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Abstract — This paper introduces a novel wireless

MIMO channel clustering technique implemented in

angular and delay domains. The clustering is preceded

by extraction of angular and delay information from the

sampled impulse response. Akaike Information Crite-

rion (AIC) has been used to find the number of mul-

tipath components arriving at the same delay bin but

having different directions of incidence. The latter have

been resolved with ESPRIT algorithm. A modified

Saleh-Valenzuela model is used as a basis for the deriva-

tion of the unsupervised clustering algorithm. To avoid

estimation of the joint angle-delay density function re-

quired for the clustering algorithm, it is ’factorized’ al-

gorithmically by first identifying clusters in the delay

domain and then finding angular clusters ’conditioned’

on the corresponding delay cluster. The algorithm has

been applied to measured MIMO channel impulse re-

sponses and is able to find visually identifiable clusters

as well as their width.

I. Introduction

Wireless systems are subject to fading - time variations of
the receiving conditions caused by multipath propagation and
transceiver movements. A wireless channel contains all the in-
formation about the propagation environment and, in general,
the receiving side should be aware of the channel. Due to the
fading nature of the wireless channel, it is imperative for the
system to follow the variations of the receiving conditions along
time to adapt itself and sustain reasonable communication qual-
ity.

Generally, the wireless channel consists of a series of atten-
uated, time-delayed, phase shifted replicas of the transmitted
signal. In the baseband this is represented as follows:

ht(τ ) =

N−1
X

i=0

βi(t, τ ) exp (jθi(t, τ ))δ(τ − τi(t)) (1)

where βi(t, τ ) and τi(t) are the real amplitudes and excess de-
lays of the ith multipath component at the time t, respectively
(see, for example, [1, ch.4]). The phase term θi(t, τ ) lumps to-
gether all the mechanisms for phase shifts of a single multipath
component within the ith excess delay bin. Equation (1) is a
starting point for further analysis. The straight-forward proce-
dure to follow the channel is to follow each of the contributing
reflections. Obviously, it is difficult to do, since the number

of contributions could be significant, but if successful, this ap-
proach will provide quite a precise instantaneous description of
the channel dynamics. Although it is computationally imprac-
tical to follow all of the contributing paths, it is still possible to
follow at least several strong ones [2, 3].

Alternatively, a number of statistical models provide prob-
ability density functions (PDFs) for the parameters of interest
[4, 5], thus giving a probabilistic description of the channel be-
havior. It would seem beneficial to join both ideologies and
devise an algorithm to extract some information from the in-
stantaneous impulse response based on the probabilistic model
of the channel parameters. This could be accomplished if chan-
nel impulse responses (or channel parameters) are regarded as
sample realizations of the corresponding statistical models.

Recently, directional systems have attracted much of atten-
tion [6]. There are numerous advantages of using antenna arrays
to communicate and among them is a much richer structure of
the impulse response that can be exploited by the transceiver.
Numerous measurement campaigns have shown the presence of
clusters both in delay as well as in angular domains [7, 8]. The
idea of clusters is quite appealing for it provides a very promis-
ing framework for tracking, analyzing and simulating wireless
channels: instead of following every reflector or scatterer we can
concentrate on more tractable dynamics of the clusters. Clus-
ters inherently impose structure on the impulse response that
provides a basis for a hierarchical analysis (i.e., from the impulse
response to clusters and then to the rays within each cluster), as
well as a straightforward physical interpretation of the clusters
and model parameters.

We propose a clustering algorithm that relies on the statis-
tical structure of the channel parameters, i.e., distribution of
angles and delays within the cluster: the delays and angles are
estimated from instantaneous MIMO channel impulse responses
and then grouped into clusters.

The rest of the paper is organized as follows: Section II de-
scribes the sampled channel tap model. Section III explains how
the angular and delay information has been estimated from the
sampled channels. The details of the clustering algorithm are
summarized in section IV, and finally, Section V presents some
of the clustering results for the measured channel impulse re-
sponses.

