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Abstract— Wireless systems are subject to fading - time variations of
the receiving conditions caused by multipath propagation ad transceiver
movements. Prediction of fading allows to ‘learn’ the chanel state
information (CSI) in advance and adjust the transmission sheme
as required based on the future values of CSI. In this contrilition
we propose a framework to handle predictions of general fastand
non-flat fading MIMO wireless channels. Unlike current approaches to
predict channels by feeding sampled channel impulse respea taps into
the predictor, we first estimate multipath parameters, suchas delay,
Doppler frequencies, DoD/DoA, and design predictors for tem. This
step decreases the rate of variation of the channel thus alng a
greater prediction horizon and simpler predictor designs.The extracted
parameters are then tracked over time and multipath gains ae predicted
using a linear model that is recursively updated. The predition scheme
is applied to the measured MIMO impulse responses to demonstte the
applicability of the method.

Keywords—fading  prediction,
parameter tracking.

channel parameter estimation,

. INTRODUCTION

Wireless systems are subject to fading - time variationshef t

receiving conditions caused by multipath propagation aadstceiver

As compared to the SISO case, multiple antenna systemsedeliv
much larger amounts of information with rich internal sture.
Not exploiting this information might be too wasteful. Senfading
results from the interaction between different multipatimponents,
it can be advantageous to try to estimate individual muttipaising
multiresolution techniques and treat each component asdividual
channel. For example, in the Single-Input-Multiple-Outg8IMO)
case, each multipath can be described by a multipath conyalex
a;, delay 7;, Doppler shifty;, and Direction of Arrival (DoA)¢;*.
This scheme can be generalized straight-forwardly to thiekband
MIMO, as well as SISO and MISO systems.

In practical channels not only power (i.e., multipath gaimst also
the other multipath parameters vary with time. This putsitamithl
constraints on the predictor design. Thus, in this study ddress
the following questions:

« Is multipath-oriented prediction of channels viable?

« How to track time-varying channel and predictor paraméters

« How far can we predict with these models?

In the following sections we will subsequently answer thgses-
tions. Due to the space limitation, we will consider only $M

movements. The received power undergoes deep fades withi
time-frame corresponding to one wave-length which, for picisi
communication system, amounts to movements on the cetim
scale. For efficient transmission, the communication systas to

THAnnels for prediction since the presented approach casasiéy
extended to other channel configurations. Throughout tke we
G{I\/ill demonstrate the performance of the proposed algostiom the

be able to mitigate fading effects. Should the current Ceh&tate
Information (CSI) be known in advance, the transceiver ¢aw-
allocate internal resources in a better way or alter thestrégsion
scheme in anticipation of the future conditions. This carabeom-
plished by predicting the CSI.

Fading mitigation by means of channel prediction has besstiet
and proved viable in a number of works [1]-[10]. These teghes
were used to aid power control and resource allocation [&],
downlink diversity and adaptive modulation [1], [9]. It isften
assumed that fading is a deterministic sinusoidal procegstine-
varying parameters that can be described using a discratesr
propagation model. The time-variation of the process patars can
then be modeled using linear (based on auto-regressivelsidég
[7] or nonlinear [3], [10] techniques. In the latter, the faars treat
fading as dynamical process, producing the observed chaaps
as the output. Predictions are then made by propagatingetvadd
models into the future. These methods were studied for Silmglut-
Single-Output (SISO) narrow-band [2], [4], [9], as well @8 fvide-
band channels [8]. In [6] it has been recently proposed tohioen
different channels in a smart-antenna system for predictib the
downlink received power. However, the authors only consithe
narrowband case. In this contribution we discuss our preiny
results on predicting the Multiple-Input-Multiple-OutpMIMO)
channels that undergo fast non-flat fading, i.e., the widdbzase.

measured MIMO channels obtained by Forschungszentrunkdrale
munikation Wien (FTW) in Vienna, Austria, under the supsion of
Helmut Hofstetter [11]. The measurements were done witivithéO
capable wideband vector channel sounder RUSK-ATM, maiwfad

by MEDAV [12]. The sounder was specifically adapted to opewsit
the center frequency dfGHz. The transmitted signal was generated
in the frequency domain to yield a predefined spectrum t28MHz
bandwidth with an approximately constant envelope oveetifiwo
simultaneously multiplexed antenna arrays have been usdhbea
transmitter and receiver. The transmitter was a uniforroutar array
with 15 sensors spaced at 6.45cm. The receiver was a fixed
uniform linear array, with8 sensors spaced half a wavelength apart,
A/2 = 7.5¢m. The measurements were performed outdoors, with the
transmitter array mounted on the roof of a building and treeiker
moving with a velocity of~ 1m/s. A MIMO channel shapshot
was recorded evergOmsec, thus resulting in a spatial resolution of
~ /7. For our purposes we will further select only a SIMO subset
by taking a single transmitting antenna from the TX array.

