
TRACKING DIRECTION-OF-ARRIVAL FOR WIRELESS COMMUNICATION WITH
MULTIPLE ANTENNAS

Dmitriy Shutin and Gernot Kubin

Graz University of Technology, Infeldgasse 16c, A-8010, Austria
dshutin@inw.tugraz.at, kubin@inw.tugraz.at

ABSTRACT

The goal of this contribution is to bind together results available for
radar systems for Direction-of-Arrival (DOA) tracking and wire-
less communications with multiple antennas. We show that for
accurate tracking of DOA’s the MUSIC-like methods based on in-
version of the channel snapshot covariance matrix are suboptimal.
In our approach we apply an alternative algorithm developed by
H. Gu(2002) that uses the instant channel snapshot to update the
DOA estimates directly. We improve on this algorithm by intro-
ducing online data association capabilities based on linear extrap-
olation that leads to better tracking performance and lower compu-
tational complexity. The performance is evaluated using simulated
channels as well as real wideband Multiple-Input-Multiple-Output
(MIMO) measurements at 2GHz. The obtained estimates confirm
previous results obtained with alternative techniques but provide
more accurate results at lower computational complexity.
Keywords: MIMO, DOA tracking algorithm, mobile communica-
tion.

1. INTRODUCTION

Wireless systems are subject to fading - time variations of the re-
ceiving conditions that are caused by multipath propagation and
transceiver movements. Recently, the study of MIMO antenna sys-
tems in communication has shown their superior potential to fight
fading by exploiting smart antennas and space diversity techniques
[1].

One of the possible approaches to compensate fading is chan-
nel prediction based on past channel measurements[2]. Basically,
this technique assumes the channel impulse response to be mod-
eled by a certain time-varying model. For the time being, these
techniques were developed for Single-Input-Single-Output (SISO)
models[3, 2]. In the SISO case, a channel tap hk could be locally
(in time) expressed as a sum of complex sinusoids

hk(t) =

N�

n=1

ck,nej(wd,n(t)·t) (1)

where wd,n(t)’s are the Doppler frequencies of N different re-
solvable scatterers or reflectors, and ck,n ∈ � are complex ampli-
tudes. Since the wireless channel is completely characterized by
the reflectors and scatterers distributed around the transceiver, the
accurate parametrization of this geometry would result in a more
accurate description of the channel and, therefore, more accurate
predictions.

In the SISO case, the only information available about the
nearby objects is their Doppler shifts and complex attenuation
factors. Multiple antennas, however, also preserve directions of
incoming wavefronts. This provides a richer description of the
channel behavior and additional degrees of freedom in designing
communication systems. In the following we restrict ourselves to
the Single-Input-Multiple-Output (SIMO) case, thus considering
only estimation of Directions-of-Arrival (DOA’s). Most of DOA
estimation algorithms rely on properties of the sensor covariance
matrix [4]. We show that for accurate channel modeling in wire-
less communication, these methods are not only computationally
expensive, but also might be suboptimal, since they require the sta-
tionarity of the moving objects. This is hardly the case for SIMO
wireless channels. Recently H. Gu [5] has proposed an algorithm
to update the DOA estimates which does not require estimation of
the sensor covariance matrix. However, this algorithm becomes
unstable when several objects have the same or similar DOA’s.
Here we propose a method to resolve these instabilities by online
prediction of such situations and locally substituting DOA esti-
mates with linear extrapolations.

The remainder of the paper is organized as follows: in sec-
tion 2, we will present an extension of the SISO description to
the SIMO case; section 3 gives a short review of the DOA es-
timation and tracking algorithm, section 4 deals with some sim-
ulation results, and, finally, in section 5 we treat the application
of these ideas to real MIMO channel measurements conducted by
Forschungszentrum Telekommunikation Wien, Austria.

2. SAMPLED WIRELESS SIMO CHANNEL

In [2] it was shown that the time-varying channel tap hk(t) could
be represented as

hk(t) =
N�

n=1

αk,n(t)e
jψn(t) (2)

whereN is the number of resolvable multipath components within
the channel excess delay bin k, and

αk,n(t) = g(Tk − τn(t))an(t)e
j(ζn(t)−wcτ

const
n ), (3)

and ψn(t) = −
2π

λ
‖ � varn (t)‖. (4)

Here, αk,n(t) accumulates all slowly time-varying components,
such as the attenuation an(t) due to the free space propagation,

1Authors wish to thank Forschungszentrum Telekommunikation Wien for providing MIMO channel measurements data.



filtering effect at the transmitter, g(Tk− τm(t)), with symbol pe-
riod being T , the phase shift due to the scatterer/reflector structure,
ejζn(t), and the phase shift due to the time-invariant propagation
delay τn(t)(base-station – reflector). The carrier frequency is wc.
On the other hand, the phase term ψn(t) stands for the electri-
cal distance of the time-varying path � varn (t) (reflector – mobile).
This term is the source of the small-scale fading that occurs even
as the mobile moves a fraction of the wavelength.

