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Abstract— Wireless systems are subject to fading - time variations of
the receiving conditions caused by multipath propagation and transceiver
movements. Prediction of fading allows to ‘learn’ the channel state
information (CSI) in advance and adjust the transmission scheme
accordingly. In this contribution we consider a framework to handle
predictions of general fast- and non-flat fading MIMO wireless channels.
The approach is based on modeling the dynamics of individualmultipath
components, extracted with the SAGE algorithm. This decreases the
rate of variation of the channel thus allowing a greater prediction
horizon and simpler predictor designs. The extracted components are
then tracked using dynamical programming coupled with the multipath
component distance measure, and component parameters are then
predicted over time using adaptive predictors – hypermodels. We
consider linear as well as nonlinear predictor designs. This prediction
scheme is applied to MIMO impulse response measurements in2GHz
frequency band, tracked over the distance of≈ 4m, achieving prediction
horizons of 1.5λ.

Keywords—fading prediction, channel parameter estimation, multipath
component distance, dynamic programming

I. I NTRODUCTION

Wireless systems are subject to fading - time variations of the
receiving conditions caused by multipath propagation and transceiver
movements. The received power undergoes deep fades within a
time-frame corresponding to one wave-length which, for a typical
communication system, amounts to movements on the centimeter
scale. For efficient transmission, the communication system has to be
able to mitigate fading effects. Should the current channelstate infor-
mation (CSI) be known in advance, the transceiver could re-allocate
internal resources in a better way or alter the transmissionscheme
in anticipation of the future conditions. This can be accomplished by
predicting the CSI.

Fading mitigation by means of channel prediction has been studied
and proved viable in a number of works [1]–[10]. These techniques
were used to aid power control and resource allocation [3], [6],
downlink diversity and adaptive modulation [1], [9]. The fading
is often assumed to be a deterministic process with time-varying
parameters. This process can be modeled using linear [2], [7] or
nonlinear [3], [10] methods. Predictions are then made by propagating
the learned dynamics into the future. These methods were studied for
Single Input Single Output (SISO) narrowband [2], [4], [9],as well
as wideband channels [8]. In [6] it has been recently proposed to
combine different channels in a smart antenna system for prediction
of the downlink received power, however, the authors only consider
the narrowband case. In this contribution we discuss our latest results
on predicting the Multiple Input Multiple Output (MIMO) channels
that undergo fast non-flat fading.

Compared to the SISO case, multiple antenna systems deliver
larger amounts of information about the propagation environment.
Not exploiting this information might be too wasteful. Since fading

results from the interaction between different multipath components,
it can be advantageous to extract them from the channel using
estimation techniques and treat each component as an individual
channel. For example, in the Single Input Multiple Output (SIMO)
case, each multipath can be described by a multipath complexgain
al, delay τl, Doppler shift νl, and Angle-of-Arrival (AoA) φl

1.
The advantage of such decomposition is obvious: each individual
channel will have a larger coherence time, coherence bandwidth,
and coherence distance, and thus it is more immune to fading.Such
approach can be generalized straightforwardly to the wideband (as
well as narrowband) MIMO, SISO, and MISO systems.

In practical channels not only power (i.e., the multipath gain) but
also the other multipath parameters vary with time. As we will see,
this temporal variation obliges us to tackle several questions:

• How can the multipath components be estimated?
• How to keep the multipath structure up-to-date?
• How to make predictions?

In the following sections we will subsequently consider these ques-
tions. We will illustrate the principles of the algorithm based on the
SIMO channels, since the presented approach can be easily extended
to other channel configurations.

