matrix K acts as
a fixed alphabet used to reconstruct the MF output signal. If the
latter has a contribution not present in the alphabet, let us say a
multipath between sampling instances, it will be represented as a



linear combination of the kernels in K, thus leading to artefacts.
To amend this problem, it is necessary to re-design the matrix K

to higher resolution after one complete RVM cycle, thus allowing
any desired accuracy in the channel representation. Those investi-
gations are not shown here due to the space limitations.
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Fig. 2. Number of hits, deletiprobabilityons and insertions for a
channel with respectively one (a) and three (b) components.

4.2. Application of the RVM method to the measured data

The proposed RVM algorithm has been also applied to the mea-
surement data collected in indoor environments. Channel mea-
surements were done with the MIMO-capable channel sounder
PropSound manufactured by Elektrobit Oy. A single measurement
realization from one sub-channel has been selected to illustrate the
algorithm behavior. The channel sounding setup is equivalent to
the block-diagram shown in Fig. 1. The design matrix K was
constructed using the autocorrelation sequence obtained from cal-
ibration measurement. Components of α[0] are all set equal to
the inverse of the averaged power of the MF output signal. We
used tail of the IR to estimate the inital noise variance, which re-
sulted in σ2

η = 5.0 · 10−10 . Thresholding level αthreshold was
selected based on ρ = 0.999. The estimated channel impulse re-
sponse along with the original MF output signal are shown in Fig.
3. Usually it requires from 3 to 10 iterations for the algorithm to
converge. Visual inspection of the impulse response shows that
the algorithm is capable of selecting areas in the MF output signal
with significant power, i.e. where multipaths are likely to happen.

5. CONCLUSIONS

Relevance vector machine is a powerful kernel-based Bayesian
method that is used to find sparse solutions to general linear prob-
lems by applying evidence maximization approach. In this contri-
bution we have shown how the problem of channel estimation can
be posed as a general linear problem, which makes the applica-
tion of the RVMs possible. We have also developed modifications
of the original RVM algorithm that are specific for the analysis of
MF output signals in a pulse-compression-based channel sounder,
which altogether allow to estimate the number of multipaths as
well as channel parameters within the Bayesian framework.
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Fig. 3. Estimated channel impulse response and noise floor.

Proposed scheme performs well even when a single channel
snapshot is available, i.e., in situations when it is difficult to con-
struct a channel correlation matrix to use AIC/MDL based criteria.
We also found a way to approximate the distribution of the hy-
perparameters associated with noise contributions, thus allowing
to select a non-empirical thresholding based on a certain required
confidence level. However, this analysis has been done only for a
single channel snapshot. Similar analysis of the multiple channel
snapshots or multiple-antenna cases is still an open issue.

We have also applied the method to the analysis of synthetic as
well as measured impulse responses. The obtained results support
our conjecture that the method is quite promising and can lead to
the significant improvement of channel estimation.
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