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Abstract

We consider Bayesian networks (BNs) with discriminatively optimized parameters and
structures, i.e. BNs that are optimized to maximize a kind of probabilistic margin. These
maximum margin Bayesian networks (MM BNs) are inspired by support vector machines
(SVMs) that aim to separate samples from different classes by a large margin in some fea-
ture space. MM BNs achieve classification performance on par with BNs optimized accord-
ing to other discriminative criteria, e.g. maximum conditional likelihood. Furthermore, in
several applications, they achieve classification performance comparable to that of both,
linear and kernelized, SVMs. In the literature, two definitions of MM BNs with respect
to their parameters are available. We analyze these definitions in terms of asymptotic
consistency, extend these definitions by a generative regularizer and analyze properties
of MM BNs with respect to reduced-precision implementations.

We start by analyzing the asymptotic consistency of MM BNs. Our analysis reveals a de-
ficiency of MM BNs according to the definitions available in the literature. This deficiency
renders MM BNs inconsistent in the multiclass case under certain conditions. However,
this deficiency is not eminent in the binary-class case. In experiments, we demonstrate
that MM BNs are nevertheless able to compensate for model-mismatch, i.e. the true data
distribution and the distributions representable by the learned models do not match.

By slightly altering the definitions existing in the literature, we extend MM BNs to in-
clude a generative norm-regularizer. This regularizer consists of normalized frequency
counts and is balanced against a margin term. In this novel formulation, MM BNs can be
interpreted as linear SVMs with a special regularizer or, alternatively, as BNs that are opti-
mized generatively as well as discriminatively. This interpretation allows one to naturally
deal with missing features scenarios, simply by marginalization of the missing features,
and to perform semi-supervised learning — the unlabeled data influence the generative
regularizer. State-of-the-art performance of the novel MM BN formulation is achieved in
a large set of experiments and efficient algorithms for parameter learning in large scale
scenarios are presented.

Furthermore, we consider reduced-precision implementations of BNs. We especially
focus on BNs optimized for a large margin, either in terms of their structure or their pa-
rameters. In preliminary experiments, we investigate the classification performance of
BNs with parameters rounded to some specified precision. These experiments extend re-
sults from the literature and reveal that BNs used for classification are well suited for
reduced-precision implementations. We continue by deriving several types of classifica-
tion performance bounds for BNs. These bounds can be used to analyze worst-case classi-
fication performance upon parameter rounding. In experiments, these bounds are evalu-
ated. Furthermore, BNs optimized for a large margin (in terms of their parameters and
their structure) are compared to generatively optimized BNs in terms of robustness to
parameter quantization and in terms of absolute classification performance. We extend
our reduced-precision considerations by proposing an alternative to determining reduced-
precision parameters for MM BNs by rounding. Therefore, we slightly modify our formu-
lation of MM BNs and propose algorithms for maximizing this modified criterion over the
search space of reduced-precision parameters. In several experiments, we demonstrate that
parameters learned in this way yield better classification performance than parameters ob-
tained by rounding. Finally, we end our investigations by considering parameter learning
using reduced-precision computations only. Therefore, we propose specialized algorithms
for generative and discriminative parameter learning and demonstrate their effectiveness
in experiments.
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1 Introduction

Intelligent systems are emerging in almost every field of our daily lives. For example,
expert systems are used in medicine to aid the diagnosis of diseases [23], urban traffic is
controlled automatically to quickly adopt to changing traffic situations [30] and dialog sys-
tems are used to provide advanced phone services like automated ticket reservation [29].
All these intelligent systems rely on machine learning and pattern recognition techniques:
by analyzing collected data, these systems try to identify relevant factors and generalize
them to perform useful actions on new unseen data.

Data analysis is commonly performed using statistical methods and probability calcu-
lus [32], e.g. by using probabilistic models. These models are used for modeling relations
in the data of interest. Depending on the application, the models are learned either super-
vised or unsupervised [20]. In unsupervised learning, the goal is to identify structure in the
data, e.g. the distribution of the data or clusters. In supervised learning, the data of interest
consists of input-output pairs and the task is to assign some given input to a desired output
value, e.g. classification of images into images representing animals and images not repre-
senting animals. The output values can be more complex than a single symbol/category,
i.e. structured [46, 45]. Structured outputs are for example whole sentences in machine
translation.

Once a probabilistic model is available, it can be used to answer queries. Possible
queries are for example the computation of the probability of a certain disease given sev-
eral symptoms, finding the five fastest routes from A to B tomorrow evening, or identi-
fying the most likely written text corresponding to some recorded utterance. Answering
such queries requires probabilistic inference, i.e. deriving (probabilistic) conclusions given
some evidence [20].

We consider special instances of probabilistic models, i.e. probabilistic graphical mod-
els (PGMs) [28, 24]. PGMs combine elements of graph theory and probability theory. They
can be classified into undirected graphical models, i.e. Markov networks (MNs), directed
graphical models, i.e. Bayesian networks (BNs), and factor graphs (FGs). All these PGMs
have in common that they allow for an easy interpretation and enable one to read off con-
ditional independencies. Given an undirected graph G, a set of random variables (RVs)
forms a MN with respect to G if these RVs satisfy the local Markov properties, i.e. spe-
cific conditional independence properties. Under certain conditions, MNs can be equiva-
lently defined as probability distributions that factorize into a product of positive poten-
tials associated with the undirected graph (Hammersley-Clifford Theorem) [4]. MNs are,
for example, widely used in computer vision, especially in the form of conditional random
fields [26]. FGs are defined as bipartite graphs of variable and factors nodes that define the
factorization of a function. For suitable factors, FGs represent probability distributions (or
can be normalized to do so). FGs are, for example, used in coding [25]. In the following we
consider the third type of PGMs, i.e. BNs, in more detail.

BNs [33, 24] consist of a directed acyclic graph (DAG) encoding conditional indepen-
dencies and a set of conditional probability densities (CPDs) associated with the nodes of
the graph. The encoded conditional independencies can be read off using d-separation [33,
28]. BNs are, for example, prominent in the medical domain [23], in acoustics [50], e.g.
ASR, in the form of hidden Markov models (HMMs), and in information retrieval [11]. In
many cases, BNs allow a compact representation of probability distributions and, thereby,
a reduction of the number of parameters needed to specify that distribution (compared to
a fully tabular approach in the case of distributions over discrete RVs) [24]. To use a BN
as probabilistic model for some task, the BN must be specified, i.e. its graph and its CPDs
must be determined. Learning the DAG of a BN is known as structure learning and learning
the CPDs as parameter learning. The structure as well as the parameters can be optimized
either generatively or discriminatively [16, 36, 34, 17, 41, 37], cf. Figure 1.1.

Generatively optimized structures are typically learned using Bayesian scoring func-
tions, e.g. K2 or Bayesian Dirichlet score, or by maximizing some form of penalized like-
lihood, where the penalizer is for example the minimum description-length, the Akaike
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Figure 1.1: Strategies for learning BNs [35]; for parameter learning, for example, the max-
imum likelihood (ML), maximum conditional likelihood (MCL), maximum margin (MM)
and discriminative frequency estimates (DFE) objectives are available; for structure learn-
ing, for example, the conditional mutual information (CMI), the explaining away residual
(EAR), the maximum margin (MM), the conditional likelihood (CL), and the classification
rate (CR) can be used as objective functions.

information criterion or the Bayesian information criterion — a summary of methods and
scores can for example be found in [10]. Discriminatively optimized structures are often
found by using greedy hill-climbing methods and optimizing some discriminative objec-
tive, e.g. conditional-likelihood, margin, or the classification rate [18, 37].

Similarly, parameters can be either learned generatively, i.e. unsupervised, or discrim-
inatively, i.e. supervised or semi-supervised. According to the generative paradigm, and
from a frequentist viewpoint, parameters are typically learned using ML estimation, i.e.
the parameters are optimized to maximize the probability of observing a given training
set. From a Bayesian viewpoint, the parameters of a BN are RVs. Assuming a Dirichlet
prior for these RVs and global parameter independence, the posterior distribution of the
parameters follows a Dirichlet distribution as well [21] (the Dirichlet distribution is a con-
jugate prior of the multinomial distribution). Then, by marginalizing out the parameters,
the probability that some node in a BN is in a specific state given the state of its parent
nodes, equals to the ML estimate with imaginary sample counts. In contrast to the gener-
ative paradigm, the discriminative paradigm dictates to learn parameters such that some
task, e.g. classification, can be performed as well as possible. Examples of discriminatively
optimized parameters for classification are MCL parameters [17], DFE [44], and MM pa-
rameters [19, 38]. MM parameters have only recently been proposed and have not been
studied rigorously in various aspects.

We mainly consider BNs with MM parameters, i.e. BNs for classification, which are
also referred to as Bayesian network classifiers (BNCs) [16, 3]. Furthermore, we assume a
given network structure and discrete valued nodes. In this setting, MM refers to a kind
of probabilistic margin [19, 38]. Margin-based methods are very successful in the field of
machine learning, especially due to the success of support vector machines (SVMs) [47,
43]. SVMs and their underlying theory is based on empirical risk minimization combined
with strong theoretical guarantees [47]. Large margin methods also made their way into
structured prediction tasks, e.g. [46, 45].
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1.1 Some Unresolved Issues

Theoretical guarantees for SVMs, which are partly accountable for the wide application of
these classifiers, include asymptotic consistency guarantees. Asymptotic consistency en-
sures that in the limit of infinite training data the optimal classifier within the considered
function class is found. As recently proven, SVMs, with proper choice of the regularizer
and universal kernels, satisfy this appealing property [42]. Asymptotically inconsistent
algorithms for learning classifiers are not guaranteed to return the right thing and may
result in a systematic bias [47]. With regard to BNCs, the following consistency guaran-
tees are available in the literature: Assume a fixed graph for a BNC when learning ML
parameters. Under the condition that the conditional independencies implied by the as-
sumed graph match that of the true data distribution, this true data distribution is learned
asymptotically almost surely [24]. Consequently, also all conditionals correspond to the
true conditionals asymptotically. Therefore, the learned BNCs are in this case optimal,
i.e. the Bayes classifier is obtained. Roos et al. [41] extend these arguments to BNCs with
MCL parameters. They also argue that in cases in which the considered graph structure
cannot represent the conditional independencies of the data, discriminatively optimized
parameters can be advantageous over generatively optimized parameters. While asymp-
totic consistency is an important property, no similar results are available for BNCs with
MM parameters.