Throughout the text we will demonstrate the performance of the
proposed algorithms on the measured MIMO channel data obtained
by Forschungszentrum Telekommunikation Wien (FTW) in Vienna,
Austria, under the supervision of Helmut Hofstetter [11]. The mea-
surements were done with the MIMO capable wideband vector
channel sounder RUSK-ATM, manufactured by MEDAV [12]. The
sounder was specifically adapted to operate at the center frequency
of 2GHz. The transmitted signal was generated in the frequency
domain to yield a predefined spectrum over120MHz bandwidth with
an approximately constant envelope over time. Two simultaneously
multiplexed antenna arrays have been used at the transmitter and
receiver. The transmitter was a uniform circular array with15 sensors
spaced at≈ 6.45cm. The receiver was a fixed uniform linear array,
with 8 sensors spaced half a wavelength apart,λ/2 ≈ 7.5cm. The
measurements were performed outdoors, with the transmitter array
mounted on the roof of a building and the receiver moving witha
velocity of ≈ 1m/s. A MIMO channel snapshot was recorded every
20msec, thus resulting in a spatial resolution of≈ λ/7. For our
purposes we will further select only a SIMO subset by taking asingle
transmitting antenna from the TX array.

The ensuing sections are organized as follows: In Section IIwe
introduce the multipath channel model; Section III introduces and
explains the main steps in predictor design. Finally, Section IV shows
some application results for real measured channels.

1For simplicity, we do not account for the wave polarization and elevation
angles.



II. CHANNEL MODEL AND PARAMETER ESTIMATION

Let us assume that the receiver (Rx) is equipped with an antenna
array consisting ofP sensors located atr0, . . . , rP−1 ∈ R

2 with
respect to an arbitrary reference point. The correspondingequivalent
baseband SIMO channel can then be modeled as [13]:

h(t, τ ) =
L

X

l=1

al(t)c(φl(t))e
jνl(t)tδ(τ − τl(t)), (1)

whereh(t, τ ) ∈ C
P is a vectorized representation of the time-varying

SIMO channel impulse response (IR),al(t) and τl(t) are the gain
and delay of thelth multipath component at timet, respectively. The
phase termejνl(t)t accounts for the phase-shift induced by the corre-
sponding time-varying Doppler frequencyνl(t). TheP -dimensional
vector c(φl(t)) is known as the steering vector of the array and,
provided the coupling between the antenna sensors can be neglected,
it is represented asc(φl(t)) = [c0(φl(t)), . . . , cP−1(φl(t))]

T , where
φl(t) is the Angle-of-Arrival of thel-th multipath. The components
of c(φl(t)) are given as

cp(φl(t)) = fp(φl(t)) exp(j2πλ−1〈e(φl(t)), rp〉)

with λ, e(φl(t)), and fp(φl(t)) denoting the wavelength, the unit
vector inR

2 pointing in the directionφl(t), and the complex electric
field pattern of thepth sensor, respectively.

The channel model (1) is a key to estimating multipath parameters
since it allows to invoke model-based parameter estimationmethods.
This model also assumes explicitly the plane wave propagation.
Spherical waves, however, can be approximated by (1), though for a
short period of time. Thus, the wave sphericity will manifest itself
by more pronounced multipath parameter variations.

We also stress that the multipath channelh(t, τ ) is a time-varying
process. To capture it the channel measurements are repeated with
the periodTr, producing consecutive channel snapshotsh(nTr, τ ) at
t = nTr. The channel acquisition periodTr automatically defines the
sampling period for temporal variations of the multipath parameters.
As such, it must be chosen so as to make sure that parameter varia-
tions are represented appropriately by the corresponding temporal
samples. A sample power-delay profile of the measured wireless
SIMO channel is shown in Fig. 1
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Fig. 1. Power-Delay profile of the measured SIMO channel.

A. Parameter estimation

Estimation of the multipath parametersθl = {al, τl, νl, φl} from
the measurement data has been extensively studied [14]–[16]. Lately,
a deterministic parameter estimation technique based on the SAGE
algorithm [16] has become very popular. SAGE is an iterative
estimation scheme that approximates the Maximum Likelihood (ML)

solution for the model parameters. It replaces a resulting multi-
dimensional optimization with a sequence of one-dimensional sub-
optimizations, thus finding a solution more efficiently.