The following sections are organized as follows: In Sectibn
we introduce the multipath channel model we rely on; Sectlbn
introduces and explains the main steps in predictor desigul
finally, Section IV shows some application results for regasured

1For simplicity, we will not account for the polarization aredevation
angles.



frequencies;[n], DoAs ¢;[n], and multipath gains;[n], | =
w}\ 1...L, for L multipath components.
“ JJ « Parameter association: the obtained parameters shouldbthe
Sk

M associated with the corresponding multipath trajectdoanake

4 wﬂ ‘ W’M . the data tracks consistent over time.
I 8
[

« Predictor design and update: once the tracking has beeedsolv
the parameter estimates are then used to update the channel
predictor.

Below, we will provide a more detailed explanation of eachitafse
steps.

Receiving . .
0 antenna A. Parameter estimation
index Estimation of the multipath parametefs,, 7, v, ¢;} from the
measurement data has been extensively studied [13]. Theé mos
popular methodologies could be grouped into three maj@yceies:
spectral estimation (MUSIC), parametric subspace-baséthation
channels. (ESPRIT or unitary ESPRIT), and deterministic parametsiineation
(SAGE) [14]. The latter is more suited for our applicatioince
Il. CHANNEL MODEL SAGE allows to jointly find the ML estimates of the multipath
] ] ] ) parameters and can be extended, if needed, to estimate rothier
Let us assume that the receiver (Rx) is equipped with an Batenjnaih parameters, like polarization and Direction-ofpBeure in

SIMO channel |H|, linear scale

25
x 10 Delay, [sec]

35

Fig. 1. A single snapshot of a SIMO impulse response.

array consisting off” sensors located ato, ..., 7p-1 € RQ With  the MIMO case. For other methods the joint estimation might b
respect to an arbitrary refgrence point. The corresponeigvalent computationally more expensive as compared to the SAGE. Un-
baseband SIMO channel is modeled as fortunately, the iterative nature of the SAGE algorithm uiees a
L ()t good initialization. However, in sequential processindiew SIMO
hi(7) = Z‘“(t)c(d’l(t))ej TR (T = m(), (1) channels arrive one after another, SAGE can be initializeithgu
=1

estimates obtained at the previous steps. Due to spaceatiionis,
whereh.(7) € CF is a vectorized representation of the time-varyinghe basic steps of the SAGE algorithm are not presented heréhe
SIMO channel impulse response,(t) and 7;(¢) are the gain and interested reader will find a detailed algorithm descriptio [14].
delay of theith multipath component at the timg respectively. The crucial point in wireless channel parameter estimaisotine
The phase terre’ (¥ amounts for the phase-shift induced by th@wumber of multipath components. Generally, for real measure-
corresponding Doppler frequenay(t). The P-dimensional vector ments, the number of multipath components may vary with time
c(¢i(t)) is known as the steering vector of the array and, providethis presents a substantial difficulty not only for paramestimation
the coupling between the antenna sensors can be neglettisd, ialgorithms, but also for parameter tracking. The number afipaths

represented ae(¢i(t)) = [co(di(t)),...,cp—1(¢i(t))]", where can be estimated ‘on-line’, if desired, using informattbeoretic

¢(t) is the Direction-of-Arrival of thel-th multipath ray. The criteria [15]. Accommodation of this situation goes beyahd scope

components ot(¢,;(t)) are given as of the presented work. To account for it we will simply fixto a
. 1 number large enough to capture the most dominant waves.

