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Abstract— Wireless systems are subject to fading - time variations of
the receiving conditions caused by multipath propagation ad transceiver
movements. Prediction of fading allows to ‘learn’ the chanel state
information (CSI) in advance and adjust the transmission sheme
accordingly. In this contribution we consider a framework to handle
predictions of general fast- and non-flat fading MIMO wireless channels.
The approach is based on modeling the dynamics of individuainultipath
components, extracted with the SAGE algorithm. This decreses the
rate of variation of the channel thus allowing a greater predction
horizon and simpler predictor designs. The extracted compoents are
then tracked using dynamical programming coupled with the nultipath
component distance measure, and component parameters arehen
predicted over time using adaptive predictors — hypermodel. We
consider linear as well as nonlinear predictor designs. Tls prediction
scheme is applied to MIMO impulse response measurements i2GHz
frequency band, tracked over the distance ok 4m, achieving prediction
horizons of 1.5\.

Keywords—fading prediction, channel parameter estimation, multipah
component distance, dynamic programming

I. INTRODUCTION

Wireless systems are subject to fading - time variationshef t

receiving conditions caused by multipath propagation aadstceiver

movements. The received power undergoes deep fades withi

time-frame corresponding to one wave-length which, for picsi

communication system, amounts to movements on the cemimeg

scale. For efficient transmission, the communication sydtas to be
able to mitigate fading effects. Should the current chastedk infor-
mation (CSI) be known in advance, the transceiver couldloeate
internal resources in a better way or alter the transmissahreme
in anticipation of the future conditions. This can be acchished by
predicting the CSI.

Fading mitigation by means of channel prediction has begatiex
and proved viable in a number of works [1]-[10]. These teghes
were used to aid power control and resource allocation [&], [
downlink diversity and adaptive modulation [1], [9]. Thedfag
is often assumed to be a deterministic process with timghvgr
parameters. This process can be modeled using linear [Rlor[7
nonlinear [3], [10] methods. Predictions are then made bpggating
the learned dynamics into the future. These methods wedgestdor
Single Input Single Output (SISO) narrowband [2], [4], [8F well
as wideband channels [8]. In [6] it has been recently propdse
combine different channels in a smart antenna system faligtien
of the downlink received power, however, the authors onlysater
the narrowband case. In this contribution we discuss oeslatsults
on predicting the Multiple Input Multiple Output (MIMO) chaels
that undergo fast non-flat fading.

. S
Compared to the SISO case, multiple antenna systems deliver

larger amounts of information about the propagation emvirent.
Not exploiting this information might be too wasteful. Senfading

results from the interaction between different multipatimponents,
it can be advantageous to extract them from the channel using
estimation techniques and treat each component as an dodlvi
channel. For example, in the Single Input Multiple OutputMS)
case, each multipath can be described by a multipath congalax
a;, delay ;, Doppler shift;, and Angle-of-Arrival (AoA) ¢;t.
The advantage of such decomposition is obvious: each ohai
channel will have a larger coherence time, coherence baltiwi
and coherence distance, and thus it is more immune to faSinch
approach can be generalized straightforwardly to the veiddb(as
well as narrowband) MIMO, SISO, and MISO systems.

In practical channels not only power (i.e., the multipatinpdut
also the other multipath parameters vary with time. As we sék,
this temporal variation obliges us to tackle several gqoesti

« How can the multipath components be estimated?
« How to keep the multipath structure up-to-date?
« How to make predictions?