Unfortunately, the iterative nature of the SAGE algorithm requires
a good initialization to avoid landing in a local maximum of the
likelihood. Due to space limitations, the basic steps of theSAGE
algorithm are not presented here. The interested reader will find a
detailed algorithm description in [16].

Another aspect arising when using the SAGE algorithm is the num-
berL of multipath components. Generally, for real measurements, the
number of multipath components may vary with time. This presents a
substantial difficulty not only for parameter estimation algorithms, but
also, as we will see in Section III, for parameter tracking. The number
of multipath components can be estimated ‘on-line’, if desired, using
information-theoretic criteria [17]. Accommodation of this situation
goes beyond the scope of the presented work. To account for itwe
will simply fix L to a number large enough to capture the most
dominant waves.

Since the multipath channel generally varies with time, it is
necessary to estimate multipath components for each new channel
observation. This results in a temporal sequence of multipath es-
timates{θl[n]}L

l=1. Unfortunately, parameter estimation algorithms
do not provide any ordering information on how to associate the
multipath components at timen − 1 with those at timen. In order
to be able to learn the parameter dynamics for prediction purposes,
it is necessary to reconstruct this ordering, i.e., to associate the
consecutive parameter estimatesθl[n] that correspond to the same
physical multipath component over time.

The solution we propose is outlined in Section III.

III. C HANNEL PREDICTION

In general, parameter tracking/association is not a trivial problem
since there is noa priori model that can be used to ease this task.
However, this model can be constructed iteratively, as the algorithm
proceeds. In fact, the sought predictor is an appropriate model of the
track dynamics, and the predictor can be trained using the multipath
track. We resolve this interdependency in the spirit of the classical
sequential Bayesian estimation (see, for example, [18]).

Let us now assume that we want to reconstructK tracks from the
multipath estimates{θl[n]}L

l=1, so thatK ≤ L. The block-diagram
of the proposed sequential tracking and prediction scheme is depicted
in Fig. 2.

Tracking/
association

K tracks

Extrapolate/
update

L multipath
estimates

K predictions

θk[n + 1]

Hk

Fig. 2. Iterative tracking and adaptation of the track hypermodels.

The dynamics of each track is captured by a certain deterministic
hypermodel, i.e., predictor,Hk(·), in a sense that

θ̂k[n + 1] = Hk(θk[n], θk[n − 1], . . .). (2)

The term hypermodel is used to stress thatHk(·) encodes the
dynamics of the ‘underlying’ channel component. Expression (2) is
equivalent to theprediction stepof Bayesian sequential estimation.



Once the prediction is obtained, we can define a distance measure
d(·, ·) between the predictionŝθk[n+1] and newly obtained estimates
{θl[n + 1]}L

l=1. The associations are then made so as to minimize
the resulting distance between the predictions and the estimates.
The obtained associations are then used to recursively update the
hypermodels. This constitutes theupdate stepof the sequential
estimation. Note that the proposed scheme is not strictly Bayesian,
but still implements a similar reasoning.

Now, let us consider how the association and hypermodel learning
can be implemented.

A. Track association algorithm

For tracking purposes not all of the multipath parameters contribute
equally to deciding among several alternative track continuations.
Moreover, only a subset of the available parameters uniquely identi-
fies a multipath component. In the simple SIMO case with a linear
antenna array, these are a multipath delayτl, Doppler shiftνl, and
AoA φl. Although the multipath gainal is also estimated, it does
not help to distinguish two different components.

Let sl[n] ⊆ θl[n], l = 1 . . . L denote a subset of estimated
parameters used for tracking at the timen. In our casesl[n] =
[τl[n], νl[n], φl[n]]T . Similarly, ŝk[n] ⊆ θ̂k[n], k = 1 . . . K is a
subset of the predicted multipath parameters obtained asθ̂k[n] =
Hk(θk[n − 1], θk[n − 2], . . .). Then the track association can be
cast as a standard dynamic programming problem.