II. Channel model

The detailed analysis of the sampled baseband representation
of the MIMO channel impulse response reveals structure that
enables estimation of the directional information about the ob-
jects interacting with the wavefront induced by a transmit-



ter. It has been shown that a time-varying channel tap hk(t)
of a sampled Multiple-Inputs-Single-Output (MISO) or Single-
Input-Multiple-Outputs (SIMO) channel contains information
about the angle of incoming wavefronts (MISO channel), or an-
gles of departure in the SIMO case[9]:

hk,p(t) =

N
X

n=1

αk,n(t)ejwD,n(t)tej
2π
λ
pd sin(φn(t)) (2)

where hk,p(t) is a time-varying channel tap at the pth sensor
and delay bin k, N is the number of the wavefronts arriv-
ing withing this delay bin and having complex gains αk,n(t).
The exponent term wD,n(t) denotes the time-varying Doppler
shift induced by the nth wave source, and φn(t) is the corre-
sponding Direction-of-Arrival (DoA) in case of MISO channel
or Direction-of-Departure (DoD) in SIMO case, with d being the
distance between antenna sensors and λ being the wavelength.
It is important to note that this expression is the linearized rep-
resentation of the tap dynamics resulted from the plane wave
assumption and uniform linear array (ULA) antenna structure.
This will result in the same Doppler shift induced on each of
the antenna sensors. In case of MIMO channels, it is straight-
forward to show that the dynamics of the tap will include both
DoD and DoA contributions:

hk,p,m(t) =

N
X

n=1

αk,n(t)ejwD,n(t)t×

× ej
2π
λ
pdRX sin(φn(t))ej

2π
λ
mdT X sin(ψn(t))

Here, p and m are receiving and transmitting antenna indices,
dRX and dTX denote the distances between receiving and trans-
mitting sensors, respectively, and φn(t) and ψn(t) are the cor-
responding DoA and DoD of the wavefronts. Based on this
representation the angular information can be estimated from
the channel impulse response and then used as an input data
to the clustering algorithm. These steps are summarized in the
following section.

III. Extraction of the delay and angular

information

In the rest of the paper we concentrate on MISO channels and
ULA on the receiving side to illustrate the idea of clustering.
The study of SIMO channels is completely equivalent. The
MIMO case is a bit more complicated since it requires simulta-
neous estimation of both DoA and DoD from the measurements.
This could be accomplished subsequently, for example, by first
estimating the DoA from the measurements and then ’canceling’
the corresponding induced phase shift to estimate DoD. More
details on this procedure can be found in [10]. Let us assume the
receiving antenna is an ULA consisting of P sensors spaced 0.5λ
apart, i.e., dRX = 0.5λ. Let us also assume that the sampled
equivalent baseband MISO channel impulse response has been
identified by some means and is available as a P ×K complex
matrix H ∈ C

P×K , where K is the number of channel taps:

H =

2

6

6

6

4

h0,1 h1,1 . . . hK−1,1

h0,2 h1,2 . . . hK−1,2

...
h0,P h1,P . . . hK−1,P

3

7

7

7

5

=

2

6

6

6
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h1

h2

...
hP

3

7

7

7

5

(3)

Each element of the matrix H varies with time according to (2)
(although the time dependency is not explicit in the formula-
tion (3)) and corresponds to the sum of multipath components

received within the delay bin τk = kTs, where Ts is the channel
baseband sampling period. Finally, we will assume the channel
H is estimated with a certain amount of noise,

H = H̃ + E

where H̃ is the ’noise free’ channel and E ∈ C
P×K is a zero

mean additive complex Gaussian white noise with the spectral
density σ2

E .