cp(@1(t) = fp(Ar(t)) exp(j2mA ™ (e(du(t)), 7)) In Figure 2 we present the scatter plot of the estimated pathi

with X, e(¢:(t)), and f,(4:(t)) denoting the wavelength, the unitparameters for the time-varying SIMO channels. To genetiate
vector inR? pointing in the directionp,(¢), and the complex electric plot, a block of5 consecutive SIMO channel snapshots was used
field pattern of thepth sensor, respectively. Channel model (1) can @ estimate = 20 dominant multipath components with the
used as a basis for different channel parameter estimagjonitams. ~corresponding parameters. Assuming a velocitylofis the time-
However, eq. (1) cannot be applied directly to the measuesd.d axis in Fig. 2 has been re-scaled in wave-lengths to denaiastne
Practically, channel impulse responses (IR) are obtaisamgichan- Spatial channel variation.
nel sounding that produces sampled representations oftthenel ~ Unfortunately, parameter estimation algorithms do notvja® any
impulse responses and include the influence of the soundawhee. ordering information on how to associate the multipath congmts
Thus, post-processing is needed to estimate the chanrehpters at timen — 1 with those at timen. In order to be able to learn
from the measured data. An example of the measured SIMO gmputhe parameter dynamics for prediction purposes, it is mecgsto
response is shown in Fig.1. SIMO channels are then repexberst reconstruct this ordering, i.e., to associate the consecparameter
the consecutive snapshots of a complex maHijn] € C7*M n = estimates that correspond to the same physical multipatfponent
0...N —1, which is the sampled SIMO impulse response with row@ver time.
corresponding to the antenna sensors and columns to theﬂedharé_ Parameter tracking

taps.
In general, parameter tracking/association is not a tripiablem

I1l. CHANNEL PREDICTION since there is naa priory model that can be used to ease this
task. However, this model can be constructed iterativesy,ttee
We start by outlining our approach to channel predictiore BSiC  5gorithm proceeds. Indeed, the sought predictor is theewenodel
steps consist of: of the track dynamics. Our solution lies in coupling preidiat
« Parameter estimation: estimating the instantaneous vabfie with the dynamic programming techniques for searching thténal
the multipath parameters — multipath delaygn]|, Doppler parameter associations.
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Fig. 2. Scatter plot of the estimated parameters.

For tracking purposes it might be advantageous to considigr o
a subset of all the estimated multipath components. Theculiffi
in parameter tracking is that some tracks may cease to exisie
others are born. Instead of introducing the ‘death-birthbcess
to model these situations, we settle for such tracks thait mat
disappear within the observation window, or if they do, tlifea
on the predictor will be minimal. Basically, this would cespond

T e, >©
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Fig. 3. Possible track continuations féf = 2 and L = 3

Here C[n — 1] is the cost accumulated by tlh¢h track at the time
n—1,and0 < p < 1 is a forgetting factor. Now, let us define a

binary variablex; such that:

if m;[n] should be assigned th.[n]
otherwise

L,
0,

xkli{

Then, the optimal track selection should minimize the tatdliced
costZ:

K
argmin Z Z Z Cri[n)xr, SO that

Tkl k=1 1=1

L (2)
Zxklzl,kzl...K, and Ikl€{071}.
=1

Should we have just a single track, i.&,= 1, the optimal solution
could be found using the Viterbi algorithm. However, in oase
all of the K tracks have to be simultaneously associated with
candidates, which makes the problem more difficult. Prob(@n

to reconstructingk’ < L strongest multipath components, eacltan be solved using standard linear programming techniggees for

represented by a time-varying set of parameters

0x[n] = {T[n], vk[n], ox[n], ax[n]}, k=1... K.

example, [16]). In our experiments the cost functifin, -) is selected
as a weightetiEuclidean distance, however more sophisticated costs
can be imaged. In all the experiments the forgetting factas wet

Let us assume for the moment that the dynamics of each tracktdsy, = 0.995.

captured by a certain known deterministigpermodelH (), in a
sense that

Ok[n + 1] = Hk(ek[n],ak[n — 1], .. )

The term hypermodel is used to stress tl#&j,(-) encodes the
dynamics of the ‘underlying’ channel. Later we will show hdiis
model can be learned.