As already mentioned, BNCs can be optimized either generatively or discriminatively
with respect to their parameters, cf. Figure 1.1 (as mentioned, this is also possible in terms
of the structure, but this case is not considered here). Furthermore, it is also possible to de-
fine models at the intersection of the generative and the discriminative domain, i.e. hybrid
models [27]. Such models have, by definition, both generative and discriminative aspects
and can, therefore, combine advantages of both types of models [27]. For instance, there is
an ongoing discussion in the machine learning community about whether it is better to use
generatively optimized or discriminatively optimized models; Ng and Jordan [31] compare
BNCs with naive Bayes (NB) structure that are either trained using the ML criterion or the
MCL criterion (this corresponds to logistic regression). They identify regimes in which it
is better to use generatively optimized parameters and regimes in which it is better to use
discriminatively optimized parameters.1 Hybrid models have also become important in
the last few years in the deep learning community, cf. generative pre-training of neural
networks [15].2 Furthermore, as a possible advantage over purely discriminatively opti-
mized models, hybrid models have a generative component by definition. This justifies the
usage of these types of models in missing feature scenarios and scenarios other than the
classification scenario they are optimized for. Another aspect in favor of hybrid models is
that they are directly amenable for semi-supervised learning [8, 9, 13]. Semi-supervised
learning becomes increasingly important as the amount of available data increases because
of, in general, large costs for labeling training data, whereas unlabeled data can be often
collected at almost no cost. All these arguments make hybrid models an interesting class
of models, e.g. [40, 5]. Hybrid models in the domain of BNs are rarely considered, e.g. [1].
These models typically optimize a blend of a discriminatively optimized BN and a gener-
atively optimized BN. However, no such (principled) hybrid models are available for BNs
with MM parameters and typically interesting scenarios requiring a generative perspec-
tive, e.g. missing feature scenarios, are not considered. Only, Pernkopf et al. [38] train BNs
with MM parameters in a similar spirit. However, no principled approach is taken and
the performed optimization is similar to that of generative pre-training in deep networks,
i.e. starting from a BNC with generatively optimized parameters, the parameters are fine-

1These regimes correspond to smaller and larger training sets in their case; note, however, that other work
finds the existence of these regimes not to be reliable; they state that there is no theoretically correct criterion to
answer the question of whether a generatively or discriminatively optimized classifier should be used [49].

2This pre-training followed by discriminative fine-tuning may be interpreted as a blend between a generative
model, i.e. the pre-trained one, and a discriminative model, i.e. the one obtained by fine-tuning; note, however,
that there may be more efficient methods for regularization like dropout/DropConnect [22, 48] that do not require
generative training at all.
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tuned to maximize the MM objective, where early stopping is used to not deviate too far
from the generative solution.

As a last issue, let us turn to low-complexity BNCs. While most research in machine
learning is performed using high-end hardware and using vast amounts of computational
power, these resources are often not available in practical applications. Therefore, there is
partially complementary research, investigating resource constrained algorithms for ma-
chine learning.3 For example, Anguita et al. [2] consider implementations of SVMs that use
integer parameters only to avoid expensive computations. Similarly, recently, Piatkowski
et al. [39] consider an integer approximation to undirected graphical models for the same
reason. Similar analyses have been performed for neural networks (NNs) [12], where NNs
with limited precision weights are investigated. Although widely used, no such investiga-
tions have been performed for BNCs. Most closely related in mind is sensitivity analysis
of BNs [6, 7] that investigates changes of marginal and posterior probabilities of BNs with
respect to deviations of some of the parameters. An investigation of BNs with computa-
tional constraints is especially interesting for graphs in which inference is easy (otherwise
inference resorts in general to an iterative procedure requiring demanding optimization
algorithms and many iterations until convergence). In BNs, inference is easy only in trees
with low tree-width, and chains (a special case of a tree) and for some other special struc-
tures (which typically require the development of specialized inference algorithms). Thus,
for low-complexity BNCs especially NB and tree augmented network (TAN) [16] struc-
tures are interesting. In the literature, only few results for BNCs with reduced-precision
are available; Pernkopf et al. [37] considered BNCs with reduced-precision fixed-point pa-
rameters but only performed very basic experiments. However, further investigations for
other possible parameterizations of BNCs, methods for efficient reduced-precision param-
eter learning and investigations of the performance limits of BNCs with reduced-precision
parameters are not available in the literature to the best of our knowledge.

1.2 Research Questions and Objectives

Because of the motivation provided above, we pose the research questions and goals of this
thesis as enumerated in the following:

• Asymptotic consistency: Are BNCs with MM parameters asymptotically consistent? In
case of inconsistency, can this inconsistency be resolved? How do these classifiers
perform in cases in which the true data distribution cannot be represented by the
considered BNCs? Starting off from papers by Guo et al. [19] and Pernkopf et al. [38]
providing two different formulations of BNCs with MM parameters, we investigate
these questions. We identify conditions for consistency/inconsistency. In experi-
ments, we verify our findings.

• Generative-Discriminative MM BNCs: We aim to adopt the MM criterion for parame-
ter learning to resemble a discriminative-generative hybrid objective. Given the hy-
brid criterion, how can it be optimized? How does the proposed criterion compare
to state-of-the-art? As motivated above, hybrid models should enable a generative
interpretation of the considered classifiers; how good is this interpretation? Can we
efficiently solve scenarios that require a generative interpretation, e.g. missing feature
cases?

• Reduced-precision analysis of BNCs: We aim for low-complexity BNCs. One key issue
in this regard is the usage of reduced-precision parameters. This raises the question,
whether BNCs with reduced-precision parameters are feasible or not. How much
does performance degrade for a given precision? Can we bound the performance
reduction?

3Related research investigates possibilities for physical implementation of learning algorithms; see for exam-
ple the work of Dumoulin et al. [14] that considers aspects relevant for the physical implementation of restricted
Boltzmann machines in hardware.
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Having answered the above questions, it is intriguing to strive for parameters that are
optimized by taking reduced-precision constraints into account. Here we can identify
two interesting tasks, i.e. determining well-performing reduced-precision param-
eters using full-precision arithmetic (training on a full-precision platform, testing
on reduced-precision platforms) and determining reduced-precision parameters us-
ing reduced-precision computations only (training and testing on reduced-precision
platforms). We aim to propose algorithms for both scenarios.

1.3 Organization and Contributions

This thesis is structured as detailed below. Our contributions are summarized along the
outline.

• Chapter 2: We formally introduce BNs and BNCs. Furthermore, we introduce most of
the notation used throughout this thesis and provide an overview over the datasets
considered in experiments.

• Chapter 3: An analysis of the consistency of some special classes of maximum margin
Bayesian networks (MM BNs) is performed. This analysis reveals that these networks
are not necessarily consistent and that their definition may be deficient. This insight
is important because good classifiers should, at least in the limit of infinite training
data, be consistent whenever the optimal classifier is within the model class. Never-
theless, the identified deficiency is only severe in regions where the probability mass
of incorrect class assignments is in sum larger than that of the correct class assign-
ment (clearly, in these cases there is no classifier achieving zero classification error
either). Furthermore, this problem is only eminent in the multiclass case and does
not persist in case of binary classification. The identified problem holds for MM BNs
according to the definitions of Guo et al. [19] and Pernkopf et al. [38].

• Chapter 4: We present a modification of the MM training criterion for BNCs (this
is joint work with Robert Peharz). This novel criterion allows the interpretation of
MM BNs as linear SVMs with a generative regularizer, or, alternatively as a hybrid
generative-discriminative model. Furthermore, the deficiencies identified in Chap-
ter 3 are resolved because of the generative regularizer (when properly setting the
trade-off parameter between generative and discriminative objective) and the early
stopping heuristic during training becomes superfluous. The interpretation as a BN
also enables one to naturally deal with missing features without the need for impu-
tation techniques which is typically necessary in SVMs. Algorithms for large scale
optimization are presented and extensive experiments comparing the modified MM
training criterion with other parameter learning methods for BNs are provided. Fur-
thermore, we present algorithms for projecting log-probability parameters onto the
convex set of sub-normalized parameters. These algorithms can be used whenever
gradient descend/ascend must be performed in the space of log-probabilities.

• Chapter 5: We consider reduced-precision implementations of BNCs. Our investi-
gations are more in-depth than previous studies and complement investigations in
regard to sensitivity analysis. We derive bounds on the classification performance
of BNCs with reduced-precision parameters, as well as methods for discriminative
reduced-precision parameter learning. Some ingredients of our learning methods,
e.g. specialized projection algorithms, can be used beyond the scope of reduced-
precision parameter learning (e.g. projections of log-probabilities onto the set of sub-
normalized probabilities with box-constraints). We investigate BNCs with reduced-
precision parameters in terms of robustness to parameter quantization and com-
pare generative/discriminative parameters/structures in this regard. Furthermore,
we provide preliminary results for learning BNCs using reduced-precision computa-
tions only and give an outline of potential research questions for the future.
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• Chapter 6: We conclude this thesis by reiterating our main results in a brief discus-
sion.

• Chapter 7: A list of papers published in the course of my PhD studies is provided.
Note that not all results obtained during my PhD studies made it into this thesis. This
is unfortunate, because I had to skip some very interesting work, e.g. on image collection
summarization, but necessary, because of the central theme of this work. The reader is
welcome to have a look at Chapter 7; the papers referenced therein cover most of our results.
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2 Background

In this chapter, we introduce most of our notation, provide some background on probabilis-
tic classification, BNs and BNCs, and describe the datasets used in experiments throughout
this thesis.