In the following sections we will subsequently considersthejues-
tions. We will illustrate the principles of the algorithmdzal on the
SIMO channels, since the presented approach can be eatglydex
to other channel configurations.

n q’hroughout the text we will demonstrate the performancehef t

roposed algorithms on the measured MIMO channel datarsdutai

y Forschungszentrum Telekommunikation Wien (FTW) in Vian
Austria, under the supervision of Helmut Hofstetter [11heTmea-
surements were done with the MIMO capable wideband vector
channel sounder RUSK-ATM, manufactured by MEDAV [12]. The
sounder was specifically adapted to operate at the cengueiney

of 2GHz. The transmitted signal was generated in the frequency
domain to yield a predefined spectrum o¥@0MHz bandwidth with

an approximately constant envelope over time. Two simatiasly
multiplexed antenna arrays have been used at the transraiite
receiver. The transmitter was a uniform circular array vihsensors
spaced atv 6.45cm. The receiver was a fixed uniform linear array,
with 8 sensors spaced half a wavelength apayt2 ~ 7.5cm. The
measurements were performed outdoors, with the transnaittay
mounted on the roof of a building and the receiver moving veith
velocity of ~ 1m/s. A MIMO channel snapshot was recorded every
20msec, thus resulting in a spatial resolution sf \/7. For our
purposes we will further select only a SIMO subset by takisingle
transmitting antenna from the TX array.

The ensuing sections are organized as follows: In Sectiomell
introduce the multipath channel model; Section Il introes and
explains the main steps in predictor design. Finally, $ediV shows
ome application results for real measured channels.

1For simplicity, we do not account for the wave polarizatiord a&levation
angles.



Il. CHANNEL MODEL AND PARAMETER ESTIMATION solution for the model parameters. It replaces a resultingtim

Let us assume that the receiver (RX) is equipped with an EuMendlmenslonal optimization with a sequence of one-dimeraiaub-

array consisting ofP sensors located ato, ....7p_1 € R> with optimizations, thus finding a solution more efficiently.

respect to an arbitrary reference point. The corresponeéigvalent a ggcl;c()jrtrnri]teil;ﬁlzyéttigi ':grit\'/\;? dn?atﬁzj?ngf it:easfgfj ?r:giirg]mm;?;
baseband SIMO channel can then be modeled as [13]: 2 . .
[13] likelihood. Due to space limitations, the basic steps of $&GE

L ()t algorithm are not presented here. The interested readéfimdl a
h(t,7) =D ait)e(du(t))e o(r = n(t)), @ detailed algorithm description in [16].
=1 Another aspect arising when using the SAGE algorithm is thm-n
whereh(t,7) € CT is a vectorized representation of the time-varyinger L of multipath components. Generally, for real measuremenés
SIMO channel impulse response (IR),(t) and 7;(¢t) are the gain number of multipath components may vary with time. This prés a
and delay of théth multipath component at timg respectively. The substantial difficulty not only for parameter estimatiogaithms, but
phase terme’”* )t accounts for the phase-shift induced by the correalso, as we will see in Section I11, for parameter trackinge humber
sponding time-varying Doppler frequeney(t). The P-dimensional of multipath components can be estimated ‘on-line’, if dei using
vector ¢(¢:(t)) is known as the steering vector of the array andnformation-theoretic criteria [17]. Accommodation ofigtsituation
provided the coupling between the antenna sensors can becteelj goes beyond the scope of the presented work. To account Ve it
it is represented as(¢;(t)) = [co(d1(t)), . .., cp—1(pi(t))]*, where will simply fix L to a number large enough to capture the most
¢i(t) is the Angle-of-Arrival of thel-th multipath. The components dominant waves.
of c(¢:(t)) are given as Since the multipath channel generally varies with time, sit i
. 1 necessary to estimate multipath components for each newneha
ep(@1(1)) = Fo(dun(t)) exp(52mA~ e(du(t)), 7)) observation. This results in a temporal sequence of mtiftifs-
with A, e(¢i(t)), and f,(¢:(t)) denoting the wavelength, the unittimates{6;[n]}{~,. Unfortunately, parameter estimation algorithms
vector inR? pointing in the directionp;(t), and the complex electric do not provide any ordering information on how to associdte t
field pattern of thepth sensor, respectively. multipath components at time — 1 with those at timen. In order
The channel model (1) is a key to estimating multipath patarse to be able to learn the parameter dynamics for predictiopgass,
since it allows to invoke model-based parameter estimatiethods. it is necessary to reconstruct this ordering, i.e., to dasche
This model also assumes explicitly the plane wave propamgati consecutive parameter estimai&gn] that correspond to the same
Spherical waves, however, can be approximated by (1), thémga physical multipath component over time.
short period of time. Thus, the wave sphericity will manifiéself ~ The solution we propose is outlined in Section lIl.
by more pronounced multipath parameter variations.
We also stress that the multipath chanhét, ) is a time-varying
process. To capture it the channel measurements are reépgite