For tracking purposes not all of the multipath parametendgridmite
equally to deciding between several alternative track inaations.
Thus, only a subset of the available parameters, namelypatiitde-
lay, Doppler shift, and DoAmight be used. Letn;[n] € 8,[n], | =

C. Hypermodel learning and parameter prediction

In our case, the hypermodelEl, are used not only to make
predictions of the channel components, but also as a parhef t
data tracking/association scheme. This makes both vemgndiemt on
each other: proper parameter tracks are needed to leareahect’
hypermodel, and a correct hypermodel is needed to solve dte d
association problem. Since the data (multipath parameténates)
arrive sequentially, it makes sense to adopt Bayesian s&gle
methods for building predictors. The individual multipathmponents

1...L, and tg[n] € 6x[n],k = 1...K, denote a subset of gypposedly have simpler dynamics than the full SIMO charffeis

parameters (we will call them centers) that will be used facking,

i.e.tr[n] = {7x[n], vk[n], ¢x[n]} andm[n] = {nln], vi[n], ¢i[n]}.

Now, at the time instance: the estimation algorithm generates
new set of parameter®; [n]}~ ,. The hypermodel$d ;, can be then
used to generate predictiofs[n] = H(0x[n —1],0x[n—2],...)

for the K tracks of interest. The corresponding centsig[n] and
tx[n] € 6i[n] can be obtained by selecting the subsets of
corresponding parameter sets. Then the data associatiohecaast
as the standard Linear Programming problem. Consider tgghgn
Fig. 3. Each edge that connects two centgfs] andm;[n] induces

a cost
Craln] = f(tk[n], mi[n]) + uCrln — 1.

2In the SIMO case, multipath delay, Doppler shift and DoAyfudetermine
the multipath component, and thus should be used for trgcldithough the
multipath amplitude(gain) is also estimated, it does ndp tie distinguish
two different components.

predictors based on linear models can be sufficiently ateura
As our experiments show, the delays, Doppler frequencied, a
DHoAs trajectories can be well represented by simple loaaddr
trends. Amplitudes however vary much stronger, thus réggimore
elaborate models. We propose to use two different Kalmaerdilt
(KF) for parameters tracking and prediction for each tratke
trF‘orresponding filter structures are described below.

1) Tracking of the delay, Doppler frequency and DcPhe track-
ing of these parameters can be accomplished with a simpl@ethm
linear trend KF [17]. For a single track, the state-spaceasmtation
of this filter for the delay tracking is given as (we will skipet

3Since delay, Doppler and DoA components in the vector uguake
values that might differ by several orders of magnitude reppate weighting
is necessary to make sure that each component contributesdangly to the

computation of the cost.



subscript(-), to simplify the notations):

2,05 i oo e e e e e i prae - Tfaﬂkl
72[71 + 1] 1 1 %['I’L] + 5 [TL] § * . $ract§
= - —— [raci
vr[n + 1] 0 6-| |vr[n] T R o Track 4
N 3) & —— Track 5
_ T[n] 1.95 !‘H!ﬂ’l?’t"lK’Hﬂ‘h"if’ﬂf:’ﬂﬁ?‘t‘ihﬂf’t‘lf’ﬂﬂfhiﬁ’l‘ﬂ’l un‘nnnf 3
Tl =[1 0] L;T[n]] +erln] 4 5 6 7 8 9 10 11 12 13
I .
In (3), 7[n] is the smoothed estimate of the multipath defdy] g - ;:gt;f
and v-[n] is the slope of the linear trend. The coefficient < 1 % —— Track 3
is a damping factor of the trend extrapolator. It is has bewws 5 ke
[17] that for ani-step ahead predictor based on the information up & VAR
to the moment of timen, (3) will converge to the valué = 7[n] + ° 21
vr[n]/(1—6;) asi — oo. Equations (3) can be easily augmented to —— Track1
include the Doppler frequency and the DoA components inrorale & T Jracka
. . 3 P
allow simultaneous tracking of the componentstgfin]. < ¢ Jrackd
Although our model is assumed to be deterministic, the &ctua © T -

observations are not since in reality multipath parametarsiot be 12 13
estimated with zero variance. Since parameter estimatesded by
SAGE are unbiased and consistent [14], the disturbaagleg can
be thought as white Gaussian estimation noise. State §oisg is

chosen to be close to zero since we assume a deterministielmod

for the parameter variation. estimated and< = 5 strongest components were followed over time.
2) Tracking amplitudesin power prediction we are mostly inter- Figure 4 shows the reconstructed tracks for a time-varyington

ested in accurately predicting the evolution of the amg#&isince \yhen the mobile moves over a distance=afl0 wavelength& For

they capture how much power a multipath component posselssesy, gy, predictors the filter order was s@t= 3 samples.

