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Abstract. The presented work addresses application of the evidence procedure to the field of
signal processing where ill-posed estimation problems are frequently encountered. We base our
analysis on the Relevance Vector Machines (RVM) technique originally proposed by M. Tipping. It
effectively locally maximizes the evidence integral for linear kernel-based models. We extend the
RVM technique by considering correlated additive Gaussian observation noise and complex-valued
signals. We also show that grouping model parameters ~w, such that a single hyperparameter αk
controls the kth cluster can be very effective in practice. In particular, it allows to cluster parameters
~w’s according to their potential relevance which in turns leads to highly improved generalization
performance of the therewith parametrized models.

The developed scheme is then illustratively applied to the problem of nonlinear system identifi-
cation based on a discrete-time Volterra model. Similar ideas are used to analyze wireless channels
from the channel measurement data. Results for synthetic as well as real-world data are presented.

1. INTRODUCTION

Many problems in signal processing deal with linear signal expansions. Its simplicity
and analytical tractability make them very attractive for modeling purposes. Generally,
such an expansion can be represented in vector form as

~y = ~K~w +~ξ , (1)

where the vector ~y is obtained by stacking sampled values into a vector,
~y = [y[0],y[1], . . .,y[N − 1]]T . The matrix ~K, also known as kernel matrix, contains
L basis functions (kernels) ~κl = [κl[0], . . . ,κl[N − 1]]T , such that ~K = [~κ0,~κ1, . . . ,~κL],
where ~κ0 ≡ 1. The weight vector ~w = [w0, . . . ,wL]

T accumulates all individual kernel
weights. The signal~y is usually observed in the presence of some noise process ~ξ . It is
often convenient to assume it to be zero mean with a covariance matrix ~Ξ. The form and
properties of the set of basis functions determine the properties of the whole expansion.
In particular, as a universal approximator, κl[n] could be a radial basis function, or
delayed samples of the impulse response, if (1) represents a linear convolution.

Inverse problem usually requires estimation of the parameter vector ~w given the
observations ~y, which is in many cases a nontrivial task especially if the number of
parameters involved is very high or if it is known a priori that the solution is sparse.



Examples are wireless multipath channels that can be represented by sparse models[1].
Measured channels, however, contain discrete multipath components that are always
obscures by noise. Another example is identification of the Volterra kernels: due to the
large number of parameters involved, direct solution using the pseudo-inverse is often
impractical.

The evidence procedure[2] supplied with the automatic relevance determination
(ARD) principle [3] is a Bayesian tool that offers a flexible way of solving inverse
problems along with providing very compact representation of the data. In this paper we
consider a special case of the evidence procedure, known as Relevance Vector Machines
(RVM) and some extension thereof. This technique was first introduced by Tipping [4],
and was originally proposed for regression and classification tasks.

However, straightforward application of the RVM to signal processing problems is
not always possible since some of its basic assumptions are often violated. In particular,
analysis of bandpass representations of wireless channels requires complex signals and
the additive noise present in the measured data may also not be white. In addition, often
several realizations of the measured signal are available, and it is desirable to somehow
incorporate this knowledge in the RVM framework. In many applications the parameter
vector ~w has some physical interpretation by which the parameters could be split into
groups and controlled by a single hyperparameter. These requirements have motivated
the extensions presented here.

For the ease of understanding the paper we have organized it as follows: Section 2
presents the modifications arising when the additive noise is no longer white and how to
estimate the noise covariance matrix using the evidence procedure. Section 3 introduces
model parameter clustering, and, finally, Section 4 shows some application results.

2. COMPLEX RVM WITH COLORED NOISE

In this section we will present modifications of the original RVM scheme arising when
the data involved is complex and additive noise process is correlated. For the more
detailed treatment of the standard RVM algorithm the interested reader is encouraged
to read the original paper [4].