2.1 Probabilistic Classification

Probabilistic classifiers are embedded in the framework of probability theory. One assumes
a RV C denoting the class and RVs X1, . . . ,XL representing the attributes/features of the
classifier. Each Xi can take one value in the set val(Xi). Similarly, C can assume values in
val(C), i.e. val(C) is the set of classes. We denote the random vector consisting of X1, . . . ,XL
as X = (X1, . . . ,XL). Instantiations of RVs are denoted using lower case letters, i.e. x is an
instantiation of X and c an instantiation of C, respectively. Abusing the standard notation
for sets, if Y is a subset of X, we denote by x(Y) the instantiation of the RVs Y according
to x. When A and B are disjoint sets of RVs, then [a,b] denotes an instantiation of the set
A∪B. Whenever P(C,X) is a probability distribution over C and X, we write P(c,x) as an
abbreviation for P(C = c,X = x). The expectation of a function f (C,X) with respect to a
joint distribution P(C,X) is denoted as EP(C,X) [f (C,X)]. The RVs C,X1, . . . ,XL are assumed
to be jointly distributed according to the distribution P∗(C,X). We refer to P∗(C,X) as true
distribution. In typical settings, this true distribution is unknown and a limited number of
samples drawn from the true distribution P∗(C,X), i.e. a training setD, is available. This set
D consists of N i.i.d. labeled samples, i.e. D = ((c(n),x(n)) |1 ≤ n ≤N ), where c(n) denotes the
instantiation of the RV C and x(n) the instantiation of X in the nth training sample. The aim
is to induce good classifiers provided the training set, i.e. classifiers with low generalization
error. Formally, a classifier h is a mapping

h : val(X)→ val(C), (2.1)

x 7→ h(x),

where val(X) denotes the set of all possible assignments of X, i.e. a classifier maps an in-
stantiation x of the attributes to class c. The merit of a classifier can be quantified by its
generalization error, or equivalently, by its classification rate.

Definition 1 (Generalization Error, Classification Rate). Let h : val(X)→ val(C) be a classi-
fier. Its generalization error Err(h) is

Err(h) = EP∗(C,X)

[
1(h(X),C)

]
, (2.2)

where 1(a) is the indicator function that equals 1 if a is true and that equals 0 otherwise. The
classification rate CR(h) is CR(h) = 1−Err(h).

Typically, the generalization error can not be evaluated because P∗(C,X) is unknown
but is estimated using cross-validation [2]. Any probability distribution P(C,X) naturally
induces a classifier hP(C,X) according to

hP(C,X) : val(X)→ val(C), (2.3)

x 7→ arg max
c′∈val(C)

P(c′ |x).

In this way, each instantiation x of X is classified by the maximum a posteriori estimate of
C given x under P(C,X). Note that argmaxc′∈val(C) P(c′ |x) = argmaxc′∈val(C) P(c′ ,x).
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2.2 Bayesian Networks and Bayesian Network Classifiers

2.2.1 Definitions and Notation

We consider probability distributions represented by BNs [13, 11]. A BN B = (G,PG) con-
sists of a DAG G = (Z,E) and a collection of conditional probability distributions

PG = (P(X0|Pa(X0)), . . . ,P(XL|Pa(XL))), (2.4)

where the terms Pa(X0), . . . ,Pa(XL) denote the set of parents of X0, . . . ,XL in G, respectively.
The nodes Z = (X0, . . . ,XL) correspond to RVs and the edges E encode conditional inde-
pendencies among these RVs. Throughout this thesis, we often denote X0 as C, i.e. X0
represents the class. Then, a BN defines the joint distribution

PB(C,X1, . . . ,XL) = P(C|Pa(C))
L∏
i=1

P(Xi |Pa(Xi)), (2.5)

where, for notational ease, we represent (unconditional) distributions as conditional dis-
tributions, e.g. P(X0) is denoted as P(X0|∅) if X0 has no parents in G. According to the joint
distribution, a BN B induces the classifier hB = hPB (C,X).

In this thesis, we consider BNs with discrete valued RVs only. In this case, a gen-
eral representation of PG is a collection of conditional probability tables (CPTs), i.e. PG =
(θ0, . . . ,θL), with

θi = (θij |h | j ∈ val(Xi),h ∈ val(Pa(Xi))), (2.6)

where

θij |h = P(Xi = j |Pa(Xi) = h). (2.7)

The BN distribution can then be written as

PB(C = c,X = x) =
L∏
i=0

∏
j∈val(Xi )

∏
h∈val(Pa(Xi ))

θij |h
νij |h , (2.8)

where

νij |h = 1([c,x](Xi )=j and [c,x](Pa(Xi ))=h). (2.9)

We often represent the BN parameters in the logarithmic domain, i.e.

wij |h = logθij |h, (2.10)

wi = (wij |h | j ∈ val(Xi),h ∈ val(Pa(Xi))), and (2.11)

w = (w0, . . . ,wL). (2.12)

Often, we will interpret w as a vector, whose elements are addressed as wij |h. We define a

vector-valued function φ(c,x) of the same length as w, collecting νij |h, analog to the entries

wij |h in w. In that way, we can express the logarithm of (2.8) as

logPB(C = c,X = x) = φ(c,x)T w. (2.13)

2.2.2 Learning Bayesian Network Classifiers

BNs for classification can be optimized in two ways: firstly, one can select the graph struc-
ture G, and secondly, one can learn the conditional probability distributions PG. Selecting
the graph structure is known as structure learning and selecting PG is known as parameter
learning.
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Structure Learning

The structure of a BNC, i.e. its graph G, encodes conditional independence assumptions.
Algorithms for structure learning can be coarsely grouped according to the underlying
paradigm, i.e. whether they yield generatively or discriminatively structured BNCs [14].

Structure learning is naturally combinatorial and in general difficult — even in the gen-
eral case where scores of structures typically decompose according to the network struc-
ture [3]. For the generative case, several formal hardness results are available, e.g. learning
polytrees [4] or learning general BNs [8] are NP-hard optimization problems. Algorithms
for learning generative structures often optimize some kind of penalized likelihood of the
training data and try to determine the structure for example by performing independence
tests [6]. Discriminative methods often employ local search heuristics [15].

In this thesis, we consider relatively simple (and fixed) structures only, i.e. we assume
that structure learning has already been performed. We use NB structures, and different
variants of TAN structures [6]. The reason for not using more expressive structures are
twofold: first, more complex structures do not necessarily result in significantly better
classification performance [15],1 and second, analysis becomes more difficult. In more
detail, we use the following structures:

• Naive Bayes (NB). This structure implies conditional independence of the features,
given the class, cf. Figure 2.1a. Obviously, this conditional independence assumption
is often violated in practice. Still, NB often yields impressively good performance in
many applications [20].

• Tree Augmented Networks based on conditional mutual information (TAN-CMI). This
structure was introduced by Friedman et al. [6] to relax the strong independence
assumptions imposed by the NB structure and to enable better classification perfor-
mance. TAN-CMI structures are learned by computing the conditional mutual in-
formation of all pairs of attributes given the class variable, constructing a complete
undirected graph using these conditional mutual information as edge weights, de-
termining a maximum weight spanning tree and converting this undirected tree into
a directed tree by selecting a root variable and directing all edges outward from it.
Finally, the class node is introduced and an edge from the class to every attribute is
added. An example of a TAN structure is shown in Figure 2.1b.

• TAN-CR structures [10, 15]. These structures are learned using a naive greedy heuris-
tic. Starting from a NB structure, edges are greedily added such that the classification
rate of the resulting classifier is maximized (to stay within the model class of TANs,
only edges that, when added, do not change that model class are considered).

• TAN-OMI-CR [15]. These structures are learned in a similar fashion as TAN-CR
structures, but one computes an ordering of all features based on an information
measure first. Based on this ordering, possible edges are greedily added, reducing
the number of necessary score evaluations (not all pairs of attributes must be consid-
ered, but one progresses according to the pre-computed ordering).

• TAN-MM structures [16]. These structures are learned similarly as TAN-CR struc-
tures, but a margin-objective is maximized instead of the classification rate.

Parameter Learning

Similar to the case of structure learning, the CPDs PG of BNs can be optimized either gen-
eratively or discriminatively. We refer to the CPDs as parameters, because CPDs are in
general either parametrized (e.g. if a CPD is represented by a multinomial Gaussian distri-
bution, it can be specified by means and covariances), or, in the case of discrete RVs, CPDs

1The situation may be different for larger datasets.
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Figure 2.1: Exemplary BN structures.

can be specified by CPTs. In this latter case, which we consider throughout this thesis,
every entry of the CPTs can be considered as a parameter.2

Several approaches for optimizing PG are discussed in the following:

• Generative Parameters. In generative parameter learning one aims at identifying pa-
rameters modeling the generative process that results in the data of the training set,
i.e. generative parameters are based on the idea of approximating P∗(C,X) by a distri-
bution PB(C,X). An example of this paradigm is maximum likelihood (ML) learning.
Its objective is maximization of the likelihood of the training data given the parame-
ters, i.e.

PML
G = argmax

PG

N∏
n=1

PB(c(n),x(n)). (2.14)

Maximum likelihood parameters minimize the Kullback-Leibler (KL)-divergence be-
tween PB(C,X) and P∗(C,X) [11].

• Discriminative Parameters. In discriminative learning one aims at identifying pa-
rameters leading to good classification performance on new samples from P∗(C,X).
This type of learning is for example advantageous in cases where the assumed model
distribution PB(C,X) cannot approximate P∗(C,X) well, for example because of a too
limited BN structure [18]. Several objectives for discriminative parameter learning
are known in the literature. Throughout this thesis, we consider the maximum con-
ditional likelihood (MCL) [18] objective and the maximum margin (MM) [7, 17] objec-
tive.3

MCL parameters PMCL
G are obtained as

PMCL
G = argmax

PG

N∏
n=1

PB(c(n)|x(n)), (2.15)

where again PB(C,X) is the joint distribution induced by the BN (G,PG) and PB(C|X)
denotes the conditional distribution of C given X determined from PB(C,X) as

PB(C|X) =
PB(C,X)

PB(X)
. (2.16)

Thus, MCL parameters maximize the conditional likelihood of the class instantia-
tions given the instantiations of the attributes.

2Clearly, this resembles an over-specification, because the entries of CPTs must satisfy sum-to-one constraints.
3The maximum margin objective is considered in various slightly different formulations — in this introduc-

tion a general version is presented and this version is refined as needed in subsequent chapters.
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MM parameters PMM
G are found as

PMM
G = argmax

PG

N∏
n=1

min
(
γ,dB(c(n),x(n))

)
, (2.17)

where dB(c(n),x(n)) is the margin of the nth sample given as

dB(c(n),x(n)) =
PB(c(n)|x(n))

maxc,c(n) PB(c|x(n))
, (2.18)

and where the hinge loss function is denoted as min(γ,dB(c(n),x(n))). The parameter
γ > 1 controls the margin. In this way, the margin measures the ratio of the likelihood
of the nth sample belonging to the correct class c(n) to belonging to the most likely
competing class. The nth sample is correctly classified iff dB(c(n),x(n)) > 1 and vice
versa.