Now we consider the change in the electrical distance ψn(t)
for a single wave source as the antenna array moves with constant
velocity � (i.e. SIMO case). The roles of the array and reflec-
tors/scatterers in this setup could always be interchanged due to
the reciprocity of the channel.
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Fig. 1: Instantaneous phase, SIMO case.

For the sake of simplicity, we assume that the receiving an-
tenna D(P ) is a simple linear array with P sensors. Consider the
situation depicted in Fig.1. In vector form, the p-th distance to the
antenna � n,p(t) is given as follows.

� n,p(t) = � n,p(0) + � t = � n,0(0) + p
�

+ � t

For large distances, i.e., under the plane wave assumption, the
length of � n,p(t) is found to be:

‖ � n,p(t)‖ = ‖ � n,0‖ − p‖
�
‖ · cos(φ′

n,0(t))−

− ‖ � ‖t · cos(θn,0(t))
(5)

Combining (2),(4) and (5) we get the final expression for the chan-
nel tap in the SIMO case:

hk,p(t) =

N�

n=1

α̃k,n(t)ej·wd,n(t)t · ej·
2π
λ
p·‖d‖·sin(φn(t))

where wd,n(t) =
2π

λ
‖ � ‖ · cos(θn,0(t))

and α̃k,n(t) = αk,n(t) · e
−j 2π

λ
‖ � n,0‖

(6)

wd,n(t) is the Doppler shift induced by the nth wave source, and
φn,0(t) is the corresponding DOA. Under the plane wave assump-
tion, all rays become parallel and induce the same DOA and the
same Doppler shifts for all the sensors in the array. It is also im-
portant to note from (6) that for different antennas the channel tap
variations differ only in the phase shift induced by the DOA’s of
the wave impinging on the array. This brings us to the issue of
tracking the DOA’s from different scatterers/reflectors.

3. DIRECTION-OF-ARRIVAL ESTIMATION

DOA estimation for multiple moving targets has been addressed in
radar array processing since the 1960s. For simplicity, the prob-
lem is formulated for a linear array of P sensors. Let � be the
complex-valued P -dimensional data vector, obtained from stack-
ing the outputs of P sensors at the time t. Then

� =

N�

n=1

� (φn)an + � (n) = S( � ) � + � (n) (7)

where S( � ) = [ � (φ1),
� (φ1), . . . ,

� (φN )] is a P × N
matrix, N < P , composed from steering vectors � (φn) =
[1, ejd1ξn , . . . , ejdP−1ξn ], ξn = (2π/λ) sin(φn); λ is the wave-
length, and dp is the distance between the first and the pth sensor.
In Eq.(7), � = [φ1, . . . , φM ] are the unknown DOA’s of N dif-
ferent wave sources, � = [a1, . . . , aM ] is a complex-valued re-
turn vector, and � (t) is a complex-valued Gaussian white noise.
It is known that all the steering vectors � m(φ) are orthogonal to
the (P ×N ) dimensional “noise” subspace of the covariance ma-
trix R = [ ��� H ], spanned by all eigenvectors associated with the
smallest singular values[6]. MUSIC-based estimates of DOA’s are
formed by picking theN values of φn that minimize the projection
of � ( � ) onto this noise space[4]. The model (6) could be easily
rewritten in terms of (7) by the following substitutions:

� (φn) =[1, ejξn , . . . , ej(P−1)·d·ξn ]T ,

ξn =(2π/λ) sin(φn(t))

� =[αk,1e
jwd,1(t)·t, . . . , αk,Nejwd,n(t)·t]T

(8)

It is easy to note that in this case the amplitude � is time-
dependent. Covariance-based methods require stationarity of mov-
ing objects at least within the analysis window needed to estimate
the covariance matrix R. According to Eq.(8) this is, however,
not the case in SIMO wireless channel. The Doppler shifts vary at
least as fast as the corresponding DOA’s, and thus, the amplitude
� in (8) would vary even faster. MUSIC-based estimates that do
not yield optimal results in general[7], might produce even wrong
estimates in the case of wireless SIMO or MIMO channels. There-
fore, in tracking the wireless channel we have to rely only on the
current snapshot to estimate and update the DOA’s. H. Gu [5] has
developed a radar tracking algorithm for multiple moving targets,
that does not require estimation and inversion of the covariance
matrix R, which is a computationally heavy task. The algorithm
computes Instantaneous Maximum Likelihood Estimates (IMLE)
of the DOA’s given an instantaneous data snapshot. Moreover, the
algorithm achieves the Cramer-Rao bound in estimating � given
� at moment t. The significant drawback of the algorithm is that if
DOA trajectories for different moving objects intersect, then the al-
gorithm looses stability, since the steering matrix S in (7) becomes
ill-conditioned. We propose a method to mitigate this by introduc-
ing an “inertia” concept for the tracking system. Such property



