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Abstract— This paper introduces a novel wireless channel
clustering technique based on the Saleh-Valenzuela channel
model. The impulse response is regarded as a single realization
of the statistical channel model based on which the prior density
functions of cluster arrival times are derived. Cluster analysis
is done by means of extending the original Saleh-Valenzuela
model by allowing different cluster arrival rates. It is shown that
the estimation of cluster arrival rates is essentially equivalent
to clustering the impulse response and estimating the expected
cluster centers. Having defined the clusters, other parameters
of the Saleh-Valenzuela model can be estimated from a single
realization. The proposed method has been applied to simulated
as well as measured channel impulse responses.

I. INTRODUCTION

Wireless systems are subject to fading - time variations
of the receiving conditions caused by multipath propagation
and transceiver movements. A wireless channel contains all
the information about the propagation environment, and, in
general, the receiving side should be aware of the channel.
Due to the fading nature of the wireless channel, it is imper-
ative for the system to follow the variations of the receiving
conditions along time to adapt itself and sustain reasonable
communication quality.

Generally, the wireless channel consists of a series of atten-
uated, time-delayed, phase shifted replicas of the transmitted
signal. In the baseband this will be represented as follows:

ht(τ) =

N−1
∑

i=0

βi(t, τ) exp (jθi(t, τ))δ(τ − τi(t)) (1)

where βi(t, τ) and τi(t) are the real amplitudes and ex-
cess delays of the ith multipath component at the time t,
respectively (see, for example, [1], ch. 4). The phase term
θi(t, τ) lumps together all the mechanisms for phase shifts
of a single multipath component within the ith excess delay
bin. Equation (1) is a starting point for further analysis.
The straight-forward procedure to follow the channel is to
follow each of the contributing reflections. Obviously, it is
a hard task to accomplish, since the number of contributions
could be significant, but if successful, it will provide quite
a precise instantaneous description of the channel dynamics.
Although it is computationally impractical to follow all of the
contributing paths, it is still possible to follow at least several
strong ones [2], [3]. Alternatively, a number of statistical

models provide probability density functions (PDFs) for the
parameters of interest [4], [5], thus giving a probabilistic
description of the channel behavior. However, for on-line
operation the communication system has to know the in-
stantaneous parameter values. It would seem beneficial to
join both ideologies and devise a method to extract some
information from the instantaneous impulse response based
on the probabilistic model of the channel. This could be
accomplished if the channel impulse response is regarded as a
sample realization of the corresponding probabilistic model.
We can think of the instantaneous channel parameters as
of samples from the corresponding distributions. Among a
number of different statistical models, the Saleh-Valenzuela
(S.-V.) channel model[6] has attracted our attention because
it provides a very promising framework for implementing
these ideas. The basic idea behind the S.-V. model is based
on the assumption that rays arrive in clusters. The clusters
arrive with a certain rate at random time instances, as well
as the individual rays within each cluster. Such a structure
imposed on the impulse response provides, first of all, a basis
for hierarchical analysis (i.e., from the impulse response to
clusters and rays), as well as physical interpretation of the
clusters and model parameters. Although the S.-V. model was
initially developed for indoor channels, the same ideas could
still be valid for outdoor communications with wideband and
directional systems [7]. We show how the cluster arrival rate
could be learned from the instantaneous impulse response, as
well as how the clusters can be identified.

The rest of the paper is organized as follows: Section II
describes the parameter estimation algorithm and clustering
procedure, along with some practical considerations; Section
III shows the application of the proposed clustering algorithm
to simulated channels; and Section IV provides some results of
algorithm application to measured channel impulse responses.