Consider the graph in Fig. 3. Edges on the graph represent
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Fig. 3. Possible track continuations forK = 2 andL = 3

possible track continuations. Each connection betweenŝk[n] and
sl[n] induces a cost

Ckl[n] = d(ŝk[n], sl[n]) + µCk[n − 1]. (3)

Here Ck[n − 1] is the cost accumulated by thek-th track at time
n − 1, and 0 ≤ µ ≤ 1 is a forgetting factor. Now, let us define a
binary variablexkl such that:

xkl =



1, if sl[n] should be assigned tôsk[n]
0, otherwise

Then, the optimal track association at timen should minimize the
total induced costZ:

argmin
xkl

Z =
K

X

k=1

L
X

l=1

Ckl[n]xkl, so that

L
X

l=1

xkl = 1, k = 1 . . . K, and xkl ∈ {0, 1}.

(4)

Should we have just a single track, i.e.,K = 1, the optimal solution
could be found using the Viterbi algorithm. Solution to problem (4)
is an optimal association for allK tracks simultaneously. It can
be solved using standard linear programming techniques (see, for
example, [19]).

The distance measured(·, ·) can be effectively implemented using
the multipath component distance (MCD) [20]. Basically, MCD is a
weighted Euclidian distance measure, tailored to reflect the specifics

of the multipath component parameters and it is particularly useful
in our application.

B. Hypermodel learning and parameter prediction

Since the whole tracking/prediction approach is Bayesian-inspired,
we employ Bayesian sequential methods for learning track hyper-
modelsHk as well. As we previously mentioned, a parameter subset
sk[n] is used in multipath tracking, and it requires a one-step-
ahead predictor (2) to compute the cost (3). This predictioncan be
accomplished by a dedicated structure hypermodelSk. The ultimate
application might however require long term forecasts of some of
the multipath parameters, not necessarily used in tracking. These will
be denoted asαk[n] ⊆ θk[n]. As the result, we might need other
hypermodels, denoted asAk, used specifically for this purpose.

1) Structure hypermodelsSk: Since the hypermodelsSk are
needed only for a one-step-ahead prediction, we can approximate the
trajectory of the tracks[n]k by a damped local linear trend (DLLT)
[21] and use the Kalman filter framework to learn the trend. For a
single track, the state-space representation of this filteris given as:
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(5)

whereI is an identity matrix of the appropriate size,vk[n] is a vector
of estimated DLLT slopes, and∆ = diag([δτ , δν , δφ]) are fixed
damping factors for each of the multipath parameters. The damping
factors are chosen such that0 ≤ δτ , δν , δφ ≤ 1. Practically, we select
∆k = 0.1I . Although for tracking we need onlyL = 1 prediction,
higher prediction horizons can be realized by recursive application
of the transition equation (5) exactlyL times.

The variance of the disturbance termsǫk[n] and ξk[n] in (5) are
important design parameters. Since the multipath parameters cannot
be estimated with zero variance, the observation noiseǫk[n] can be
related to residual estimation uncertainty of the SAGE algorithm. Due
to the unbiasedness and consistency of the SAGE-obtained estimates
[16], the disturbanceǫk[n] can be treated as a white Gaussian
estimation noise. State noiseξk[n], on the other hand, is left as a
free design parameter. Practically, we choose it so as to make sure
that the ratio between the variance of the state noise and that of the
observation noise is≈ 0.01.

The initialization of the hypermodelsSk is chosen so as to repeat
the last seen value. This can be achieved by selectingvk[0] = 0,
and settingsk[0] to the estimated multipath parameters atn = 0.
Assuming smooth parameter variations, the hypermodel predictions
will not wander too far from the true future values. Such initialization
is more likely to result in correct associations, and thus the proper
values are going to be used to update the predictor coefficients.