Estimating the parameters of interest consists in considering the likelihood function

p(~y|~w,~Ξ) = N (~y|~K~µ ,~Ξ) =
1

(π|~Ξ|)N
exp

{

− (~y− ~K~w)H~Ξ−1(~y− ~K~w)

}

. (2)

Each model weight is controlled by means of a single evidence parameter α and it
is described by the conditional normal density i.e., p(~w|~A) ∼ N (~w|0,~A−1), where ~A =
diag{α0, . . . ,αL}. Estimation of the αl given the observations is the heart of the evidence
procedure. The weight prior is in turn controlled by the corresponding hyperparameters.
The hyperprior over the parameters ~α is defined in the form of the Gamma distribution

p(~α|a,b) =
L

∏
l=0

G (αl|a,b) =
L

∏
l=0

ba

Γ(a)
αa−1

l exp(−bαl). (3)



A similar hierarchy is build to describe the additive noise process ξ [n]. We will assume
it to be stationary Gaussian process, with zero mean and covariance matrix ~Ξ. From the
conceptual standpoint this should not cause any difficulties, unless we want to estimate
the matrix ~Ξ from the data. Optimizing with respect to the general Toeplitz matrix can
be a difficult task. To ease the optimization, we restrict the search to circulant matrices
~Ξ ∈ C

N×N that can be diagonalized in the following form

~Ξ = ~U~Λ~UH,~Λ = diag{λ1,λ2, . . . ,λN} (4)

where ~U is the discrete Fourier transform (DFT) matrix [5]. Matrix ~U is scaled properly
to make sure it is unitary. Just as in case of ~α we specify the probabilistic structure for
each eigenvalue λi. We will introduce ~B = ~Ξ−1, such that βi = λ−1

i , i = 1, . . . ,N, with
each βi being Gamma-distributed just as in (3), i.e., p(βi|c,d) ∼ G (βi|c,d).

The hyperpriors over ~α and βi can be made non-informative, i.e., uniform by setting
a,b, c, and d to very small values. Setting these values to zero will result in uniform
hyperpriors (over the logarithmic scale), which makes them independent of scaling of
variables involved in the processing.

RVM learning is the search for the hyperparameter posterior mode [4], i.e. maximiza-
tion of p(~α,~Ξ|~y) ∝ p(~y|~α,~Ξ)p(~α)p(~Ξ). Unfortunately, the maximizing values can not
be found in the closed form and iterative approaches are needed to solve the optimization
task. If some good initial values of the hyperparameters ~α [0] and~Ξ[0] are known then the
parameters of the posterior distribution over the weights p(~w|~y,~α,~Ξ) ∼ N (~w|~µ,~Σ) can
be computed as follows:

~Σ[i] = (~A[i] + ~KH~B[i]~K)−1, ~B[i] = (~Ξ[i])−1 (5)

and
~µ [i] =~Σ[i]~KH~B[i]~y (6)

Having computed the former, the hyperparameters are updated as follows:

α [i+1]
l =

1+a

Σ[i]
ll + |µ [i]

l |2 +b
(7)

(λn)
[i+1] =

(~y− ~K~µ [i])H~U~Enn~UH(~y− ~K~µ [i])+Tr[~KH~U~Enn~UH~K~Σ[i]]+d
1+ c

, (8)

where the matrix ~Enn is a matrix whose nnth element is 1 and all other elements are zero.
Expression (5)-(8) are iterated until a certain convergence criterion is met.

3. PARAMETER CLUSTERING

In this section we present a promising extension of the RVM technique that involves
parameter clustering or grouping. It turns out to be very effective if a group of parameters
is controlled by a single hyperparameter αl. A simple consequence of this approach is



the reduced number of computations since fewer hyperparameters are to be estimated.
It should be noted that such clustering is highly problem-dependent and should be
constructed with respect to the specific problem in mind.