the period?’., producing consecutive channel snapshots?’., 7) at . . . .
P P 9 P 7) However, this model can be constructed iteratively, as tgerithm

t = nT,.. The channel acquisition peridd. automatically defines the proceeds. In fact, the sought predictor is an appropria ( the

sampling period for temporal variations of the multipatiigmaeters. . . . . .
As such, it must be chosen so as to make sure that parameigr v tFaCk dynamics, and the predictor can be trained using thépath

. . . rack. We resolve this interdependency in the spirit of tlassical
tions are represented appropriately by the correspondingparal . ; L
; . sequential Bayesian estimation (see, for example, [18]).
samples. A sample power-delay profile of the measured wssele
Let us now assume that we want to reconstrdctracks from the

SIMO channel is shown in Fig. 1 multipath estimate$,;[n]}~, so thatK < L. The block-diagram
of the proposed sequential tracking and prediction scherdepicted

I11. CHANNEL PREDICTION

In general, parameter tracking/association is not a trjiablem
since there is n@ priori model that can be used to ease this task.

in Fig. 2.
L multipath
esti mat es K tracks
- 7 Tr acki ng/
associ ation
Or[n+1]
Ext rapol at e/ L
updat e > R
Hi =y L
Delay, T 3 0 Wavelength, A K predictions
Fig. 1. Power-Delay profile of the measured SIMO channel. Fig. 2. lterative tracking and adaptation of the track hymzdels.

The dynamics of each track is captured by a certain detestigni
hypermodeli.e., predictor,H(-), in a sense that

Estimation of the multipath parametefis = {a;, 7, vi, ¢} from 5 .
the measurement data has been extensively itudied [1};]4}:[31@Iy, Okln +1] = Hy(6x[n], 6x[n — 1], ... 2)
a deterministic parameter estimation technique based @ S&GE The term hypermodel is used to stress ttHf,(-) encodes the
algorithm [16] has become very popular. SAGE is an iterativdynamics of the ‘underlying’ channel component. Exprasgi@) is
estimation scheme that approximates the Maximum Likelih@dL) equivalent to theprediction stepof Bayesian sequential estimation.

A. Parameter estimation



Once the prediction is obtained, we can define a distanceurezasof the multipath component parameters and it is particylageful
d(-, -) between the predictior@, [n+1] and newly obtained estimatesin our application.
{6i[n + 1]}{~,. The associations are then made so as to minimize

the resulting distance between the predictions and thenatds.
The obtained associations are then used to recursivelyteigtia
hypermodels. This constitutes thgpdate stepof the sequential
estimation. Note that the proposed scheme is not strictiyeBian,
but still implements a similar reasoning.

Now, let us consider how the association and hypermodetitegr
can be implemented.

A. Track association algorithm

For tracking purposes not all of the multipath parametengridmite
equally to deciding among several alternative track comtiions.
Moreover, only a subset of the available parameters unjgdenti-

B. Hypermodel learning and parameter prediction

Since the whole tracking/prediction approach is Bayesiapired,
we employ Bayesian sequential methods for learning tragtehy
modelsH;, as well. As we previously mentioned, a parameter subset
sk[n] is used in multipath tracking, and it requires a one-step-
ahead predictor (2) to compute the cost (3). This predictian be
accomplished by a dedicated structure hypermdtielThe ultimate
application might however require long term forecasts aheoof
the multipath parameters, not necessarily used in tracKihgse will
be denoted asvi[n] C 6x[n]. As the result, we might need other
hypermodels, denoted a4, used specifically for this purpose.