An alternative and very simple method for learning discriminative parameters are
discriminative frequency estimates [19]. According to this method, parameters are esti-
mated using a perceptron-like algorithm, where parameters are updated by the pre-
diction loss, i.e. the difference of the class posterior of the correct class (which is
assumed to be 1 for the data in the training set) and the class posterior according
to the model using the current parameters. This type of parameter learning yields
classification results comparable to those obtained by MCL [19].

2.3 Datasets

Most experiments in the upcoming chapters evaluate the classification performance of
BNCs. For these experiments, we use the following datasets:

• UCI data [1]. This is in fact a large collection of datasets, with small to medium
number of samples. Features are discretized as needed using the algorithm proposed
in Fayyad and Irani [5]. If not stated otherwise, in case of the datasets chess, letter,
mofn-3-7-10, segment, shuttle-small, waveform-21, abalone, adult, car, mushroom, nurs-
ery, and spambase, a test set was used to estimate the accuracy of the classifiers. For
all other datasets, classification accuracy was estimated by 5-fold cross-validation.

• satimage/letter [1]. These two datasets are from the UCI repository. We describe
them in more detail because they are used for extensive experiments in Section 5.4.
The satimage dataset consists of multi-spectral satellite images. Given a 3× 3 multi-
spectral pixel image patch, the task is to classify the central pixel as either red soil,
cotton crop, grey soil, damp grey soil, soil with vegetation stubble, mixture class
(all types present), or very damp grey soil. In total there are 6435 samples with 36
attributes. Performance is evaluated using 5-fold cross-validation. The letter dataset
consists of 20000 samples, where two third of the data are used for training and one
third for testing. Each sample is a character from the English alphabet and described
by 16 numerical attributes, i.e. statistical moments and edge counts. The task is,
based on these attributes, to classify each character as the represented English letter.

• TIMIT-4/6 Data [17]. This dataset is extracted from the TIMIT speech corpus us-
ing the dialect speaking region 4. It consists of 320 utterances from 16 male and
16 female speakers. Speech frames are classified into either four or six classes using
110134 and 121629 samples, respectively. Each sample is represented by 20 mel-
frequency cepstral coefficients (MFCCs) and wavelet-based features [17]. We perform
classification experiments on data of both genders (Ma+Fe). Furthermore, subsets of
the data that consist of either male speakers (Ma) or female speakers (Fe) are consid-
ered.
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• USPS data [9]. This data set contains 11000 handwritten digit images from zip codes
of mail envelopes. The data set is split into 8000 images for training and 3000 for
testing. Each digit is represented as a 16×16 greyscale image. These greyscale values
are discriminatively quantized [5] and each pixel is considered as feature. Example
images from this database (prior to quantization) are shown in Figure 2.2.

Figure 2.2: Random samples from USPS data.

• MNIST Data [12]. This dataset contains 70000 samples of handwritten digits. In the
standard setting, 60000 samples are used for training and 10000 for testing. The dig-
its represented by grey-level images were down-sampled by a factor of two resulting
in a resolution of 16× 16 pixels, i.e. 196 features.

• DC-Mall Data [17]. This dataset contains a hyper-spectral remote sensing image of
the Washington D.C. Mall area. In total, there are 1280 × 307 hyper-spectral pixels,
each containing 191 spectral bands. From these spectral bands, individual pixels are
to be classified to one of 7 classes (roof, road, grass, trees, trail, water, or shadow).
For each class, 5000 samples are used for training, i.e. in total 35000 samples. The
remaining 357960 samples are used for testing. These hyperspectral images for some
frequency bands as well as the reference labeling are shown in Figure 2.3.

(a) Pseudo color image of spectral bands 63, 52,
and 36

(b) Reference image

Figure 2.3: Hyperspectral image of the Washington D.C. Mall area.
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[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[13] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers Inc., 1988.

[14] Franz Pernkopf and Jeff Bilmes. Discriminative versus Generative Parameter and
Structure Learning of Bayesian Network Classifiers. In International Conference on
Machine Learning (ICML), pages 657–664, 2005.

[15] Franz Pernkopf and Jeff A. Bilmes. Efficient Heuristics for Discriminative Structure
Learning of Bayesian Network Classifiers. Journal of Machine Learning Research, 11:
2323–2360, 2010.

[16] Franz Pernkopf, Michael Wohlmayr, and Manfred Mücke. Maximum Margin Struc-
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3 On Asymptotic Consistency

The main parts of this chapter were published in the conference proceedings of the International
Conference on Artificial Intelligence and Statistics 2013, as Asymptotic Optimality of Maximum
Margin Bayesian Networks [12]. As minor modifications, we added some references, changed
some wordings, and extended the discussion.

MM BNs are BNs with discriminatively optimized parameters. They have shown good
classification performance in various applications [6]. However, there has not been any
theoretic analysis of their asymptotic consistency, i.e. whether they represent the best pos-
sible classifier within the considered function class in the limit of infinite training data.
For specific classes of MM BNs, i.e. MM BNs with fully connected graphs and discrete-
valued nodes, we show consistency for binary-class problems and a sufficient condition for
consistency in the multiclass case. We provide simple examples showing that MM BNs in
their current formulation are not consistent in general. These examples are especially in-
teresting, as the model used for the MM BNs can represent the assumed true distributions.
This indicates that the current formulations of MM BNs may be deficient. Furthermore,
experimental results on the generalization performance are presented.

3.1 Introduction

MM BNs were first introduced in [2]. The basic idea is to mimic the concept of the margin
known from SVMs in a probabilistic environment. SVMs are one of the best performing
classifiers available. In their basic formulation, they separate samples from different classes
by a linear hyperplane. While SVMs are theoretically well-understood [13, 7, 10], there
exist several issues that are hard to deal with. One example is the treatment of missing
features in the data. SVMs usually require imputation techniques to complete the data
before further processing [3]. In contrast, BNCs can naturally handle missing features.

Previous results [5] show that logistic regression, i.e. BNCs with NB structure and MCL
parameters, exhibit lower asymptotic generalization error than classifiers with ML param-
eters. For MM BNs, no such results are available. However, comparable performance
of these classifiers to SVMs has been reported [6]. This encourages the investigation of
MM BNs in more detail. Specifically, in this chapter we address the issue of consistency,
i.e. whether classifiers with parameters optimizing the MM objective yield asymptotically
almost surely the optimal classifier.

Our findings can be summarized as follows:

1. MM BN classifiers with discrete-valued nodes are in general not consistent.

2. MM BN classifiers with discrete-valued nodes and fully connected graphs are consis-
tent in binary-class classification tasks.

3. A sufficient condition for MM BN classifiers with discrete-valued nodes and fully
connected graphs to be consistent in multiclass classification tasks is derived.

The remainder of this chapter is structured as follows: In Section 3.2, we introduce
the notion of optimal classifiers and consistency. In Section 3.3, we present definitions
of MM BNs from the literature followed by our theoretical results in Section 3.4. In Sec-
tion 3.5 we illustrate the theoretical insights by empirical results and subsequently discuss
some implications of our results in Section 3.6. Finally, we conclude this chapter in Sec-
tion 3.7.

3.2 Background

We need to extend our notation to capture the necessary details for the study of consistency
of MM BNs. Assume a joint probability distribution P(C,X) over a class variable C and a
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set of features X. Note that argmaxc′ P(c′ |x) is not necessarily unique, i.e. different classes
may achieve maxc′ P(c′ |x). These classes are collected in the set [C|x]P(C,X), i.e.

[C|x]P(C,X) =
{
c | P(C = c|X = x) = max

c′∈val(C)
P(C = c′ |X = x)

}
.

Whenever [C|x]P(C,X) consists of more than a single class, we assume the classifier hP(C,X)

to return one of these classes uniformly at random1 — this is termed as optimally classified
with respect to P(C,X).

In the following, we consider the hypothesis class B(G) of BN classifiers with discrete
RVs and fixed graph structure G. Optimality of a classifier with respect to this hypothesis
class is defined as follows:

Definition 2 (Optimal Classifier). A classifier hB , B ∈ B(G) is optimal with respect to the
hypothesis class B(G) if it satisfies

Err(hB) = inf
B′∈B(G)

Err(hB′ ) . (3.1)

A classifier from any hypotheses class can not be better than the Bayes optimal classifier
hP∗(C,X) [4]. The suboptimality of a classifier hB ∈ B(G) compared to the Bayes optimal
classifier can be expressed as

Err(hB)−Err
(
hP∗(C,X)

)
=

(
Err(hB)− inf

B′∈B(G)
Err(hB′ )

)
+
(

inf
B′∈B(G)

Err(hB′ )−Err
(
hP∗(C,X)

))
,

(3.2)

where the first term is referred to as estimation error and the second term as approximation
error [9]. The estimation error measures the suboptimality of the classifier hB with respect
to the class B(G), while the approximation error quantifies how close the best classifier in
B(G) is to the Bayes optimal classifier. When considering limited graph structures G, i.e.
G is not fully connected, the generalization error of the Bayes optimal classifier can not be
achieved in general, but there will at least be a bias corresponding to the approximation
error. In this chapter, we consider the hypothesis classes of BNs with NB structure and fully
connected graphs. As already mentioned, in NB structures the class node has no parents,
i.e. Pa(C) = ∅, and the only parent of any feature is the class node, i.e. Pa(Xi) = {C}. In the
fully connected graphs we consider, the class node has no parents, i.e. Pa(C) = ∅, and for
any feature Pa(Xi) = {C,X1, . . . ,Xi−1}, cf. Figure 3.1.

C

X1 X2 X3 X4 X5

Figure 3.1: Exemplary fully connected graph.

Assume a training set D = {(c(1),x(1)), . . . , (c(N ),x(N ))}. Then, a sequence of classifiers
hA,NB , where the superscript A,N denotes that the classifier is obtained from a training set
of size N using the parameter learning method A (e.g. ML, MCL or MM), is consistent with
respect to B(G), iff

Err
(
hA,NB

)
→ inf
B′∈B(G)

Err(hB′ ) a.s. as N →∞. (3.3)

1Technically, hP(C,X) is not a mapping, because there is no unique assignment of x ∈ val(X) to some c ∈ val(C).
For ease of notation, we ignore this fact.
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3.3 Maximum Margin Bayesian Networks

Although already introduced, we review MM BNs and specify some more details neces-
sary for our analysis. We want to consider different definitions from the literature. Guo
et al. [2] introduced MM BNs as a convex optimization problem for parameter learning.
Later, the MM criterion was reformulated and a conjugate gradient based method for pa-
rameter learning was provided [6]. In experiments, both formulations have shown similar
classification performance while the conjugate gradient optimization is beneficial in terms
of computation cost. We briefly review both formulations and provide an example for
which neither formulation retrieves a consistent classifier, although the optimal classifier
is within the considered hypothesis class B(G). In the remainder of the chapter we adopt
the MM BNs objective of Pernkopf et al. [6].