II. CLUSTER ANALYSIS ALGORITHM

A. General description of the Saleh-Valenzuela model

The basic idea of the S.-V. model is easily understood from
considering the impulse response in Fig. 1. The model assumes
rays arriving in clusters. The time between cluster arrivals
is random and distributed exponentially with a parameter Λ.
Likewise, within the cluster the time between successive ray



arrivals is also exponentially distributed with a parameter λ,
λ >> Λ:

p(Tl|Tl−1) = Λ exp [−Λ(Tl − Tl−1)]

p(τk,l|τk−1,l) = λ exp [−λ(τk,l − τk−1,l)]
(2)

Here, Tl is the arrival time of the lth cluster, given the
previous arrival at Tl−1, Tl ≥ Tl−1. Likewise, τk,l is the arrival
time of the kth ray within the lth cluster, given the preceding
ray at τk−1,l, τk,l ≥ τk−1,l.
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Fig. 1. A channel impulse response with clusters.

The power gain β2
k,l is assumed by the model to be inde-

pendent of the associated delays and distributed exponentially:

p(β2
k,l) =

(

β2
k,l

)

−1

exp (−β2
k,l/β2

k,l)

where the expected power gain β2
k,l is a function of the delay

τ :

β2
k,l = β2

0,0 exp

(

−Tl

Γ

)

exp

(

−τk,l − τ0,l

γ

)

Here, β2
0,0 is the expected power gain of the first ray in the

first cluster. Γ and γ are power-delay time constants for the
clusters and rays, respectively (see Fig. 1).

Next, we formulate the clustering algorithm.

B. PDFs for cluster arrival times

Let us consider a snapshot of the time-varying channel
impulse response ht(τ), for example, the one shown in Fig.
1. We will drop explicitly the time dependency for notation
simplicity and write h(τ) only. We can think of this impulse
response as a single realization of the S.-V. model.

Let us assume, that this particular realization has L clusters,
arriving at unknown times Tl, l = 0, 1, . . . L− 1. Without any
loss of generality, let us also assume that T0 ≡ 0, i.e., the
first cluster arrives at the moment τ = 0. Defining the time
between consecutive cluster arrivals as ∆Tl = Tl − Tl−1, the
positions of the clusters are given as:

Tl =

l
∑

m=1

∆Tm (3)

From the original model it follows that the interarrival times
∆Tm’s are statistically independent random variables. This

leads to the derivation of the PDFs pl(T ) of the corresponding
cluster arrival times. Indeed, from (3) it follows that pl(T ) is a
convolution of l exponential distributions. It can be shown that
pl(T ) is a chi-square distribution with 2l degrees of freedom.

pl(T ) =
Λl

(l − 1)!
T l−1 exp (−ΛT ) (4)

Expression (4) could be used differently. On the one hand,
let us say when l = 1, p1(T ) is the PDF of the second cluster
arrival time. However, the same function could also be used as
a likelihood function of an arbitrary time instance τ belonging
to the first cluster. Indeed, p1(τ) decays exponentially with its
maximum at zero, since by definition the first cluster starts at
τ = 0.

Unlike the original formulation (2), expression (4) is not
conditioned on any of the previous arrival instances and, in
this sense, it is a prior distribution of cluster arrival times. This
property makes it useful in the proposed clustering algorithm.

C. Parameter estimation and clustering

Now, when we have the prior distribution functions for clus-
ter arrival times, we can begin with the clustering algorithm.
We will make the following assumptions:

1) The samples come from a known number of L clusters.
2) The channel impulse response h(τ) is defined on a

finite ordered set D = {τ0, τ1, . . . , τN−1} of time
instances where the pulses were registered in the impulse
response. Thus, Tl ∈ D and τk,l ∈ D, ∀k, l

3) We extend the original model by assuming different
Λl for each cluster. In our approach each Λl uniquely
specifies the position of the corresponding cluster in a
nonstationary environment.