fies a multipath component. In the simple SIMO case with aaline 1) Structure hypermodelsS,: Since the hypermodelsS, are
antenna array, these are a multipath detayDoppler shiftv;, and  needed only for a one-step-ahead prediction, we can appatgithe
A0A ¢;. Although the multipath gaim; is also estimated, it does trajectory of the tracks[n] by a damped local linear trend (DLLT)
not help to distinguish two different components. [21] and use the Kalman filter framework to learn the trend: &o
Let si[n] C 6in], I = 1...L denote a subset of estimatedsingle track, the state-space representation of this fitgiven as:

parameters used for tracking at the time In our cases;[n] =
[n[n], vi[n], ¢i[n)]T. Similarly, 5x[n] C Ox[n],k = 1...K is a
subset of the predicted multipath parameters obtainefs| =

H(0k[n — 1],0,[n — 2],...). Then the track association can be

cast as a standard dynamic programming problem.

mhl=lo Al eee
sl = [T 0] [i’;[[ﬁﬂ + exln],

Consider the graph in Fig. 3. Edges on the graph represgffierer is an identity matrix of the appropriate size, [n] is a vector

Fig. 3. Possible track continuations féf = 2 andL = 3

possible track continuations. Each connection betw&gm] and
s1[n] induces a cost
Cri[n] = d(8k[n], si[n]) + pCr[n — 1]. ®)

Here C[n — 1] is the cost accumulated by theth track at time

of estimated DLLT slopes, and\ = diag([d-, d., d,]) are fixed
damping factors for each of the multipath parameters. Tmepitey
factors are chosen such thaK d-, 4., 0, < 1. Practically, we select
Ay, = 0.11. Although for tracking we need onlf = 1 prediction,
higher prediction horizons can be realized by recursiveliegtion
of the transition equation (5) exactl§ times.

The variance of the disturbance termgn| and ¢,[n] in (5) are
important design parameters. Since the multipath parametsnot
be estimated with zero variance, the observation neige| can be
related to residual estimation uncertainty of the SAGE rtigm. Due
to the unbiasedness and consistency of the SAGE-obtaittiecbéss
[16], the disturbanceex[n] can be treated as a white Gaussian
estimation noise. State noigg [n], on the other hand, is left as a
free design parameter. Practically, we choose it so as te make

n—1,and0 < u < 1 is a forgetting factor. Now, let us define athat the ratio between the variance of the state noise andftthe

binary variablez; such that:

Lo
Tkl =

if s;[n] should be assigned t&;[n]

0, otherwise

Then, the optimal track association at timeshould minimize the
total induced cost:

K
argmin Z = Z Z Cri[n]zr, So that
Tkl k=11=1

: 4
daw=1k=1...K, and zx€{0,1}.
=1

Should we have just a single track, i.&,= 1, the optimal solution
could be found using the Viterbi algorithm. Solution to deoh (4)
is an optimal association for alk tracks simultaneously. It can
be solved using standard linear programming techniques, (ee
example, [19]).

The distance measut-, -) can be effectively implemented using

the multipath component distance (MCD) [20]. Basically, MG a
weighted Euclidian distance measure, tailored to reflextsiecifics

observation noise isz 0.01.

The initialization of the hypermodelS;, is chosen so as to repeat
the last seen value. This can be achieved by seleatifig] = 0,
and settings;[0] to the estimated multipath parametersnat= 0.
Assuming smooth parameter variations, the hypermodeligireds
will not wander too far from the true future values. Suchialitation
is more likely to result in correct associations, and thus phoper
values are going to be used to update the predictor coefficien

2) Hypermodel4,: Multipath power prediction is often a desired
output of the channel forecasting. In power prediction weraostly
interested in accurately modeling the evolution of the ipath gains
and extrapolating it beyond the observation interval. Thugn] =
ax[n]. If we need long-term predictions, more complicated priedc
are required. Again, we stick to the Bayesian sequentiahaukst and
utilize the predictor in the following state-space form:

{Z’;[[Zi 11]]} - V(a%’[gl k [n])] e

ﬁ,k [n]
w[n]

ac[n] = [1 0] { ] + <[nl,



where ai[n] = [ak[n],...,ar[n — Q 4+ 1]]T € C? is a vector of
delayed multipath gain samples, aifd-, ) is the state predictor,
parametrized by the coefficientw,[n] € C%. The role of the

disturbance termsi[n] and n,[n] in (6) is basically the same as
of £,[n] andex[n] in (5).