The clustering could only make sense if the sequence of the
channel parameters, i.e., delays and corresponding angles, is not
uniformly distributed, which can be a valid assumption for the
specular channel model (1). Methods utilizing (1) to estimate
channel parameters usually give non-uniformly distributed val-
ues, of course if the nature of the channel supports it. SAGE
algorithm[11], for instance, effectively approximate the Maxi-
mum Likelihood solution for the parameter estimates. It require
a good initial estimate of the channel parameters as well as the
number of the arriving multipaths N , but having those could
prove to be an effective way to obtain estimates. Since our goal
is to illustrate the idea of channel clustering, we propose a sim-
ple heuristic approach to estimate channel parameters, that, if
necessary, can be treated as initial estimates and refined with
iterative methods later on.

The estimated impulse response H is the input data for the
algorithm. The estimation of the delays is done by means of
sub-sampling the channel matrix H, i.e. selecting the columns
with power exceeding a certain threshold. The latter is based on
the knowledge of the power of additive noise σ2

E. For the taps
that exceed the threshold the angular information is estimated
by means of unitary ESPRIT algorithm [12]. These steps are
summarized in the the following algorithm:

1. Accumulate L MISO channel snapshots H[l], l = 1, . . . , L.
This is necessary for the estimation of the sensor covari-
ance matrices, required for the ESPRIT algorithm. The
number L should be chosen so that the structure of the
channel has not been compromised, i.e., so that the chan-
nel remained stationary.

2. Compute the variance σ2
H of channel taps for the whole

block of snapshots H[l], l = 1, . . . , L.

3. Compute the subsampling threshold as

A =
σ2
Eσ

2
H

σ2
H − σ2

E

log(
σ2
H

σ2
E

)

where, σ2
E is the additive noise variance, which is equiv-

alent to the second moment of the zero mean additive
noise E. The threshold A is obtained by a very sim-
ple reasoning: the distribution of the tap power could
be easily found to be exponential with the mean equal
to σ2

H . Likewise, the distribution of the noise power will
also be exponential with the parameter σ2

E. The inter-
section point of the two distributions gives the value of
the threshold A, which is an optimum decision boundary
when we ask if the tap is a multipath or just the noise
sample.

4. Select a channel tap k, k=0, . . . , K − 1

5. Construct a matrix Gk = [gk[1], gk[2], . . . , gk[L]], where
gk[l] is a kth column from the channel matrix H[l]. Here,
the kth column corresponds to the multipath delay τk.

6. Compute the variance σ2
G of the entries in Gk.
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Fig. 1: A sample MISO channel impulse response.

7. If σ2
G < A, the corresponding taps are unlikely to contain

any multipaths, and thus they are discarded.

8. Otherwise, the taps have sufficient power and we try to
extract the angular information: the P ×L matrix Gk is
used to compute the sensor covariance matrix Rk, based
on which the number N of multipath components present
within the delay τk is identified using Akaike information
theoretic criterion (AIC)[13].

9. Having estimated the number of component, ESPRIT al-
gorithm is used to obtain the estimates of the angles φn,
n = 1 . . . N , along with the power of the arriving compo-
nents |αk,n|

2.

10. The triplets (τk, φn, |αk,n|
2), n = 1 . . . N , are appended

to the set of the resulting angle-delay data points.

11. The tap index is iterated k = k + 1 and we go back to 5
unless all the taps have been scanned.

The described algorithm has been applied to the mea-
sured data channel impulse responses obtained from the field-
trial Multiple-Input-Multiple-Output (MIMO) channel mea-
surements performed by Forschungszentrum Telekommunika-
tion Wien, FTW, Vienna, Austria, under the supervision of
Helmut Hofstetter1[10]. The measurements were done with the
MIMO-capable wideband vector channel sounder RUSK-ATM
manufactured by MEDAV [14]. The sounder was specifically
adapted to operate at the center frequency of 2 GHz. The trans-
mitted signal is generated in the frequency domain to ensure a
pre-defined spectrum over 120 MHz bandwidth, and an approx-
imately constant envelope over time. Two simultaneously mul-
tiplexed antenna arrays have been used at the transmitter and
receiver. The transmitter was a uniform circular array, with 15
sensors spaced at ≈ 6.45 cm. The receiver was a fixed uniform
linear array, with 8 antenna elements spaced at ≈ 7.5 cm. For
our purposes we select only a MISO subset by selecting a single
transmitting antenna from the array. A sample waterfall plot
of the MISO channel matrix H is shown in Fig.1.