will allow the system to move beyond the intersection point with
the tracking algorithms switched off. We have implemented this
mechanism by means of linear extrapolation. While estimating
the DOA’s, we observe the gradient over a certain memory span,
and use this information to solve for the approximate trajectory
intersection point. In the vicinity of this point we switch off the
estimator algorithm and continue the DOA trajectories along their
gradient, exchanging the estimator outputs with the linear extrap-
olator output. The pseudo-code that implements this approach on
the base of Gu’s tracking algorithm is shown in Table.1.

Table 1 DOA tracking algorithm

Set initial values for ˜� prev
for t = 0 to Buffer Size

Take new snapshot � (t)

˜� = S−1(˜� prev) � (t),A = diag{˜� },
Q = I − S(˜� prev)[SH(˜� prev)S(˜� prev)]−1SH(˜� prev)
C′ = 2Re{AH [S′(˜� prev)]HQ � (t)}

C′′ = −2Re{AH [S′(˜� prev)]HQS′(˜� prev)A}

∆˜� = −[C′′]−1C′

˜� prev = ˜� prev + ∆˜� /* DOA update */

Z(t, :) = ˜� prev /* FIFO buffer */
end
STEP 1: INITIAL INTERSECTION ESTIMATION

LINEAR REGRESSION OVER THE PAST ESTIMATIONS OF ˜� prev
FOR j = 1 TO N

ESTIMATE αj , βj FOR Z(:, j) = αj · t+ βj
END

FIND TIME tintersect FOR M = (N !)/2 · (N − 2)! POSSIBLE

INTERSECTIONS.
STEP 2: MAIN LOOP WITH INTERSECTION TRACKING

FOR t =BUFFER SIZE +1 TO END

TAKE NEW SNAPSHOT � (t)
IF t IS IN CLOSE VICINITY TO tintersect

EXCHANGE OUTPUTS WITH THE LINEAR

EXTRAPOLATIONS FOR INTERSECTING TRAJECTORIES
˜� prev = � · t+

�

ELSE

CONTINUE UPDATING ˜� AS IN FIRST LOOP.
END

Z(t, :) = ˜� prev /* FIFO BUFFER */
RE-ESTIMATE � AND

�

RE-ESTIMATE tintersec
END

The matrix S, with S′ being its derivative and S−1 being its
pseudoinverse, is defined exactly as in (7). The “close vicinity”
of t to tintersec can be empirically inferred from values of the re-
ceiver noise and variance of the estimates.

4. SIMULATIONS

A simple simulation model can be easily derived from the equa-
tions (6) and (3). The following simple setup was used: the receiv-
ing linear antenna array with P = 10 sensors is positioned at the
origin of the coordinate system. The sensor spacing is d = 0.15m
at the half of the wavelength(Fig.2). Reflectors are distributed in
the upper semiplane.

P−1

X

0

Y

Fig. 2: Simulation setup

Exper. A B

Distances R1 = 500m R1 = 800m
R2 = 500m R2 = 500m

Initial angle φ1(0) = 45◦ φ1(0) = 45◦

φ2(0) = 20◦ φ2(0) = −30◦

Velocities 20m/s at 10◦ 30m/s at 10◦

40m/s at 10◦ 50m/s at 170◦

SNR 11 dB 11 dB

Table 2: Simulation Parameters

We generate a channel tap that includes two multipath compo-
nents and an additive complex Gaussian white noise. The simula-
tion scenarios are shortly summarized in the Table.2. Angles are
measured with respect to the Y -axes (i.e. antenna’s broadside) for
reflectors, and with respect to the X-axes (i.e. antenna’s endfire)
for velocities. In these experiments the SNR is defined as:

SNR = 10 log10

�
l
|hl|

2

�
l
|nl|2

(9)

where hl is the generated complex channel tap for one of the
array sensors in the lth channel snapshot and nl is the correspond-
ing complex noise value. Experiment A, Fig.3, shows the esti-
mated DOA trajectories for two reflectors, that are 500m away
from the antenna.
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Fig. 4: Experiment B

For such a distance it is reasonable to assume that the angles
of incidence, as well as Doppler shifts, are the same for all the sen-
sors in the array. As we can see, the algorithms perform quite well
even for considerably small SNR values.