It can be seen that the formulation (6) forms a bilinear statEce
representation, since both the states and the predictfficipets are
estimated. This necessitates application of the nonlimeesions of
the Kalman filter. In some cases, it is possible to apply thersed
Kalman filter (EKF) to jointly estimatéi,[n] and wy[n], which in
the literature is known as the joint EKF [22, sec. 5]. In thisrkvwe
will consider two realizations of (-, -) that allow application of the
EKF: 1) linear, whenay[n + 1] = w}, [n]ax[n], and 2) nonlinear,
when f (-, -) is represented with a feedforward neural network.

To be able to obtain long-term predictions, i.£..> 1, from (6)
we iterate the transition equatiaf times.

Initialization of the hypermodels4, can be done similarly to

the initialization of Sy, making sure that initial hypermodels simply

repeat the last seen value. However, since the modgldo not take
part in tracking, they might also be initialized randomly, drawing
model coefficients from a certain distribution. The initeavariance

matrix should then be chosen to be quite large, to minimiz th

influence of the initial hypermodel coefficient values.

IV. TRACKING AND PREDICTION RESULTS FOR THE MEASURED
CHANNELS

To demonstrate the tracking results, we estinfate 20 multipath

components and reconstrudt = 4 tracks. The reconstructed

trajectories of multipath components for these tracks amva in
Fig. 4. By taking Fig. 1 as a reference, we can clearly deteudtipath

w
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Measured Tr. #2°
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Fig. 4. Four reconstructed tracks.

components in the vicinity of the LOS (approXusec), and then a
couple of distant reflections &t5usec and2.8usec that are clearly
identified as seen in Fig. 4. The strongest estimated conmp®rie
these locations were used to initialize the tracking atari In Fig.

prediction, but hypermodels can surely be utilized for mgkiong-
term forecasts by extrapolating the hypermodels into theréu In
Fig. 4 we tracked the components over the distance 88\. Taking
into account thah ~ 0.15m, we easily compute that the total walked
distance ist.2m, or equivalently4.2sec of tracking time.

To predict multipath gain, we utilize a linear predictor v = 3
coefficients, and a Neural Network with withinput neurons, and one
hidden layer with7 neurons with sigmoidal activation functions. In
the case of the multipath gain, we can analyze the predicfimtity
off-line, once the tracks have been reconstructed. Forpghipose
we introduce the notion of theaive predictor The naive predictor
utilizes (6) but assumes thak[n + £] = ax[n]. In some sense this
is a zero-order predictor.

An example of a gain prediction faf = 1 and the linear predictor
is shown in Fig. 5.

Real part

L Qhea b
—True signal

-o-Predicted signal
- - Naive Prediction

Normalized gain

Normalized gain

Distance, A

Fig. 5. Linear gain prediction for the Track #ZL.= 1.

Qualitatively, the prediction performance faf > 1 can be
assessed using the corresponding prediction efidr Using e[n],
we can define the prediction gain (PG)rea as

wherec?.,.. is the variance of the true signal that we are predicting,
and o2 is the variance of the prediction error. We see that the
prediction gain is an analogue of the classical signaldisen ratio,
modified to reflect the prediction quality. In our case, hogrethe
application of eq. (7) is not fully justified, since botin] and the
signal we predict might exhibit short-term transient bebiavi.e.,
generally they are nonstationary. A possible way to altevihis is to
consider a segmental prediction gain — an equivalent of¢geental
SNR, often used in speech coding applications [23].