2) HypermodelAk: Multipath power prediction is often a desired
output of the channel forecasting. In power prediction we are mostly
interested in accurately modeling the evolution of the multipath gains
and extrapolating it beyond the observation interval. Thus, αk[n] ≡
ak[n]. If we need long-term predictions, more complicated predictors
are required. Again, we stick to the Bayesian sequential methods and
utilize the predictor in the following state-space form:
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where ak[n] = [ak[n], ..., ak[n − Q + 1]]T ∈ C
Q is a vector of

delayed multipath gain samples, andf (·, ·) is the state predictor,
parametrized by the coefficientswk[n] ∈ C

Q. The role of the
disturbance termsςk[n] and ηk[n] in (6) is basically the same as
of ξk[n] andǫk[n] in (5).

It can be seen that the formulation (6) forms a bilinear state-space
representation, since both the states and the predictor coefficients are
estimated. This necessitates application of the nonlinearversions of
the Kalman filter. In some cases, it is possible to apply the extended
Kalman filter (EKF) to jointly estimatêak[n] and wk[n], which in
the literature is known as the joint EKF [22, sec. 5]. In this work we
will consider two realizations off (·, ·) that allow application of the
EKF: 1) linear, whenâk[n + 1] = wT

k [n]âk[n], and 2) nonlinear,
whenf (·, ·) is represented with a feedforward neural network.

To be able to obtain long-term predictions, i.e.,L > 1, from (6)
we iterate the transition equationL times2.

Initialization of the hypermodelsAk can be done similarly to
the initialization ofSk, making sure that initial hypermodels simply
repeat the last seen value. However, since the modelsAk do not take
part in tracking, they might also be initialized randomly, by drawing
model coefficients from a certain distribution. The initialcovariance
matrix should then be chosen to be quite large, to minimize the
influence of the initial hypermodel coefficient values.

IV. T RACKING AND PREDICTION RESULTS FOR THE MEASURED

CHANNELS

To demonstrate the tracking results, we estimateL = 20 multipath
components and reconstructK = 4 tracks. The reconstructed
trajectories of multipath components for these tracks are shown in
Fig. 4. By taking Fig. 1 as a reference, we can clearly detect multipath
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Fig. 4. Four reconstructed tracks.

components in the vicinity of the LOS (approx.2µsec), and then a
couple of distant reflections at2.5µsec and2.8µsec that are clearly
identified as seen in Fig. 4. The strongest estimated components in
these locations were used to initialize the tracking algorithm. In Fig.
4 we also plot the outputs of the track hypermodels. Recall that
the latter acts as a predictor able to forecast component structure
into the future. For tracking purposes we consider only a short-term

2It is of course possible to devise a learning algorithm for a fixed prediction
horizonL > 1, but this development goes beyond the scope of this paper

prediction, but hypermodels can surely be utilized for making long-
term forecasts by extrapolating the hypermodels into the future. In
Fig. 4 we tracked the components over the distance of≈ 28λ. Taking
into account thatλ ≈ 0.15m, we easily compute that the total walked
distance is4.2m, or equivalently,4.2sec of tracking time.

To predict multipath gain, we utilize a linear predictor with Q = 3
coefficients, and a Neural Network with with7 input neurons, and one
hidden layer with7 neurons with sigmoidal activation functions. In
the case of the multipath gain, we can analyze the predictionquality
off-line, once the tracks have been reconstructed. For thispurpose
we introduce the notion of thenaive predictor. The naive predictor
utilizes (6) but assumes thatâk[n + L] = âk[n]. In some sense this
is a zero-order predictor.

An example of a gain prediction forL = 1 and the linear predictor
is shown in Fig. 5.
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Fig. 5. Linear gain prediction for the Track #1.L = 1.