3.3.1 Formulation by Pernkopf et al.

Assuming a fixed graph G, the objective for learning the joint probability PB(C,X) is based
on the margins

dB(c(n),x(n)) =
PB(c(n),x(n))

maxc′,c(n) PB(c′ ,x(n))
(3.4)

of the training samples. Therefore, the nth sample in the training set is classified correctly
iff dB(c(n),x(n)) > 1. To handle non separable data, a hinge function is used such that

d̃B(c(n),x(n)) = min
(
γ̃ ,dB(c(n),x(n))

)
, (3.5)

where γ̃ > 1 is a parameter that controls the influence of the margins. The objective for
learning MM BNs is maximization of the product of d̃B(c(n),x(n)) over the samples.

Definition 3 (Maximum Margin Bayesian Network). A BN B = (G,PG) that achieves the
optimal value of

maximize
B′∈B(G)

N∏
n=1

min
(
γ̃ ,dB

′
(c(n),x(n))

)
(3.6)

is an MM BN.

This definition can be equivalently stated in the log-domain by requiring an MM BN B
to be an optimal solution of

maximize
B′∈B(G)

1
N

N∑
n=1

min
(
γ, logPB

′
(c(n),x(n))− max

c′,c(n)
logPB

′
(c′ ,x(n))

)
, (3.7)

where γ = log γ̃ and the objective is normalized by the number of training samples N . This
allows the introduction of the empirical distribution on the training set PD(C,X), i.e.

PD(c,x) =
1
N

N∑
n=1

1(c(n)=c,x(n)=x) (3.8)

to the optimization problem. The objective (3.7) becomes

maximize
B′∈B(G)

∑
c,x

PD(c,x)min
(
γ, logPB

′
(c,x)−max

c′,c
logPB

′
(c′ ,x)

)
. (3.9)

A justification why MM BNs parameters can be advantageous over BNCs with ML or MCL
parameters is given in Appendix 3.A.
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3.3.2 Formulation by Guo et al.

The formulation by Guo et al. [2] is based on representing the probabilities PB(c,x) as

PB(c,x) = exp(φ(c,x)Tw), (3.10)

cf. Section 2.2.1. This enables to represent the logarithm of the margin (3.4) as

logdB(c(n),x(n)) = min
c′,c(n)

[φ(c(n),x(n))−φ(c′ ,x(n))]Tw. (3.11)

Learning the parameters of MM BNs is then performed by solving

minimize
γ,w

1
2γ2 +BN

∑
c,x

PD(c,x)max
(
0,γ −min

c′,c
[φ(c,x)−φ(c′ ,x)]Tw

)
(3.12)

s.t.
∑
j

exp(wij |h) = 1,∀i,h

γ > 0,

where B ≥ 0 is a trade-off parameter between a large margin and correct classification.
To end up with a convex formulation, Guo et al. replace the constraints

∑
j exp(wij |h) = 1

by inequalities, i.e.
∑
j exp(wij |h) ≤ 1. Due to this relaxation, the found parameters are in

general not normalized. However, as pointed out in [8, 14], for certain network structures
renormalization is possible without changing the classifier induced by the unnormalized
parameters. The condition is for example satisfied by NB structures and fully connected
graphs. The condition for renormalization is as follows:

Condition 1 (Renormalization [14]). For all feature RVs Xj with C ∈ Pa(Xj ) there exists an-
other RV Xi ∈ Pa(Xj ) such that Pa(Xj ) ⊆ Pa(Xi)∪ {Xi}.

3.3.3 Inconsistent Multiclass Maximum Margin Bayesian Networks

In this section we present an example for which both definitions of MM BNs result almost
surely in inconsistent classifiers. Consider a classifier with no features, i.e. X = ∅, in a
three-class scenario. Let the true distribution be defined by

P∗(C = 1) = 0.4,

P∗(C = 2) = 0.3, and

P∗(C = 3) = 0.3.

Hence, the optimal classifier would classify all instances as belonging to class 1. By the
strong law of large numbers, the empirical distribution will satisfy asymptotically almost
surely PD(C = 1) > PD(C = 2), PD(C = 1) > PD(C = 3) and PD(C = 1) < PD(C = 2)+PD(C = 3).
In this case, any distribution inducing an optimal classifier has strictly smaller (larger) ob-
jective than the uniform distribution according to problem (3.9) (problem (3.12)).2 Conse-
quently, any MM distribution induces almost surely an inconsistent classifier.

In this example, the optimal classifier can be represented by the assumed model. Nev-
ertheless, an inconsistent classifier is obtained. We can deduce that in the multiclass case
we must not hope for consistency of MM BNs in general.

3.4 Theoretical Results

3.4.1 Consistency of Fully Connected Maximum Margin Bayesian Net-
works

In this section, we show that fully-connected binary-class MM BN classifiers with discrete-
valued nodes are consistent. Furthermore, we present a sufficient condition for consistency

2The necessary calculations for this result are straightforward, but provided in Appendix 3.E for complete-
ness.
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of multiclass MM BN classifiers. The proof consists of two parts. In the first part, we prove
optimality with respect to the empirical distribution of the training set. In the second part,
we conclude that MM BN classifiers are almost surely consistent.

Lemma 1 (Optimality in the binary-class case). Let C be a binary class variable, and let D be
a training set with empirical distribution PD(C,X) and G a fully connected graph. Any MM BN
classifier on G is optimal with respect to PD(C,X).

The proof is provided in Appendix 3.B.

Lemma 2 (Optimality in the multiclass case). Let C be a class variable with |val(C)| > 2, and
let D be a training set with empirical distribution PD(C,X) and G a fully connected graph. Any
MM BN classifier on G is optimal with respect to PD(C,X) if

∀x ∃c : PD(c,x) >
∑
c′,c

PD(c′ ,x). (3.13)

The proof is similar to that of Lemma 1 (for reference it is provided in Appendix 3.C).
Bluntly speaking, condition (3.13) requires that for every instantiation of the features x
there is a dominant class.

Using Lemma 1 and 2 we can derive the following theorem.

Theorem 1. Any MM BN classifier with a fully connected graph is consistent if

(a) |val(C)| = 2, i.e. the class variable is binary, or

(b) |val(C)| > 2, i.e. the multiclass case, and additionally the true distribution P∗(C,X) satisfies

∀x ∃c : P∗(c,x) >
∑
c′,c

P∗(c′ ,x). (3.14)

Proof. We have already established that, given the stated conditions, MM BN classifiers are
optimal with respect to the empirical distribution on the training set. With growing sample
size the empirical distribution converges to the true distribution asymptotically almost surely.
Therefore, the MM BN classifier converges asymptotically almost surely to the optimal
classifier.

3.4.2 Maximum Margin Bayesian Networks are not Necessarily Consis-
tent

MM BN classifiers with not fully-connected graphs G are not consistent in general. This is
even true in cases in which the true distribution can be represented by some BN B ∈ B(G).

As an example consider a naive Bayes classifier with two features. Assume that the
true data distribution P∗(C,X) satisfies the independence assumptions of the naive Bayes
network and that the conditional probability densities are given according to Table 3.1a.
For γ = 1, there exist MM BN classifiers that are consistent and MM BN classifiers that
are inconsistent, i.e. there is no unique optimal (and consistent) solution. Corresponding
MM distributions are shown in Table 3.1b, and Table 3.1c, respectively. The inconsistent
distribution induces a classifier which has uniform class posterior for the samples (x1 =
1,x2 = 1) and (x1 = 1,x2 = 2). This results in a classification rate that is 4.5 percent smaller
than the maximum classification rate, i.e.

CR
(
hP∗(C,X)

)
−CR

(
hPMM(C,X)

)
=P∗(c1,x1)− 1

2
(P∗(c1,x1) + P∗(c2,x1)) + P∗(c2,x2)− (3.15)

1
2

(P∗(c1,x2) + P∗(c2,x2))

=0.14− 1
2

(0.14 + 0.12) + 0.28− 1
2

(0.28 + 0.21)

=0.045,

where c1 is a shorthand for C = 1, c2 for C = 2, x1 for X1 = 1,X2 = 1, and x2 for X1 = 1,X2 =
2, respectively.
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Table 3.1: Probability distribution for which MM BN classifiers can be inconsistent.

(a) True distribution P∗(C,X); Objective (3.9) evaluates to 0.049.

c = 1 c = 2

P(C = c) 0.5 0.5

P(X1 = 1|C = c) 0.7 0.8
P(X1 = 2|C = c) 0.3 0.2

P(X2 = 1|C = c) 0.4 0.3
P(X2 = 2|C = c) 0.6 0.7

C X1 X2 P∗(C,X)

1 1 1 0.14
2 1 1 0.12

1 2 1 0.06
2 2 1 0.03

1 1 2 0.21
2 1 2 0.28

1 2 2 0.09
2 2 2 0.07

(b) Inconsistent MM distribution PMM(C,X); Objective (3.9) evaluates to 0.05.

c = 1 c = 2

P(C = c) 0.5938 0.4062

P(X1 = 1|C = c) 0.5 0.7311
P(X1 = 2|C = c) 0.5 0.2689

P(X2 = 1|C = c) 0.5 0.5
P(X2 = 2|C = c) 0.5 0.5

C X1 X2 PMM(C,X)

1 1 1 0.1485
2 1 1 0.1485

1 2 1 0.1485
2 2 1 0.0546

1 1 2 0.1485
2 1 2 0.1485

1 2 2 0.1485
2 2 2 0.0546

(c) Consistent MM distribution PMM(C,X); Objective (3.9) evaluates to 0.05.

c = 1 c = 2

P(C = c) 0.5798 0.4202

P(X1 = 1|C = c) 0.4750 0.5250
P(X1 = 2|C = c) 0.5250 0.4750

P(X2 = 1|C = c) 0.5 0.3100
P(X2 = 2|C = c) 0.5 0.6900

C X1 X2 PMM(C,X)

1 1 1 0.1377
2 1 1 0.0684

1 2 1 0.1522
2 2 1 0.0619

1 1 2 0.1377
2 1 2 0.1522

1 2 2 0.1522
2 2 2 0.1377
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3.5 Experimental Results

We performed two experiments supporting the theoretical results in this chapter. Further-
more, an experiment demonstrating that MM BNs can perform well in the case of model
mismatch is presented.