For a given impulse response, the time instance τj could
possibly belong to any of the L clusters. Mathematically
speaking, it belongs to a mixture of L density functions:

p(τj |Λ) =

L
∑

l=1

p(τj |Λl, ωl)p(ωl)

p(τj |Λl, ωl) =
Λl

l

(l − 1)!
τ l−1
j exp (−Λlτj)

(5)

Here, p(ωl)’s are the prior probabilities for each of the
clusters, ωl ≡ l is a cluster index, and p(τj |Λl, ωl) is a
likelihood of the τj belonging to the lth cluster.

Our basic goal is to estimate the unknown parameters Λl

that determine the density functions. Once they are known,
we can decompose the mixture into components and use a
maximum a posteriori classifier [8] on the derived densities
to classify all the τj’s.

The class of Expectation-Maximization (EM) algorithms
allows one to effectively learn mixture parameters, given
the statistical structure of the problem, data realizations, and
good initialization values. The description and properties of
these algorithms could be found in a number of sources (see,
for instance, [9], [8]). There is a slight modification to the



parameter re-estimation formulas that accounts for the non-
normal form of the observation distribution p(τj |Λl, ωl).

Once the parameters are learned, the pl(τ) can be used to
optimally (in the maximum likelihood sense) cluster the taps
of the impulse response. The derived PDFs also allow one to
estimate the expected cluster arrival time, i.e.,

τ·,l = E{τ |l} =

∫

∞

0

τp(τ |Λl, ωl)dτ = l/Λl (6)

D. Practical considerations

The practical implementation of the algorithm is quite
straight-forward except for some particularities.

The distributions in the form (4) are very wide, meaning
there is a significant uncertainty in classifying the points,
especially belonging to the late clusters. To amend this,
we regularize the classification algorithm by introducing an
additional weighting function w(τ |µl, αl) used as a window
to taper the original density p(τ |Λl, ωl):

w(τ |µl, αl) =
1

αl

√
2π

exp(−0.5(τ − µl)
2/α2

l )

Assuming functional independence of the window parameters
µl and αl from Λl, the former can be easily estimated from the
data within the same EM framework by setting the derivatives
of the likelihood function with respect to µl and αl to zero.

The sparseness of the impulse response is crucial, since
a uniform sequence of instances τj does not form clusters.
Sparseness can be enforced by thresholding channel coeffi-
cients with power gains smaller than the noise level and then
selecting local maxima.

Due to the iterative nature of the algorithm, the choice of
the initial values is an important step. In our implementation
the initial values were set as follows:

p(ωl) = 1/L, Λ̃
(0)
l = l

/

maxj (τj)

L + 1
, l = 1, 2, . . . , L

i.e., uniformly in probability and time.

III. SIMULATION RESULTS

To test the algorithm we generate an impulse response
according to the original S.-V. model (Fig. 2). The parameters
used in the simulation are summarized in Table I.

L = 4; Λ = 5.7 · 106, [sec−1] λ = 1.0 · 108 , [sec−1]
1/Γ = 3.0 · 106, [sec−1] 1/γ = 1.0 · 107, [sec−1]

β2

0,0 = 5.0 · 10−8, [W] noise floor = 1.0 · 10−9, [W]

TABLE I

PARAMETERS USED IN THE SIMULATION.

This example shows the case when the 1st and 2nd clusters
are strongly overlapping, the 3rd cluster only partially overlaps
with the two previous ones, and cluster 4 is clearly distant from
the preceding neighbors. By comparing the expected cluster
arrival times τ·,l, computed as in (6), with the true values,
we can judge the performance of the clustering algorithm. It

Cluster index, l 1 2 3 4
True τ

·,l × 10−6 ,[sec] 0.15 0.23 0.45 0.81
Estimated τ

·,l × 10−6,[sec] 0.07 0.20 0.44 0.81

Estimated Λ̃l × 106, [sec−1] 17.7 10.0 6.8 4.9

TABLE II

COMPARISON OF TRUE AND ESTIMATED EXPECTATIONS OF CLUSTER

ARRIVAL TIMES FOR THE CHANNEL SHOWN IN FIG.2.
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Fig. 2. Impulse response with overlapping clusters.

should be noted that the comparison based on time of arrivals
Tl is equivalent to comparing τ·,l’s.