We will assume that L model parameters wl , l = 1, . . . ,L are clustered according
to a certain rule into R disjoint sets Sr, r = 1, . . . ,R, and R < L. As it has been al-
ready mentioned, learning RVM is equivalent to maximizing the evidence p(~α,~Ξ|~y) ∝
p(~y|~α,~Ξ)p(~α)p(~Ξ). When maximizing p(~α,~Ξ|~y) the derivative with respect to the pa-
rameters of interest is taken. Since the number of hyperparameters αr is now less than
the number of the data samples, some entries in the matrix ~A ∈ RN×N will contain the
repeating hyperparameters, which will result in the corresponding modification of ex-
pression (7):

α [i+1]
r =

|Sr|+a

∑ j∈Sr

(

|µ [i]
j |

2 +Σ[i]
j j

)

+b

(9)

3.1. Parameter clustering in case of multiple observations.

Weight grouping could also be used to accommodate several signal observations.
Consider a situation when the signal from, let us say, a sensor has been observed M
times. We will assume the noise for different realizations to have the same mean and
covariance matrix, and to be statistically independent. To accommodate this case in the
RVM framework we redefine the vector form of the problem as follows:

~̃Ξ =






~Ξ
. . .

~Ξ






︸ ︷︷ ︸

M times

, ~̃A =






~A
. . .

~A






︸ ︷︷ ︸

M times

, ~̃K =






~K
. . .

~K






︸ ︷︷ ︸

M times

~̃y =





~y1
...

~yM



 , ~̃w =





~w1
...

~wM





(10)

Although, at first glance it seems that we simply split the problem into M independent
RVMs this not so. The number of hyperparameters αl remains the same and independent
of the M. Moreover such a setup is equivalent to grouping the weights ~w along the
snapshots. Also the covariance matrix~Ξ is shared by all the snapshots, which is a sort of
’noise clustering’. This simple representation results in basically the same re-estimation
equation of the evidence parameters αl:

α [i+1]
l =

M +a

∑M−1
m=0

(

Σ[i]
ll + |µ [i]

m,l |
2

)

+b

, (11)



which is a special form of (9) with parameter grouping along snapshots, and

(λn)
[i+1] =

1
M + c

(
M−1

∑
m=0

(~ym− ~K~µ [i]
m )H~U~Enn~U

H(~ym− ~K~µ [i]
m )+

+
M−1

∑
m=0

Tr[~KH~U~Enn~U
H~K~Σ[i]]+d

)

.

(12)

The latter is a rewritten form of (8) resulting from the special block-diagonal structure
of the matrices (10) involved. Equations (5) and (6) are modified accordingly:

~Σ[i+1] = (~A[i+1] + ~KH~B[i+1]~K)−1, (13)

~µ [i+1]
m =~Σ[i+1]~KH~B[i+1]~ym (14)

It can be seen, that the estimation of the noise covariance in case of multiple obser-
vations is equivalent to power spectral density estimation, when the matrix ~U is chosen

to be the DFT matrix. Terms (~ym − ~K~µ [i]
m ) are noise estimates for each signal snapshot

transformed in the Fourier domain by the projection onto the column-space of the ~U .
In fact, the estimated eigenvalues in (12) are the resulting powers of the corresponding
eigenvectors after the projection. Matrix ~Enn simply selects the proper frequency bin (or
the corresponding complex exponential) that results in the estimation of the nth eigen-
value.

4. APPLICATIONS

4.1. Nonlinear System Identification

This section considers the problem of finding a discrete-time model V for the sampled
input-output (i/o) characteristic of a forced ordinary differential equation. A general
system identification setup is depicted in Fig. 1. The applied model structure is the
doubly truncated discrete-time Volterra series [6]

z[n] = (Vu)[n] = h0 +
P

∑
p=1

Qp

∑
q1=0

· · ·
Qp

∑
qp=0

hp[q1, . . . ,qp]u[n−q1] · · ·u[n−qp], (15)

denoted as Volterra model V subsequently. In this setup system identification is the
estimation of the multivariate Volterra kernels hp[q1, . . . ,qp] from the observation of i/o
data samples {u[n],y[n]}. The problem belongs to the class of inverse problems, which
leads to ill-posed estimation. Thus, to obtain robust estimates ~µ of the model parameters

~w = [h0,h1[0], . . . ,h1[Q1],h2[0,0], . . . ,h2[Q2,Q2], . . . ,hp[Qp, . . . ,Qp] ]
T

the obviously linear estimation problem needs to be regularized. Furthermore, (15) in-
dicates that the computational complexity of the Volterra model increases dramatically
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FIGURE 1. Basic system identification setup applied in this work.