In order to estimate the DoA, 25 consecutive channel snap-
shots were used. During the measurements, the channel snap-
shot was recorded each 20msec, while the transmitter was moved

1The author wish to thank Forschungszentrum Telekommunika-
tion Wien for providing MIMO channel measurements data.
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Fig. 2: Angle-Delay information extracted using the proposed

algorithm.

with a velocity of ≈ 1m/s. The resulting 25 snapshots will cor-
respond to the walked distance of ≈ 50cm. It is reasonable to
assume that for the outdoor scenarios there will be no signifi-
cant changes in the cluster position or their number for such a
short change in the distance.

Estimation results are shown in Fig.2. The diameter of the
markers is proportional to the estimated power |αk,n|

2 of the
multipath components with respect to the highest averaged sen-
sor power for each of the L snapshots, i.e., maxl(meanp(gk[l])).
This particular example shows a Line-of-Sight case, with most
of the energy coming after 1.8µsec. The components appearing
before the LOS are not used in the clustering. This finalizes the
formulation of the angle-delay extraction procedure and brings
us to the point of clustering.

IV. Clustering algorithm

As it has been already mentioned, there are several statistical
channel models that incorporate the clustering idea. This can be
used to devise the unsupervised clustering algorithm that relies
on this structure. In particular, the clusters in delay domain
could be described by the Saleh-Valenzuela (S.-V.) model [7],
based on which the densities of cluster arrival times could be
inferred[15]. Similarly, in angular-domain the distribution of
angles within a cluster has been found to conform well with a
Laplacian distribution positioned at the cluster center[16].

The unsupervised clustering algorithm relies on the knowl-
edge of the joint distribution p(τk, φn) of angle and delay sam-
ples. The difficulty in estimating or approximating this distribu-
tion lies in the strong dependency of its form on a particular ge-
ometrical structure of scatterers/reflectors in the measurement
location. To overcome this the following approximation could be
used: the joint density is factorized as p(τk, φn) = p(τk)p(φn|τk)
and then the clustering is performed in two stages: at the first
stage, the clusters in the delay domain are identified, i.e., the
sequence of estimated delays τk is clustered according to the
modified Saleh-Valenzuela model[15]; then, we search for the
clusters in the angular domain among those multipaths that
arrive within the same cluster in the delay domain, i.e., imple-
menting p(φn|τk) factor.

Clustering in the delay domain We assume that the sequence
of delays τk come from a known number of Q clusters. It has



been shown[15] that under certain assumptions the probability
density function pq(τ ) of the qth cluster arrival time is a chi-
square distribution with 2q degrees of freedom and distribution
parameter Λq , where q is the cluster index:

pq(τ ) =
Λqq

(q − 1)!
τ q−1 exp (−Λqτ ) (4)

For a given impulse response a time instance τk could possibly
belong to any of the Q clusters. Mathematically speaking, it
belongs to a mixture of Q density functions:

p(τk|Λ) =

Q
X

q=1

p(τk|Λq , ωq)p(ωq)

p(τk|Λq , ωq) =
Λqq

(q − 1)!
τ q−1
k exp (−Λqτk)

(5)

Here, p(ωq)’s are the prior probabilities for each cluster,
ωq ≡ q is a cluster index, and p(τk|Λq , ωq) is a likelihood of the
delay τk belonging to the qth cluster. The class of Expectation-
Maximization (EM) algorithms can be used to learn the mixture
parameters (see, for instance, [17, 18]). Once the parameters are
learned, the p(τk|Λq , ωq) density can be used to optimally (in
the maximum likelihood sense) assign the delays τk’s to corre-
sponding clusters.

