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ABSTRACT

This paper addresses a new approach for the design of
multiband filters with step like magnitude responses and
extremely flat, weighted passbands down to µdBs. Our new
technique can also be used for the multiband step-wise
approximation of arbitrary filter magnitude responses with
precise transition band control. One marked advantage of the
technique is that our basic building blocks are the modified
polyphase (IIR) filters as reported in [1]-[3]. The points of
transition from one flat-top to another, namely the multiple
transition bands of our filter are completely free of cross-over
oscillations. One other advantage of this technique is that we are
not confined to employing IIRs only. To this end perfect
reconstruction FIR filters as in [4] can also be used. In both the
FIR and IIR cases our technique is general purpose and works
for both real and complex valued filter coefficient cases.

THE MODIFIED POLYPHASE HALFBAND
BUILDING BLOCK

Our polyphase structures suggested in [1]-[2] are very
attractive for the design and implementation of halfband
Lowpass and Highpass filters achieving very small passband
ripples for a very small coefficient budget. Lowpass and
highpass filter functions can be effected using the same
coefficients, with exception of a sign change at one of the
summation block. By combining lowpass and highpass filters as
in Figure 1(a) we can get a very efficient two-band filter.
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Figure 1: Two-path Polyphase Basic Building Block:
(a) The Structure, (b) The Allpass Filter Block

It has controllable band K0 and K1, where K0 is the gain of
the lower half band and K1 is the gain of the upper half band.
Figure 1(a) shows the form of the computationally as well as
hardware efficient single coefficient second-order allpass
building block employed in the parallel bands of the structure of
Figure 1(b). Lowpass and highpass prototype filters combined in

the basic building block in Figure 1(a) are complementary
filters. When they are added with same gain factors K0 and K1,
they result in the perfect reconstruction:
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where Ai(z) is the 2nd-order allpass filter as in Figure 1(a):
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When K0=K1, the filter becomes an allpass function having the
phase response φ(ν):
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where ν is the normalized frequency.

0 0 .1 0 .2 0 .3 0 .4 0 .5  ν
0 .6

0 .7 0

0 .8 0

0 .9 0

1 .0 0

1 .1 0
(a )

K 1 = 0 .7 5

K 0 = 1

|H (ν ) |

0 . 2 4 5 0 . 2 5 0 . 2 5 5  ν
0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

| H ( ν ) |
1 . 0 0

( b )

Figure 2 Magnitude Response of the Basic Building Block
with Gains K0=1 and K1=0.75. (a) Full-band, (b)
Zoomed in the Transition Band

If gain factors K0≠K1 then in the result the two-band filter
will have band gains K0 in the first band and K1 in the second.
Figure 2 shows the magnitude response of a sample four
coefficient (ninth order) two-band building block filter as in
Figure 2(a) having gain K0=1 in band 1 and K1=0.75 in band 2,



displaying smooth transition band characteristics as in
Figure 2(b). Additionally there are no oscillations in the
transition band which follows the transition band of the original
highpass filter (Figure 2).

It can be proved that the characteristics of the building block
filter is equiripple in both bands and displays a monotonic
cosine like shape in its transition region from one band to
another. Their symmetric monotonicity in these transition
regions ensure oscillation free behavior. We observe the
detailed behavior of the building block filter in its bands as well
as in its transition region through the calculation of the filter
frequency response. This is obtained by evaluating the transfer
function (1) on the unit circle, i.e.
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which gives
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As the building block filter is a linear combination of two
complementary equiripple polyphase filters, [1]-[2], the building
block filter will also have an equiripple behavior in both its
bands. For the class of allpass filters (1b), which we use here,
their phase response changes monotonically between zero and
-2π. Therefore the overall filter (3a) has magnitude response at
frequencies near DC (small ν), |H(ν)|≈K0, and for frequencies
near Nyquist frequency (ν close to 0.5), |H(ν)|≈K1. The
magnitude response for frequencies between DC and Nyquist is
determined by the dynamics of φ0(ν) and φ1(ν). With reference
to (3c) functions φ0(ν) and φ1(ν) have to be custom designed to
force the argument {φ0(ν)-φ1(ν)+2πν} to be approximately zero
in the first band and equal to π in the second one.