3.5.1 Bayes Consistent Classification Using Fully Connected Graphs

We assumed an arbitrary random distribution P∗(C,X) for a fully connected graph. These
distributions were obtained by selecting each entry of the conditional probabilities asso-
ciated with the nodes of the graph uniformly at random in the range [0,1]. To end up
with properly normalized distributions, each conditional probability distribution was nor-
malized subsequently. From the obtained distribution we generated training sets with an
increasing number of samples. On these training sets we determined BN classifiers with
fully connected graphs and using ML, MCL, and MM parameters. MM parameters are
determined using the linear program provided in Appendix 3.D and employing 5-fold
cross-validation to select the value of γ . We evaluated the generalization performance of
these classifiers with respect to the true distribution.

As pointed out above, classifiers with both ML and MM parameters have to converge
to the optimal classifier as the training set size increases. Results are averaged over 100
different training sets for every sample size using 100 different random parameter sets for
the true distribution (the selected true distributions satisfy the condition of Theorem 1).
Results for using 5 binary features and 2 classes, as well as 5 binary features and 4 classes
are shown in Figures 3.2a and 3.2b, respectively. Convergence to the optimal classifier can
be observed.
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Figure 3.2: Convergence of ML, MCL and MM BN classifiers to the optimal classifier as-
suming a fully connected graph. The generalization error of the optimal classifier is indi-
cated by the dotted line (= True).

3.5.2 Convergence Experiments Assuming Naive Bayes Structure

We repeated the experiment from above using true distributions satisfying the factoriza-
tion properties of NB networks. BN classifiers with NB structure and ML, MCL and MM
parameters are determined. In hope of obtaining unique MM parameters, we selected MM
parameters with minimum `1-norm. Results for networks with 5 binary features and 2
classes, as well as 5 binary features and 4 classes are shown in Figures 3.3a and 3.3b, re-
spectively. As noticed in Section 3.4, the MM BN classifiers do not converge to the optimal
classifier, while ML and MCL classifiers achieve the lowest possible generalization error.

3.5.3 Model Mismatch

The setup for this experiments is similar to Section 3.5.1. For the true distribution an ar-
bitrary distribution over (C,X) is assumed, but the BN classifiers are determined using NB
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Figure 3.3: Convergence of ML, MCL and MM BN classifiers assuming a NB structure. The
generalization error of the optimal classifier is indicated by the dotted line (= True).

structures. The results for two-class and four-class classification are shown in Figures 3.4a
and 3.4b, respectively.

We observe that classifiers with MCL and MM parameters converge to a lower asymp-
totic error than classifiers with ML parameters. This is consistent with the observations
in [5] where generatively optimized NB classifiers are compared to logistic regression. In
cases of model mismatch discriminative learning is usually beneficial. This is also sup-
ported by arguments in [8] with respect to MCL parameters: They argue that MCL param-
eters converge in probability to a distribution PMCL(C,X) that is closest in conditional KL-
divergence to the true conditional probability P∗(C|X) (within the class of conditional dis-
tributions that can be represented by the fixed BN structure). In contrast, ML parameters
converge to a distribution PML(C,X) such that this distribution is closest in KL-divergence
to P∗(C,X). For classification, however, a small conditional KL-divergence seems to be more
directly related to the classification error than a small KL-divergence.
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Figure 3.4: Compensation of model mismatch assuming an arbitrary true distribution and
ML, MCL and MM BN classifiers with NB structure. The generalization error of the optimal
classifier is indicated by the dotted line (= True).

3.6 Discussion

We presented multiclass examples for which the optimal classifier can be represented by
the considered models but is not retrieved by learning BN classifiers with MM parameters,
cf. Sections 3.3.3 and 3.4.2. This suggests that the formulations of MM BNs is deficient —
reasonable learning algorithms for classification purposes should, asymptotically, result in
a consistent classifier in this setup. This result raises the question why good classification
results have been reported in the literature, e.g. in [6]. We attribute these results to the
model mismatch and the implemented early stopping heuristic: MM parameters are ob-
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tained by starting at the maximum likelihood solution and subsequent maximization of
the margin objective by gradient ascent. This maximization is stopped after a certain num-
ber of steps, where the stopping time is determined using 5-fold cross-validation. Thus,
the obtained solution is in general not locally optimal. Consequently, in our earlier work
we actually do not compute an MM BN but a blend between a BN with generatively and
discriminatively optimized parameters.

Furthermore, we observed that in some binary-class examples for which the true dis-
tribution can be represented by the model, MM BNs do not necessarily induce a optimal
classifiers, cf. Section 3.4.2. There are consistent and inconsistent parameters that achieve
the same margin objective. This suggests that one should exploit the degrees of freedom
still remaining after achieving a certain margin to optimize some additional criterion, e.g.
maximization of the entropy or of the likelihood of the training data, cf. Chapter 4.

Our results can be aligned with more general results on consistency of multiclass clas-
sification methods. In Tewari and Bartlett [11], the authors derive sufficient and necessary
conditions for the consistency of multiclass classification methods. They further show, that
the margin formulation proposed in [1] (which essentially corresponds to the margin for-
mulation used in (3.9)) does not satisfy these conditions and is, therefore, inconsistent.
Nevertheless, this margin formulation is widely used in multiclass SVMs.

3.7 Conclusion and Future Work

In this chapter, we presented results on the consistency of MM BN classifiers with fully
connected graphs. We provided examples where MM BN classifiers can be inconsistent
and demonstrated experimentally that these classifiers are able to efficiently compensate
model mismatch.

In future work, we aim to quantify the asymptotic suboptimality of MM BN classifiers in
terms of the true distribution. We want to establish rates of convergence to the asymptotic
performance. Furthermore, we aim at extending the definition of the margin objective. In
particular, consistency shall be achieved whenever the true distribution can be represented
by the considered BNs. We see at least three possible remedies in this regard:

1. The objective in (3.9), i.e.

maximize
B′∈B(G)

∑
c,x

PD(c,x)min
(
γ, logPB

′
(c,x)−max

c′,c
logPB

′
(c′ ,x)

)
. (3.16)

can be modified such that for every possible feature instantiation only the margin of
the most likely class under the empirical distribution PD(C,X) is maximized. This
yields the objective

maximize
B′∈B(G)

∑
x

PD(x)PD(hPD(C,X)(x)|x)min
(
γ, logPB

′
(hPD(C,X)(x),x)− max

c′,ĉ(x)
logPB

′
(c′ ,x)

)
,

(3.17)

where hPD(C,X)(x) = argmaxcPD(c,x). This should, assuming proper selection of γ ,
resolve the inconsistency at least for fully connected graphs. A rigorous investigation
of this approach is subject to future work.

2. The objective in (3.9) can be extended by a generative regularizer, i.e. the data like-
lihood under the considered BN with ML parameters, cf. Chapter 4. Then, the regu-
larizer weight can be set using cross-validation. In cases, where the margin-objective
would yield an inconsistent classifier, this could be compensated by the regularizer.
In extreme cases, overwhelming the margin-objective completely.

3. The loss function used in the objective (3.9) can be modified. Clearly, consistent loss
functions should be used, cf. examples in [11, Section 5]. However, as a disadvantage,
optimization of this modified objectives may be more challenging.
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Appendix

3.A Maximum Margin Bayesian Networks Maximize a Lower
Bound of the Classification Rate

The ideal approach for learning BN classifiers with fixed structure G would be solving

maximize
B′∈B(G)

EP∗(C,X)

[
1(hB′ (X)=C)

]
, (3.18)

i.e. maximization of the expected classification rate. Directly finding a solution to this
problem is difficult as P∗(C,X) is unknown. Even if P∗(C,X) would be available, the max-
imization in general corresponds to a hard nonlinear optimization problem. Therefore,
approximations are needed.

Solving (3.18) is equivalent to solving

maximize
B′∈B(G)

∑
c,x

P∗(c,x)1(hB′ (x)=c). (3.19)

The expression 1(hB′ (x)=c) equals 1 iff hB′ (x) = c, or equivalently if PB
′
(c,x) > PB

′
(c′ ,x) for

all c′ , c (ignoring the possibility of equally large joint probabilities), otherwise it is zero.
In comparison, the corresponding term in (3.9) with γ = 1 is at most 1 and positive iff
PB
′
(c,x) > PB

′
(c′ ,x) for all c′ , c. Otherwise it is negative. Consequently,

min
(
1, logPB

′
(c,x)−max

c′,c
logPB

′
(c′ ,x)

)
≤ 1(hB′ (x)=c). (3.20)

This holds for all c and x. Therefore, the MM objective (3.9) asymptotically lower bounds
the classification rate (as the empirical distribution converges to the true distribution with
increasing sample size).

3.B Proof of Lemma 1

Proof. We give a proof by contradiction. Assume that BMM = (G,PMM(C,X)) is an MM BN
trained on the training set D with empirical distribution PD(C,X). Additionally, assume
that the induced classifier hPMM(C,X) is not optimal with respect to PD(C,X). Thus, there

exists an instantiation of the features xf that is not optimally classified by hPMM(C,X), i.e. for
which

[C|xf ]PMM(C,X) \ [C|xf ]PD(C,X) , ∅. (3.21)

Because of the binary class variable, the set [C|xf ]PD(C,X) consists only of a single element
(otherwise deciding for any of the two classes is optimal).

We consider the cases |[C|xf ]PMM(C,X)| = 1 and |[C|xf ]PMM(C,X)| = 2 separately. Before-
hand, note that since G is fully connected, i.e. B(G) is the set of all possible distributions
over (C,X), we can arbitrarily select the probabilities PMM(C = c,X = x), as long as a cor-
rectly normalized distribution results. Consequently, we can select PMM(C = c|X) without
changing PMM(X). We use this to show that the MM BN objective (3.9) can be strictly in-
creased.