Distances Initial angle Velocities
R1 = 14m φ1(0) = 60◦ 1.5m/s at 10◦

R2 = 7m φ2(0) = 20◦ 2.1m/s at 10◦

Table 3: Close scatterers

The simulation depicted in Fig.4 shows a more complicated
scenario when two DOA trajectories intersect. In the vicinity of
the intersection point we switch off the tracking algorithm and con-
tinue the trajectory along the gradient, exchanging the outputs with
the linear regression predictions (Fig.4). Although, such approach
is not optimal for tracking DOA’s in the close vicinity of the inter-
section point, it provides reasonable predictions of the initial an-
gles beyond the intersection point to ensure fast re-convergence.
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Fig. 5: Two close scatterers

The next experiment (Fig.5) shows the simulation of two close
scatterers. The details are summarized in Table.3. In this exper-
iment the SNR was deliberatly set to infinity to demonstrate the
following particularity: in this setup every antenna sees a different
angle, resulting in a thick belt on the plot. Generally speaking,
in this case the model (6) is a very crude approximation to the
real channel. It is possible to see that the estimated trajectories
oscillate around the true DOA’s quite significantly even for small
angles. These oscillations result from uncertainty in estimating
the steering vectors since they are no longer sampled complex ex-
ponentials but rather chirps which emerge from “seeing” different
Doppler shifts and DOA’s on different sensors in the array. Under
the same initial conditions the oscillating pattern remains even in
case of the lower SNR, which makes us belive it is the effect of
proximity to the receiving antenna rather than numerical effects.

We conclude, that an algorithm for DOA tracking in the prox-
imity of the antenna array should, in general, include preprocesing
of the antenna snapshots by a certain spatial filtering to amend
these effects.

5. RESULTS FOR MIMO MEASUREMENTS

The last three figures show the DOA tracking for MIMO channel
sounder measurements which were performed by Forschungszen-
trum Telekommunikation Wien, FTW, Vienna, Austria, under su-
pervision of Helmut Hofstetter[8]. The measurements were done
with the MIMO capable wideband vector channel sounder RUSK-
ATM, manufactured by MEDAV [9]. The sounder was specifically
adapted to operate at the center frequency of 2GHz. The transmit-
ted signal is generated in the frequency domain to ensure a pre-
defined spectrum over 120 MHz bandwidth, and an approximately
constant envelope over time. Two simultaneously multiplexed an-
tenna arrays have been used at the transmitter and receiver. The
transmitter was a uniform circular array, with 15 sensors spaced at
≈ 6.45cm and placed on the roof of a racing car. The car velocity
was ≈ 160km/h. The receiver was a fixed uniform linear array,
with 8 antenna elements spaced at a distance of λ/2 ≈ 7.5cm.
For our purposes we select only a SIMO subset, by taking only
one transmitting antenna from the array.

Fig. 6: SIMO channel impulse response h(t, τ )
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Figure 6 shows the measured channel impulse response as the
car passes the receiver. It is easy to observe the car approach-
ing the receiver and passing by. In the measured channel, there is
a strong LOS component, however, there are also several strong
reflections[8]. At such high speeds, the impulse response changes
very fast (Fig.6). The same reflector or scatterer appears in differ-
ent delay bins as the car moves. Here, we only track the strongest
components that correspond to the LOS-component and the sec-
ond strongest reflection. In Fig.7, the estimated DOA trajectory is
shown. These estimates were obtained with the prior of only a sin-
gle contribution to the tap. Fig.8 shows the same measurement, but
for two components contributing to the tap. Our estimates confirm
results obtained by [8], however our approach is computationally

much more efficient. In general, the complexity of MUSIC is of
the order P 3, where P is the size of the array. Gu’s algorithm has
complexity of onlyN3+N2P (see [5]), whereN is the number of
the strongest multipath components. Thus, for the described mea-
surements this algorithm is 512/40 = 12.8 times more efficient.

6. CONCLUSION

We have shown that the theoretical basis for application of
MUSIC-like methods to estimating DOA’s might be inadequate
in case of wireless communication. The fact that Gu’s algorithm
achives Cramer-Rao bound makes us belive that our approach
might be more efficient, however, the quantitative comparison of
both algorithms under practical accuracy specifications must be
further investigated. We have also extended Gu’s tracking algo-
rithm by online gradient-based predictions of DOA trajectory in-
tersections. Simulations show that our algorithm could be suc-
cessfully applied to low SNR cases to resolve intersecting DOA
trajectories. The performance of the proposed approach to DOA
tracking was also tested on real wireless MIMO channel measure-
ments. The obtained results agree with previous results obtained
with alternative MUSIC-based algorithms, however, the algorithm
used in our experiments has much lower computational complex-
ity.
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