The building block order, though the scaled sum of two
complementary functions, will not increase in complexity and
will retain the order of the prototype highpass/lowpass filter.
This may seem wrong at the first glance as addition of two
transfer functions usually leads to the filter order equaling to the
sum of orders of the added filters. However, the key to the
pegged order of complexity lies in the fact that we are using the
same structure to generate both lowpass and highpass filters.

THE MULTIBAND STRUCTURE

At the heart of the multiband polyphase filter lies the two-
path halfband building block.  As its name suggests, the
halfband filter is restricted to having cut-off at half-Nyquist.
However, this is not a problem as the cut-off can easily be
changed through the use of frequency transformations, as
outlined in [5]-[7]. If a number of such two-band filters are

cascaded, the resulting filter can be engineered to exhibit the
desired multiband transfer function. If the simplest frequency
transformation, that of real lowpass-to-lowpass as in (4a), or the
lowpass-to-highpass as in (4b) is used, then the mapping can be
performed with first-order allpass filters.
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where νold and νnew  are the cut-off frequencies of the
original and target filters respectively.

During transformation each delayor of the original filter is
substituted with the function zold(znew). As a consequence, the
order of the resultant filter is kept the same as the starting-point
prototype order, and hence no increase in implementation
complexity.

On the other hand the lowpass-to-lowpass transformation
squeezes or stretches the rest of the filter frequency response to
ensure that the target filter is real.  It should be made clear that
the amplitude of the ripples is unchanged as a result of the
stretching and squeezing process.  However, the location of the
peaks and troughs of the ripples, as well as the cut-off frequency
and transition-band of the filter are altered.  In our application
the prototype two-band filter is prewarped so that the resulting
target filter has the required transition bandwidth, and it is
centered around the new cut-off frequency. In order to create a
multiband filter a set of M two-band filters are cascaded to
form:
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where K0…KM-1 specify magnitude response gains of the overall
filter in all their passbands.

Cut-off frequencies are changed through the lowpass-to-
lowpass frequency transformation as in (4a). The variable M is
the number of bands of the overall target filter. Each of the
building block filters must have magnitude response equal to
unity in their first band, ensuring the magnitude response shape
created by the preceding cascaded sections are unaltered. This
idea is clearly exposed in Figure 3, for the case of M=4. The
next band of the target filter is created through careful choice of
the scaling factor K.
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Figure 3 Composing Multiband Magnitude Response from
Frequency Transformed Basic Building Blocks



Every building block filter is designed with requirements for
ripples and transition bands so as to match the specifications for
the overall target filter.  Furthermore each building block filter
undergoes a lowpass-to-lowpass transformation. As a result of
the stretching and squeezing on the magnitude response caused
by the transformation, it is not possible to calculate coefficients
αj in a straightforward manner as in (4). This is because the
transition band after the transformation is not centered around
the target cut-off frequency. The transformation process also
complicates the calculation of the required transition band of the
lowpass prototype filter.  Therefore an iterative approach has
been adopted for calculation of the frequency transformation
coefficient for each basic two-band subfilter, and is summarized
as follows:

1. Specify the target cut-off frequency νcut2 and target transition
band ∆ν2 (νcut1=0.25 is the original filter cut-off frequency).

2. Calculate coefficient α from (4a)

3. Inverse transform the upper and lower edges ( T± ) of the
target filter transition band ν2,T±= νcut2±∆ν2 into ν1,T± using
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4. Modify the target cutoff frequency using:
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5. If the modification done is grater than the allowed frequency
error, then go to step 2, else:

6. Calculate the required transition band of the prototype
lowpass filter using:

 ∆ν ν νΤ Τ1 1 1= −+ −, , (8)

Another problem is the specification of the attenuation for
prototype filters so that the ripples of the overall filter in each of
its individual passbands have the desired value. The passband
and stopband ripples, εp, and εs, respectively of the polyphase
filter are related to each other through, (1-εp)2+εs

2=1 [2] and the
overall multiband filter is designed as a cascade of such filters.
The implication of this is that one can not get magnitude
response ripples to exactly match the specification. However,
one can design the basic polyphase filters so that the resulting
ripples are smaller than the specification calls for. The
minimum values of the magnitude response in both passbands,
|H|min 0 and |H|min 1 (passband ripples ε0 and ε1) of the basic two-
band building block filter are:

( )
( )

H K 10 K K           and          1 H

H K 10 K K           and          1 H
min 0

2

0
2 -A

10
1
2

0
2

0 min 0

min 1

2

1
2 -A

10
0
2

1
2

1 min 1

= + − = −

= + − = −

ε
ε

(9)

where A is the stopband attenuation in dB of the polyphase
lowpass filter employed in constructing the two-band building
block.  If a number of such basic two-band building blocks are
cascaded to form a multiband filter, then the ripples in each
passband become a function of all the prototype polyphase
lowpass filter attenuations and the minimum gain |H|min in each
passband (passband ripples, ε) can be calculated from (10).
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The calculation of the required attenuation (passband
ripples, εS) of the prototype polyphase filters requires solving a
set of linear equations AMxM-1×EM-1x1=BMx1. This is a standard
linear programming problem which was solved in MATLAB
with 'lp' function.
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where εR,1…M are the required ripples.

MULTIBAND COMPLEX STRUCTURES

The idea outlined for the design of multiband real IIR filters
has been extended to the design of complex multiband IIR
filters. This is done by combining the lowpass-to-lowpass
frequency transformation with a complex rotation in the
frequency domain:

( )z = cz          where          c ej2 new old= −π ν ν (12)

The idea is very similar to the real case and only requires
small modifications to the equations used previously to
incorporate an additional frequency transformation (12) on the
prototype polyphase filter prior to changing its cut-off frequency
through (4). The structure of Figure 1 is modified by the
addition of a phase shift by -π/2 to each delay operator in the
transfer function. This rotates the magnitude response of the
prototype filter by ∆ν=0.25 (∆φ=π/2) in the frequency domain.
A Hilbert transformer may be used to make the π/2 phase shift.

EXAMPLES

Here we show two examples, one for the real and one for
the complex case. We set similar specifications to both designs
in order to make comparisons between the real and complex
design methods. The specifications for both filters are given in
Table 1 and the results are presented in Figure 4 for both cases.
In both cases the resulting overall IIR filter order is 50 (81
multiplications). This is a very good result considering the
ripples that were achieved in each passband. These were better
than what was required. The cut-off frequencies and transition
bands were achieved with accuracy bordering on the floating-
point precision of the computational platform. This level of
accuracy can be apportioned to the prototype polyphase filters
having only four to six coefficients as well as the simple first
order frequency transformations employed. As a result of the
small number of computations are involved, 81.  For comparison
we compared our algorithm with YULEWALK one (real filters)
designed for identical specifications [8] (Figure 4a). Although
the specifications for level values were achieved, bandedges



were all shifted approximately by ±0.0015 and ripple values
were a lot higher than for the polyphase approach (Table 1).
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Figure 4 Magnitude Responses of the Five-Band Example
Filter, (a) Compared to Yulewalk, (b) Zoomed
into Passbands

SOME REMARKS

In this paper we presented a novel technique for the design
of multiband IIR filters, employing two-path polyphase building
blocks achieving solutions to the very stringently specified

magnitude response requirements for both real and complex
cases. The structure suggested in Figure 1 is the most efficient,
if not the only way, to implement this class of filters, as
computing the equivalent IIR transfer function would necessitate
too many convolutions and hence suffer from numerical error
accumulation.
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Band Number 0 ↔↔ 1 ↔↔ 2 ↔↔ 3 ↔↔ 4

Real Filter Case

Gain 2 - 10 - 4 - 8 - 6

Ripples required/achieved [10-8] 100/1.41 - 100/6.6 - 100/6.84 - 100/9.1 - 100/8.23

Ripples for "Yulewalk" [10-3] 0.42 1.5 1.15 0.4 0.1

Cutoff freq./Transition band - 0.1/0.1 - 0.2/0.01 - 0.3/0.05 - 0.4/0.075 -

Complex Filter Case

Gain 2 - 10 - 4 - 8 - 6

Ripples required/achieved [10-8] 100/0.307 - 100/6.6 - 100/6.84 - 100/9.1 - 100/8.23

Cutoff freq./Transition band - -0.3/0.2 - -0.1/0.02 - 0.1/0.1 - 0.3/0.15 -

Table 1  Specifications and Results for the, Real and Complex Multiband Filter Design Example.