order to achieve this goal more complicated predictorseugaired. In In order to evaluate the prediction performance, we intcedthe

this paper, we will utilize an adaptive linear predictorfiefollowing  notion of thenaive predictor If our RLS- or EKF-learned predictor

form: is based on (4), the naive predictor in both cases assumeés tha
ar[n + L] = ax[n], i.e., this is a predictor of orde) = 0 that
makes predictions by simply keeping the last estimatec stalue

in case of EKF-learned, or last seen value in case of RL$wehr
where £ > 1 is the prediction horizon, and > 0 is the order of predictor, respectively. The naive and true learned ptediccan be

the predictor. We also definask[n] = [ak[n],...,ax[n —Q+1]]"  compared by analyzing the corresponding prediction eerqs.[n],

and w[n] = [wo[n],...,wg-1[n]]". Estimation of the predictor e,.[n], ande.x[n]. Using these prediction errors, we can define the
coefficientswy[n] can be done using standard adaptive algorithmwediction gain (PG)Gprea as follows

Here we propose to use two adaptive schemes to learn thectmedi 9

coefficients. The first one is based on the standard Reculsisst Gf}'}eﬁ = 101log;, (Gt;‘le),
Squares (RLS) algorithm [18]. The second one, similarly he t

Distance, wavelength A

Fig. 4. Tree reconstructed tracks.

Q-1
akln+ L] = Z wi[n)ax[n — i) = win]" ax[n)

=0

(4)

tracking of the delays and the other parameters, utilizes KF

framework. ForL = 1 we can represent the predictor in state-space

form as follows:

B R [T
ag[n] = [1 0] {Z]Z%] + [n].

This formulation is also known as the Joint Extended Kalméier
(EKF). It can be seen that it forms a bilinear state-spacessgmtation
and this necessitates the usage of the EKF (see [19, sea. Bidie
details on Joint EKFs). Similarly to (3}x[n] plays the role of the
observation noise and state noigg[n] is set close to zero.

The substantial distinction between these two approachéisai
RLS-learned predictor is trained for a particular predicthorizon
L, while in case of the EKF-learned predictor the forecastLfo- 1
are obtained by recursive application of (B)times.

IV. SOME PREDICTION RESULTS FOR MEASURED CHANNELS

GoRE = 10log,, (i;“),

ekf
)

whereoZ,,. is the variance of the true signal that is to be predicted,
ando?,;.., 02, ando?; are the variance of the prediction error for
the naive, RLS-, and EKF-learned predictors, respectilelshould

be noted, that the prediction error is generally non-gstatip due

to the possible non-stationary behavior of the reconsrlittacks.
This would make the prediction error to be good for some segsne
but worse if the predictor has to re-learn the data. To accodate
this situation we segment the error signals into chunksvetgrit to

~ 4X and compute (6) for each individual segment. The obtained
results are then averaged over the whole data sequencegureFs
one can see the performance of the proposed predictorsfferedit
prediction horizons. We plotted the PG's for the strongesttipath
component, as well as those averaged over the other comgonen
It can be seen that with the RLS-learned predictor it is fxesi

(6)

NAIVE
Gprcd =

2
101log;, (::;ﬁ

naive

Now, we have all the ingredients to perform prediction of théo achieve prediction horizons with positive predictioningaup to
measured data. Assuming the data has been sampled at thestNy@A. As compared to [6] where the achievable prediction hoszon

rate, we upsample the obtained channels by the factds. dfhis
is done to ease the parameter association/tracking stegn, Tor

each block of5 SIMO channel snapshoté, = 20 parameters were

of =~ 1.6\ were reported for the simulated data, ak@0 for the

4The distance ofl0\ corresponds to the physical distancelgfm



8 — RLS - stongest comp. more elaborate comparison with other methods in terms ofative
o ﬁéﬁe;fffas?%dngest comp. predictor complexity is still needed. The proposed metramdaiso be
er —o- Naive,, _ - averaged i extended to wideband MIMO, as well as SISO and MISO channels,
- EEE:;IVOe“rgZZIdCmeP» and it can be used not only to predict the power variationshef t
ara Nalver,; - strongest comp. |1 multipath components, but also to predict the full struetof the
2 . a Navege - averaged impulse response. This substantially widens the applitatif the
-og 2f 3:‘ 1 proposed algorithm.
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