Case 1. If [C|xf ]PMM(C,X) consists of one element cf ∈ val(C), then there exists a c∗ ∈
val(C) \ {cf } such that PMM(cf |xf ) > PMM(c∗|xf ) and such that PD(c∗|xf ) > PD(cf |xf ). We
generate a new probability distribution P̃MM(C,X) from PMM(C,X) by setting

P̃MM(c,x) = PMM(c,x) ∀ x , xf ∀c, (3.22)

P̃MM(cf ,xf ) = PMM(c∗,xf ), and (3.23)

P̃MM(c∗,xf ) = PMM(cf ,xf ). (3.24)
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The distribution P̃ MM(C,X) optimally classifies xf and has higher objective (3.9) than
PMM(C,X). Consequently, PMM(C,X) is no MM BN.

Case 2. If [C|xf ]PMM(C,X) consists of two elements, both classes have posterior probabil-
ities of 0.5 according to PMM(C,X). Therefore, in the objective (3.9) the sum∑

c

PD(c,xf )min
(
γ, logPMM(c,xf )−max

c′,c
logPMM(c′ ,xf )

)
(3.25)

evaluates to zero.
Let c∗, cf ∈ val(C) satisfy PD(c∗|xf ) > PD(cf |xf ). As above, we generate a new distribution

P̃MM(C,X) that classifies xf optimally and has higher objective. The distribution P̃MM(C,X)
is generated from PMM(C,X) by setting

P̃MM(c,x) = PMM(c,x) ∀ x , xf ∀c, (3.26)

P̃MM(cf ,xf ) =
1

1 + exp(γ)
·PMM(xf ), and (3.27)

P̃MM(c∗,xf ) =
exp(γ)

1 + exp(γ)
·PMM(xf ). (3.28)

The terms in the objective (3.9) that change their value, sum up to∑
c

PD(c,xf )min
(
γ, logP̃MM(c,xf )

(
−max
c′,c

logP̃MM(c′ ,xf )
)

= γ
(
PD(c∗,xf )−PD(cf ,xf )

)
> 0.

As the objective increases, PMM(C,X) is not an MM BN.

3.C Proof of Lemma 2

Proof. Similar to the proof of Lemma 1, we give a proof by contradiction and make the
same assumptions. As the induced classifier hPMM(C,X) is assumed not to be optimal with

respect to PD(C,X), there exists an instantiation of the features xf that is not optimally
classified by hPMM(C,X), i.e. for which

[C|xf ]PMM(C,X) \ [C|xf ]PD(C,X) , ∅. (3.29)

Because of the assumption of Lemma 2, the set [C|xf ]PD(C,X) consists only of a single ele-

ment. If [C|xf ]PMM(C,X) consists of a single element, a contradiction can be shown similar

as in the binary-class case. If [C|xf ]PMM(C,X) consists of multiple elements, the sum∑
c

PD(c,xf )min
(
γ, logPMM(c,xf )−max

c′,c
logPMM(c′ ,xf )

)
(3.30)

in the MM-objective evaluates to at most zero.
Let {c∗} = [C|xf ]PD(C,X), i.e. c∗ satisfies PD(c∗|xf ) > PD(c′ |xf ) for all c′ , c∗. We generate

a new distribution P̃
MM

(C,X) that classifies xf optimally and has higher objective. The

distribution P̃
MM

(C,X) is constructed from PMM(C,X) by setting

P̃
MM

(c,x) = PMM(c,x) ∀x , xf ∀c, (3.31)

P̃
MM

(c′ ,xf ) =
1

|val(C)| − 1 + exp(γ)
·PMM(xf )

∀c′ , c∗, and (3.32)

P̃
MM

(c∗,xf ) =
exp(γ)

|val(C)| − 1 + exp(γ)
·PMM(xf ). (3.33)
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The terms in the objective that change their value, sum up to

∑
c

PD(c,xf )min
(
γ, logP̃

MM
(c,xf ) −max

c′,c
logP̃

MM
(c′ ,xf )

)
= γ

PD(c∗,xf )−
∑
c′,c

PD(c′ ,xf )


> 0,

where the inequality is due to the assumption of the Lemma. As the objective increases,
PMM(C,X) is not an MM BN.

3.D Maximum Margin Parameter Learning by Linear Pro-
gramming

The convex optimization problem for learning MM parameters [2] is based on a relaxation
of the normalization constraints inherent to learning probability distributions.

We exploit the renormalization property and ideas of Guo et al. [2] and Pernkopf et al.
[6] to come up with a linear program for optimally learning MM BNs using the objective
of Pernkopf et al. [6]. Assume a fixed graph G of the BNs. Then, we can express the
joint probability PB(C,X) in (2.8) satisfying the independence properties implied by G as
PB(C,X) = exp(φ(C,X)Tw). Consequently, optimization problem (3.9), can be rewritten as

maximize
w

∑
c,x

PD(c,x)min
(
γ,φ(c,x)Tw −max

c′,c
φ(c′ ,x)Tw

)
, (3.34)

s.t.
∑
j

exp
(
wij |h

)
= 1 ∀i,h ∈ val(Pa(Xi)),

where optimization is now solved over the log-parameters w. The constraints ensure that
w represents properly normalized conditional probabilities.

Problem (3.34) can readily be expressed as the optimization problem

maximize
w,γ(c,x)

∑
c,x

PD(c,x)γ(c,x) (3.35)

s.t. γ(c,x) ≤ γ ∀c,x

γ(c,x) ≤
[
φ(c,x)−φ(c′ ,x)

]T w ∀c,x ∀c′ , c∑
j

exp
(
wij |h

)
= 1 ∀i,h ∈ val(Pa(Xi)).

This problem is nonlinear and non-convex. To achieve convexity, Guo et al. [2] relaxed the
normalization constraints3 to∑

j

exp
(
wij |h

)
≤ 1 ∀i,h ∈ val(Pa(Xi)). (3.36)

These relaxed constraints have the disadvantage to cancel the effect of the parameter γ :
To see this, consider the problem in (3.35). If the normalization constraints are neglected,
a linear program results. The dual of this linear program exhibits that its solutions in
terms of w are independent of γ . However, every solution of the linear program can be
transformed to a feasible solution of (3.35) by subtracting a sufficiently large quantity from
each component of w. This subtraction does not change the objective and the induced
classifier.

3Guo et al. [2] used a different objective function. However, the implications are the same.
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To achieve the desired effect of γ , we constrain the components of w to be smaller than
0 and use an `1-norm constraint on w. The resulting linear program is

maximize
w,γc,x

∑
c,x

PD(c,x)γ(c,x) (3.37)

s.t. γ(c,x) ≤ γ ∀c,x

γ(c,x) ≤
[
φ(c,x)−φ(c′ ,x)

]T w ∀c,x ∀c′ , c

−
∑
i,j,h

wij |h ≤ 1, w ≤ 0.

A parameter vector w∗ solving (3.37) will in general not represent a properly normalized
distribution. Whenever the renormalization Condition 1 is satisfied, normalization is pos-
sible without changing hw∗ , where hw∗ is the classifier induced by w∗. Roughly speaking,
normalization can be achieved as follows (details are provided in [14]): Due to the DAG G
assumed for the BNCs, the nodes of these classifiers can be topologically ordered. The con-
ditional probabilities of the nodes can be sequentially normalized in a bottom up manner
starting with the last node in the topological ordering. Multiplicative factors required for
normalization are handed to the parent nodes. This does not affect the normalization of
previous nodes.

If Condition 1 is not satisfied, the parameters can still be normalized. However, the
resulting parameters are not guaranteed to maximize (3.9).

3.E Optimal Maximum Margin Bayesian Networks for the
Three-Class Example

3.E.1 Review of the Example

Consider a classifier with no features, i.e. X = ∅, in a three-class scenario. Let the true
distribution be defined by

P∗(C = 1) = 0.4,

P∗(C = 2) = 0.3,and

P∗(C = 3) = 0.3.

Hence, the Bayes optimal classifier would classify all instances as belonging to class 1.
However, in this case, any distribution inducing a Bayes optimal classifier has strictly
smaller (larger) objective than the uniform distribution according to problem (3.9) (prob-
lem (3.12)). Consequently, any MM distribution induces an inconsistent classifier almost
surely. In the remainder of this section, we assume that PD(C = 1) > PD(C = 2), PD(C = 1) >
PD(C = 3) and PD(C = 1) < PD(C = 2) + PD(C = 3) which holds asymptotically a.s.

3.E.2 Optimal Solution According to Guo et al.

For the considered example, MM BNs according to the formulation by Guo et al. can be
found by minimizing

1
2γ2 +BN

(
PD(C = 1)max {0,γ −min{w1 −w2,w1 −w3}}

+ PD(C = 2)max {0,γ −min{w2 −w1,w2 −w3}}

+ PD(C = 3)max {0,γ −min{w3 −w1,w3 −w2}}
)

with respect to w1,w2,w3 and γ , under the constraints that γ ≥ 0 and exp(w1) + exp(w2) +
exp(w3) ≤ 1.
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Assuming a solution corresponding to the uniform distribution, i.e. w1 = w2 = w3 =
log( 1

3 ), the minimization problem becomes

1
2γ2 +BNγ, (3.38)

again, subject to γ ≥ 0 and exp(w1) + exp(w2) + exp(w3) ≤ 1. The latter constraint is clearly
satisfied. The optimal value of γ can be determined by setting the derivative of (3.38) to
zero. This results in an objective value of

1

2(BN )−
2
3

+
3√
B2N2. (3.39)

We now show by lower-bounding the objective that for any parameters w1,w2,w3 corre-
sponding to the Bayes optimal classifier, the objective is strictly larger than (3.39). Assume
that w1 > w2, w1 > w3 and without loss of generality, that w2 ≥ w3 (this parameters corre-
spond to a Bayes optimal classifier). Then the following chain of inequalities results:

1
2γ2 +BN

(
PD(C = 1)max {0,γ −min{w1 −w2,w1 −w3}}

+ PD(C = 2)max {0,γ −min{w2 −w1,w2 −w3}}

+ PD(C = 3)max {0,γ −min{w3 −w1,w3 −w2}}
)

=
1

2γ2 +BN
(
PD(C = 1)max {0,γ − (w1 −w2)}

+ PD(C = 2)max {0,γ − (w2 −w1)}

+ PD(C = 3)max {0,γ − (w3 −w1)}
)

(a)
≥ 1

2γ2 +BN
(
PD(C = 1)max {0,γ − (w1 −w2)}

+
(
PD(C = 2) + PD(C = 3)

)
max {0,γ − (w2 −w1)}

)
(b)
≥ 1

2γ2 +BN
(
PD(C = 1)(γ − (w1 −w2))

+
(
PD(C = 2) + PD(C = 3)

)
(γ − (w2 −w1))

)
(c)
>

1
2γ2 +BNγ,

(3.40)

where (a) is because w2 − w1 ≤ w3 − w1, (b) by selecting arbitrary elements instead of
performing the maximum operations, and (c) because the empiric distribution satisfies
PD(C = 2) + PD(C = 3) > PD(C = 1) almost surely as N →∞. Consequently, an MM BN ac-
cording to the formulation of Guo et al. must not be Bayes optimal for this example almost
surely.