Clustering in the angular domain Once we have identi-
fied clusters in the delay domain, we can select those triplets
(τk, φn, |αk,n|

2) that correspond to a certain cluster q in the de-
lay domain. For these data points a similar approach is used to
find the clusters in the angular domain. As before, we assume
the angles φn coming from a known number of V clusters. The
distribution of DoA within the vth cluster pv(φn) is assumed to
be Laplacian. This leads to the following mixture formulation
of the clustering problem:

p(φn|Φ,Ψ) =
V

X

v=1

p(φn|Φv ,Ψv)p(ωv)

p(φn|Φv ,Ψv) =
1

2Ψv

exp
“

−
|φn − Φv |

Ψv

”

(6)

Similarly, p(ωv)’s are the prior probabilities for each cluster in
the angular domain, ωv ≡ v is a cluster index, and p(φn|Φv ,Ψv)
is a likelihood of the angle φn belonging to the vth cluster, cen-
tered around the mean Φv and having the cluster width Ψv.
Again, these parameters could be identified with the EM algo-
rithm.

V. Clustering results

In Fig.3 and Fig.4 one can see clustering results of the data
shown in Fig.2. It has been assumed there are 2 clusters in the
delay domain with 2 angular clusters for the first and 3 for the
second cluster in the delay domain. In Fig.3 one can see the
discovered clusters together with their centers and estimated
width. The cluster centers are given as expectations of the
corresponding distribution, which for the delay is given as:

τ·,q = E{τ |q} =

Z

∞

0

τp(τ |Λq, ωq)dτ = q/Λq (7)

The centers in angular domain Φv’s are computed directly from
the EM-learning procedure. Thus, in this simulation the discov-
ered clusters are represented by centers (τ·,1,Φ1) and (τ·,1,Φ2)
( depicted in Fig.3 with the black stars). The right-hand side of
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Fig. 3: Clustering results - first cluster in the delay and two clusters

in the angular domain.

the plot depicts the estimated mixture density p(φn|Φ,Ψ) for
two angular cluster.

Clustering results for the second cluster are shown in Fig.4.
It is expected it will be more difficult to identify late clusters,
since taps belonging to those contain less energy, which pro-
hibits effective multipath detection and parameter estimation.
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Fig. 4: Clustering results - second cluster in the delay and three

clusters in the angular domain.

VI. Conclusion

Clustering the channel impulse responses could be an interesting
approach to extract important channel parameters. However
as a pre-step to clustering, channel parameters must be esti-
mated by some means. As a staring point, a simple heuristic
algorithm has been proposed to extract delay and angular in-
formation from the channel impulse responses. Although quite
simple, this approach is too optimistic, since it utilizes inco-
herent parameter estimation scheme (the effect of the Doppler
shift has been completely neglected) and thus is inferior in com-
parison to joint estimation. Alternative methods that perform



joint channel parameter estimation like SAGE could be a very
good substitution for the method used in this paper. In fact our
recent research have proved that. Nonetheless, in this case the
clustering algorithm itself is not influenced by the parameter
estimation scheme.

Based on the angular-delay information the unsupervised
clustering algorithm has been devised. The latter is based on
the developed statistical structure of the clusters, mainly in-
spired by the Saleh-Valenzuela channel model. The parame-
ters of this structure could be effectively learned with a class of
Expectation-Maximization algorithms.

The absence of the joint density p(τk, φl) of the channel pa-
rameters hinders the straight-forward clustering of the data. A
two-stage approximation has been proposed to overcome this
problem by first performing clustering in the delay domain, and
only then clustering the corresponding angular information for
a certain delay cluster.

The algorithm has been applied to the measured data and

has been found to perform quite good in finding the clusters,

that could be identified by visual inspection. Estimation of

the true number of clusters is still an open question that must

be considered, since the performance strongly depends on the

correct number of cluster.
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