The cluster positions are indicated by vertical lines.
Triangle-headed lines show estimated cluster arrival times; the
ones with squares show the true positions. The corresponding
values are summarized in Table II. We can see that the
algorithm fails to properly distinguish strongly overlapping
clusters, however the estimated arrival time of the 4th cluster
is very close to the true one. We can also compute an empirical
cluster arrival rate Λemp as an average of the Λ̃l ( excluding
the Λ̃1 since the arrival rate is measured with respect to the
first cluster). In this simulation Λemp = 7.2 · 106 sec−1, i.e. it
is overestimated.

IV. APPLICATION OF THE CLUSTERING ALGORITHM TO

THE MEASURED CHANNEL IMPULSE RESPONSES

This section presents some results of the clustering algo-
rithm application to channel impulse responses obtained from
the field-trial Multiple-Input-Multiple-Output (MIMO) chan-
nel measurements, performed by Forschungszentrum Telekom-
munikation Wien, FTW, Vienna, Austria, under the supervision
of Helmut Hofstetter1[10]. For our purposes we select only
a Single-Input-Single-Output (SISO) subset by taking one
transmitting and one receiving antenna from the array.

Fig.3 shows consecutive measurements of the channel im-
pulse response as the transmitter moves. The channel snapshot

1The authors wish to thank Forschungszentrum Telekommunikation Wien
for providing MIMO channel measurements data.



was taken every 20msec while the transmitter was moving at
≈ 1m/s. This particular example shows a subset from 2000
consecutive channel snapshots which is equivalent to 40sec of
measurements. From this picture one can clearly see several
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Fig. 3. Measured channel impulse response (non-stationary behavior).
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Fig. 4. Expected arrival time tracks of four clusters with superimposed linear
regression lines.

prominent stripes. It is reasonable to assume that the clusters
are formed in the neighborhood of these peaks. Under the
assumption of four clusters we run the clustering algorithm
on every 5th channel snapshot from the measurement data. On
each step, the clustering algorithm was initialized with param-
eters estimated on the preceding snapshot. The corresponding
results are shown in Fig.4.

The scatter plots show instantaneous values of the expected
cluster arrival times. From considering Fig.3, it is clear that
we are dealing with a non-stationary channel, since clusters
change their relative positions. From visual inspection of the
impulse response evolution, we conclude that the clusters
move on straight lines. This allows us to fit a linear regression
to these estimates in order to have a clearer picture of the
cluster dynamics.

In general, the obtained estimates are unbiased due to the
property of Maximum Likelihood estimators. However, the
variance of the estimates strongly depends on the number of
available impulses used to compute the parameters. Due to
the thresholding and peak-peaking, required to obtain a sparse
representation, this number is not very high, thus leading to
the increased variance. Therefore, it might be advantageous to
filter the estimates by a narrow low-pass filter to decrease the
variance.

V. CONCLUSION

Clustering the channel impulse responses could be an in-
teresting approach to extract important channel parameters.
Based initially on the S.-V. channel model, the expressions for
the PDFs of the cluster arrival times are derived. The latter turn
out to be chi-square distribution with 2l degrees of freedom,
with l being the cluster index starting from 1. These could
be thought of as prior distributions over cluster arrival times.
The classical Maximum Likelihood approach is used to learn
the parameters of the distributions and classify the taps in
the impulse response. By exploiting the property of the chi-
square distributions the expected time of cluster arrivals can be
effectively computed. This value can then used as the cluster
center.

To fully exploit this approach, the stationarity restriction
has been relaxed, i.e., an independent parameter for each
distribution has been used. This allows a better adaptation of
the clustering algorithm to the non-stationary scenarios.

The algorithm has been applied to simulated, as well as
to real data and, in both cases, it has shown reasonable
performance.
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