The basic idea behind the segmental PG is quite simple: ttze da
sequence is sectioned into relatively small chunks of size),
over which signal stationarity can be assumed. For eachkchtime
individual PG is computed according to (7). The final Segmental PG
is then found as an average over all the partial’®6ver the whole
data sequence.

The evaluated PG as a function of the prediction horiZoover
the distance of4.2m is shown in Fig. 6. For both predictors we
plot the best, as well as the averaged (over4heacks) prediction
performance.

The obtained plot shows that short-term prediction of thétipath

2
Otrue
o?

Gprea = 101o0gy ( (7

4 we also plot the outputs of the track hypermodels. Recait thoain variation is quite feasible. If we take3aB line as a minimum

the latter acts as a predictor able to forecast componeunttste
into the future. For tracking purposes we consider only atsi@om

2|t is of course possible to devise a learning algorithm foxediprediction

useful prediction quality, we see that we can forecast agddr5\

into the future for the strongest track, which is the Tratk &learly,
this track is the strongest one, as seen in Fig. 4, and thisgdisier to
build a proper track, and from that the correct hypermodbé BNR

horizon £ > 1, but this development goes beyond the scope of this paperfor other tracks is lower and the corresponding predictionizons
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Fig. 6. Prediction gain for different prediction horizons.

shorter. To compare the achieved prediction quality, werres [6].
In this work the authors report the achievable predictioniZons

for the measured data only to ze \/60. However, we see that
at least for some strong tracks we significantly outperfohmsé
results. It should also be stressed that in our case theabpatnpling

check for£ > 1 The obtained simulation results prove the potential
of the multipath-oriented framework to predict the dynasnaf the
multipath components, and thus of the whole channel, irgduture.
With a quite simple adaptive linear predictor we were ablfotecast

as long asl.5\ at 3dB PG for the strongest track. However, we
conjecture that efficient track management can bring thist leven
higher.

(1]

(2]

(Bl
[4

[l

5

—_

(6]

(7]

is much lower, i.e., onlyr samples per wavelength, which adds to

the efficiency of our approach. In our experiments we tridtedint
orders and structures for both linear and nonlinear predictWe

noticed that linear hypermodels are generally better thamonlinear
ones. Linear structures are easier to update and they edgsi data
to reliably estimate coefficients, as compared to the neatimodels.

V. CONCLUSIONS

8

-

El

In the presented work we have considered a general framework
for predicting wireless MIMO channels. The framework cstsi [10]

in several basic steps that include: 1) extraction of thetipath

components from the measured channel (which is accomgdlishe
using a well-known SAGE algorithm), 2) tracking the estiatht [11]

components over time, and, 3) learning and updating the rdigsa

of the multipath hypermodels. The latter two steps are sbjomtly
in the spirit of the Bayesian sequential estimation, by ¢ogpthe
adaptive hypermodel construction with the dynamical peiogning
to associate the estimated multipath components over fitreemain

[13]

emphasis of this work was put on steps 2) and 3). The tracking [@4]

components was solved using multipath component distamggeled
with dynamical programming to find optimal associationse Tatter
relies on smooth parameter variation, which in turn can b=iesd

by increasing spatial sampling of the data. Since the maitip

components might appear and disappear due to multipler&acoch
as changing environment, the future development of the odlettust

also consider track management strategies to remove wagistand

search measured data for new ones.

The proper parameter association allows to adaptively tngts

track hypermodels. We introduced two types of predictorgracture
hypermodel that predicts the ‘position’ of the multipathmgmnent,

[15]
[16]

[17]

[19]
[20]

needed for the tracking algorithm, and a gain hypermodet tha

we used to forecast multipath gain for possible power-ciletl
applications in the mobile. While the former is a simple &inérend
predictor, the gain hypermodel is more complex. We studieeal
as well as nonlinear structures. It was found that linearbatter,

[21]

[22]

since they require less data to adapt, and thus are lessti@ensj23]

to transients and tracking errors, unlike the nonlineaucstres.
However, the iterative nature of the linear predictor reegistability
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