with the memory length Qp and the order of nonlinearity P. Subset selection algorithms
could be applied to regulate the model complexity. Fortunately, ARD performs regu-
larization as well the subset selection and it is applied with the above introduced ex-
tensions of parameter clustering to this identification problem. In contrast to standard
regression the model parameter wk allow some physical interpretation. Roughly speak-
ing, if the continuous-time nonlinear system is global asymptotically stable the kernels
hp[q1, . . . ,qp] decay to zero for increasing index qk with k = 1, . . . , p. Thus, it is reason-
able to assume that kernels that are close in the index space~q∈Zp with~q = [q1, . . . ,qp]

T ,
do have similar relevance for the model performance. The idea of clustering is that such
a group of parameters is now controlled by a single relevance parameter αk.

In the following, the parameter clustering is applied to the identification of a simple
nonlinear system. The system is governed by

ẋ1 = a1x1 +bu

ẋ2 = a2x2 +dx1u

r = cx2 with ~x(0) =~0,

which corresponds to a second order homogeneous bilinear system[7]. Thus, its discrete-
time model consists of a second order homogeneous Volterra model characterized by
the kernel h2[q1,q2]. As excitation signal a superposition of 512 sinusoids at different
frequencies are applied. The identification of the system is performed in the presence of
an additive white Gaussian perturbation with a signal-to-noise-ratio of 40dB. Results of
the identification in terms of mean-square generalization error and model complexity can
be found in Figure 2. The results indicate that the method with clustering shows a more
robust generalization performance than the method with no clustering or the application
of the pseudo-inverse.

4.2. Detecting multipath components in measured wireless channel

Estimation of the wireless channel is in some sense similar to the problem of system
identification describe above with the distinction that the channel itself is linear. The
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FIGURE 2. Mean-square generalization error (left) and model complexity (right) versus different mem-
ory lengths of the discrete-time Volterra system; pseudo-inverse (circle), automatic relevance determina-
tion with no clustering (square), with clustering (star).

sparse nature of the channel makes RVM a perfect candidate to be used for channel
identification and multipath detection. Consider a channel sounding scheme shown in
Fig.3 It can be easily shown that the received signal z[n] is a linear combination of

h[n] =
L∑

l=1

ωlδ[n − τl]

η[n] ∼ N (η[n]|0, σ2~I)

u[n]
u
∗[−n]

y[n] z[n]

RxChannelTx

FIGURE 3. A communication system with matched receiver.

L autocorrelation sequence of the sounding sequence u[n], embedded in the colored
noise ξ [n] = η[n]⊗u∗[−n] which is the convolution of η[n] and matched filter impulse
response u∗ [−n].

z[k] =
L

∑
l=1

wlRuu[k− τl]+ξ [k] (16)

Assuming that there are N samples of z[k] available, (16) can be easily rewritten in the
form (1). From this point, the application of the RVM technique is straightforward, with
kernels being the sampled autocorrelation function Ruu[k]. Figure 4 shows the result for
detecting multipath components within the RVM framework for the measured multipath
channel. There are in total five channel realizations. By visual inspection of the Fig.
4 it can be seen that the algorithm successfully detects the position of the multipath
components.

5. CONCLUSION

In this contribution we have considered applications of the evidence procedure to se-
lected problems in Signal processing. Motivated by the practical applications we have
considered the extension of the RVM technique to the cases when the additive noise is
no longer white and thus described by the full covariance matrix. In order to simplify
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FIGURE 4. Detection of the multipath components with RVM technique.

the optimization involved only the eigenvalues of the covariance matrix were updated,
with eigenvectors chosen to be complex exponential. This renders the whole scheme to
be equivalent to the Fourier analysis of the additive noise within the RVM framework.

We also have shown that in many situations it turns to be quite effective to employ
a certain parameter grouping. In particular it can be used to accommodate multiple
observations of the signal as well as to parametrize Volterra kernels. We have shown
applicability of the idea for two practical applications: nonlinear system identification
and multipath detection from wireless channel measurement data. In both cases results
look quite promising.
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