Qualitatively, the prediction performance forL ≥ 1 can be
assessed using the corresponding prediction errore[n]. Using e[n],
we can define the prediction gain (PG)Gpred as

Gpred = 10 log10

“σ2
true

σ2
e

”

, (7)

whereσ2
true is the variance of the true signal that we are predicting,

and σ2
e is the variance of the prediction error. We see that the

prediction gain is an analogue of the classical signal-to-noise ratio,
modified to reflect the prediction quality. In our case, however, the
application of eq. (7) is not fully justified, since bothe[n] and the
signal we predict might exhibit short-term transient behavior, i.e.,
generally they are nonstationary. A possible way to alleviate this is to
consider a segmental prediction gain – an equivalent of the segmental
SNR, often used in speech coding applications [23].

The basic idea behind the segmental PG is quite simple: the data
sequence is sectioned into relatively small chunks of size≈ 2λ,
over which signal stationarity can be assumed. For each chunk i the
individual PGi is computed according to (7). The final Segmental PG
is then found as an average over all the partial PGi’s over the whole
data sequence.

The evaluated PG as a function of the prediction horizonL over
the distance of4.2m is shown in Fig. 6. For both predictors we
plot the best, as well as the averaged (over the4 tracks) prediction
performance.

The obtained plot shows that short-term prediction of the multipath
gain variation is quite feasible. If we take a3dB line as a minimum
useful prediction quality, we see that we can forecast as faras1.5λ
into the future for the strongest track, which is the Track #1. Clearly,
this track is the strongest one, as seen in Fig. 4, and thus, itis easier to
build a proper track, and from that the correct hypermodel. The SNR
for other tracks is lower and the corresponding prediction horizons
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shorter. To compare the achieved prediction quality, we refer to [6].
In this work the authors report the achievable prediction horizons
for the measured data only to be≈ λ/60. However, we see that
at least for some strong tracks we significantly outperform these
results. It should also be stressed that in our case the spatial sampling
is much lower, i.e., only7 samples per wavelength, which adds to
the efficiency of our approach. In our experiments we tried different
orders and structures for both linear and nonlinear predictors. We
noticed that linear hypermodels are generally better than the nonlinear
ones. Linear structures are easier to update and they require less data
to reliably estimate coefficients, as compared to the nonlinear models.

V. CONCLUSIONS

In the presented work we have considered a general framework
for predicting wireless MIMO channels. The framework consists
in several basic steps that include: 1) extraction of the multipath
components from the measured channel (which is accomplished
using a well-known SAGE algorithm), 2) tracking the estimated
components over time, and, 3) learning and updating the dynamics
of the multipath hypermodels. The latter two steps are solved jointly
in the spirit of the Bayesian sequential estimation, by coupling the
adaptive hypermodel construction with the dynamical programming
to associate the estimated multipath components over time.The main
emphasis of this work was put on steps 2) and 3). The tracking of
components was solved using multipath component distance coupled
with dynamical programming to find optimal associations. The latter
relies on smooth parameter variation, which in turn can be ensured
by increasing spatial sampling of the data. Since the multipath
components might appear and disappear due to multiple factors, such
as changing environment, the future development of the method must
also consider track management strategies to remove weak tracks and
search measured data for new ones.

The proper parameter association allows to adaptively construct
track hypermodels. We introduced two types of predictors: astructure
hypermodel that predicts the ‘position’ of the multipath component,
needed for the tracking algorithm, and a gain hypermodel that
we used to forecast multipath gain for possible power-controlled
applications in the mobile. While the former is a simple linear trend
predictor, the gain hypermodel is more complex. We studied linear
as well as nonlinear structures. It was found that linear arebetter,
since they require less data to adapt, and thus are less sensitive
to transients and tracking errors, unlike the nonlinear structures.
However, the iterative nature of the linear predictor requires stability

check forL ≫ 1 The obtained simulation results prove the potential
of the multipath-oriented framework to predict the dynamics of the
multipath components, and thus of the whole channel, into the future.
With a quite simple adaptive linear predictor we were able toforecast
as long as1.5λ at 3dB PG for the strongest track. However, we
conjecture that efficient track management can bring this limit even
higher.
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