3.E.3 Optimal Solution According to Pernkopf et al.

For the considered example, MM BNs according to the formulation by Pernkopf et al. can
be found by maximizing

PD(C = 1)min(γ, logθ1 −max{logθ2, logθ3}) (3.41)

+PD(C = 2)min(γ, logθ2 −max{logθ1, logθ3})
+PD(C = 3)min(γ, logθ3 −max{logθ1, logθ2})
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with respect to θ1,θ2,θ3, where PMM(C = 1) = θ1, . . . ,PMM(C = 3) = θ3. In the case θ1 =
θ2 = θ3 = 1

3 the objective (3.41) evaluates to zero.
We now show by calculation, that any (θ1,θ2,θ3) that would correspond to a Bayes

optimal classifier results in a strictly smaller objective. For this, assume that θ1 > θ2 and
θ1 > θ3. Without loss of generality, additionally assume that θ2 ≥ θ3. Consequently,

PD(C = 1)min(γ, logθ1 −max{logθ2, logθ3})
+ PD(C = 2)min(γ, logθ2 −max{logθ1, logθ3})
+ PD(C = 3)min(γ, logθ3 −max{logθ1, logθ2})

= PD(C = 1)min(γ, logθ1 − logθ2)

+ PD(C = 2)min(γ, logθ2 − logθ1)

+ PD(C = 3)min(γ, logθ3 − logθ1)
(a)
≤ PD(C = 1)min(γ, logθ1 − logθ2)

+ (PD(C = 2) + PD(C = 3))min(γ, logθ2 − logθ1)
(b)
< (PD(C = 2) + PD(C = 3))min(γ, logθ1 − logθ2)

+ (PD(C = 2) + PD(C = 3))min(γ, logθ2 − logθ1)

= (PD(C = 2) + PD(C = 3))min(γ, logθ1 − logθ2)

− (PD(C = 2) + PD(C = 3)) (logθ1 − logθ2)
(c)
≤ 0,

where (a) is because θ2 ≥ θ3 by assumption, (b) because PD(C = 1) < PD(C = 2) + PD(C = 3),
and (c) because logθ1 − logθ2 is bounded by γ . Hence, any MM BN must not be Bayes
optimal for this example almost surely.
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4 Generative Maximum Margin Classifiers

This chapter was published in the conference proceedings of the International Conference on
Machine Learning 2013 under the title of The Most Generative Maximum Margin Bayesian
Networks [20]. The paper is joint work with Robert Peharz. In this thesis, the manuscript is
presented with minor modifications and restructuring. Furthermore, some additional material is
added to the appendix.

Although discriminative learning in graphical models generally improves classification
results, the generative semantics of the model are compromised. In this chapter, we in-
troduce a novel approach of hybrid generative-discriminative learning for BNs. We use an
SVM-type large margin formulation for discriminative training, introducing a likelihood-
weighted `1-norm for the SVM-norm-penalization. This simultaneously optimizes the data
likelihood and, therefore, partly maintains the generative character of the model. For many
network structures, our method can be formulated as a convex problem, guaranteeing a
globally optimal solution. In terms of classification, the resulting models perform on par
with state-of-the art generative and discriminative learning methods for BNs, and are com-
parable with linear and kernelized SVMs. Furthermore, the models achieve likelihoods
close to the maximum likelihood solution and show robust behavior in classification ex-
periments with missing features.

4.1 Introduction

In machine learning, there are two primary approaches: generative and discriminative
learning. In generative learning, the aim is to estimate an underlying and unknown prob-
ability distribution from data. Therefore, generative models represent probability distribu-
tions and the objective is some form of likelihood. In discriminative learning, the aim is to
find a representation of a function for mapping features to targets. Here, the objectives are
more versatile than in the generative case; dependent on the scenario, one aims to mini-
mize some form of error, or maximize the conditional likelihood, some form of margin or
the classification rate. When generative models do not capture the true distribution well,
discriminative approaches tend to outperform their generative counterparts.

BNs represent distributions and are therefore well-suited for generative learning. On
the other hand, they also represent conditional distributions and classification functions,
and can be trained also discriminatively [10, 19, 27, 11, 12, 23, 21]. When a BN is trained
discriminatively, its generative semantics is abandoned, i.e. its interpretation as joint dis-
tribution. The BN is optimized to infer the class value from the features, while other infer-
ence tasks are not considered. However, a discriminative BN still represents some spurious
marginal feature distribution, which does not fulfill any modeling purpose. Why should
we then use a BN, when we are actually interested in the conditional distribution only?
One reasonable ramification is to use models which explicitly model conditional distribu-
tions, but not the marginal feature distribution, such as conditional random fields [17].
The motivation in this chapter is different: Even when the conditional distribution ob-
tained by discriminative training is unique, the representation as a BN might be not unique.
A natural approach is to use this degree of freedom to improve the generative aspect of the
model, i.e. to select the representation with highest likelihood. This describes a domain of
likelihood-aware discriminative models, justifying a generative usage, such as sampling new
examples, versatile inference scenarios, and consistent treatment of missing features during test
time. A similar philosophy can be found in maximum entropy discrimination (MED) [16]
which combines discriminative estimation with generative models in a principled way.

In this chapter, we consider an SVM-type maximum margin approach for BNs [7, 12,
21]. We introduce a weighted `1-norm in the objective, where the weights correspond to
the likelihood counts obtained from training data. The motivation for the weighted `1-
norm is not that a better classifier is learned; literature provides several alternatives to the
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classical `2-norm SVMs [28, 29] and no general preference can be assessed for any norm.
We merely assume that the weighted `1-norm does typically not perform worse than any
other norm regularizer. In our approach, the model parameters are automatically nor-
malized for specific network structures, i.e. the parameters describe proper probability
distributions. Thus, the weighted `1-norm can be interpreted as likelihood-term. There-
fore, we can interpret our model as a likelihood-aware SVM. When the trade-off parameter
between the weighted `1-norm and the sample-margins is zero, the solution of our formu-
lation coincides with maximum likelihood parameters. When the parameter tends towards
infinity, the sample-margins are emphasized. Our model is related to hybrid generative-
discriminative models [22, 3, 2], but there is a substantial difference: Although the objec-
tive of our formulation is a trade-off between a likelihood term and a margin term, the
objective is not a blend of a “generative” and a “discriminative” term. The margin term
alone is not a discriminative objective, just as a standard SVM without norm-penalization
has little discriminative meaning. Rather, the likelihood-term has to be viewed as norm-
penalization, while the generative semantics are a desired side-effect.

We extend our notation in Section 4.2. In Section 4.3, we present our formulation as
convex optimization problem and state Theorems 2 and 3 which guarantee correctly nor-
malized BN parameters, permitting the additional likelihood-interpretation. In Section
4.4, we propose a projected gradient method which is scalable to large datasets. In Section
4.5 we report results on benchmark datasets. Section 4.6 concludes the chapter.

4.2 Background and Notation

Let w be a vector of BN parameters in the logarithmic domain, cf. Section 2.2.1. We say
that w is sub-normalized, iff

log
∑

j∈val(Xi )

exp(wij |h) ≤ 0, ∀Xi ,∀h ∈ val(Pa(Xi)), (4.1)

and w is normalized, iff (4.1) holds with equality. A vector w is strictly sub-normalized, iff
it is sub-normalized, but not normalized. In order to represent valid BN parameters, w has
to be normalized.

Assume that we have N i.i.d. samples D = ((c(1),x(1)), . . . , (c(N ),x(N ))), drawn from the
unknown distribution P∗(X). For a BN B with fixed structure G, the (smoothed) maximum
likelihood (ML) parameters are given as

ŵij |h = log

mij |hmih

 , (4.2)

where

mij |h =

 N∑
n=1

νi,nj |h

+
α

|val(Xi)| |val(Pa(Xi))|
, (4.3)

mih =
∑

j∈val(Xi )

mij |h, and (4.4)

νi,nj |h = 1([c(n),x(n)](Xi )=j and [c(n),x(n)](Pa(Xi ))=h). (4.5)

Here, α ≥ 0 is a smoothing parameter with the interpretation of a virtual sample count,
which biases the ML estimates towards a uniform distribution. The normalization by
|val(Xi)| |val(Pa(Xi))| achieves that the “virtual samples” are distributed consistently among
the CPTs. We say that the likelihood-counts are consistent, when for all Xk , j ∈ val(Xk),
Xi ∈ Ch(Xk), and h ∈ val(Pa(Xk)∩Pa(Xi)) it holds that∑

h′∈val(A)

mkj |[h,h′] =
∑

h′′∈val(B)

∑
j ′∈val(Xi )

mij ′ |[h,j,h′′] (4.6)
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where A = Pa(Xk)\Pa(Xi) and B = Pa(Xi)\(Pa(Xk)∪ {Xk}), and where Ch(Xi) are the children
of Xi according to G. For α > 0, Equation (4.2) is also the MAP solution using Dirichlet
priors according to [4, 14].

Our discussion will concentrate on structures satisfying the following condition, as
identified in [27]:

Condition 2. Each child of the class-node has a covering parent.

We call node Y a covering parent of node X iff Y is a parent of X and Pa(X) ⊆ Pa(Y )∪{Y }.
Structures satisfying Condition 2 are denoted as C-structures. The class of these structures
is quite rich, containing, amongst others, the NBs structure, the TANs [10], and diagnostic
networks [27]. C-structures facilitate discriminative learning, since for each unnormalized
parameter vector there exists also a normalized parameter vector, specifying the same con-
ditional distribution PB(C|X). Wettig et al. [27] provided a constructive proof, by proposing
Algorithm 1 (shown in Appendix 4.A) for normalizing a set of unnormalized BN param-
eters, while leaving PB(C|X) unchanged. Condition 2 allows a convex relaxation of our
optimization problem, presented in Section 4.3, i.e. a globally optimal solution can be ob-
tained. However, in principle our methods can also be applied to arbitrary structures, by
applying a normalization maintaining parameter transformation such as in [21].

4.3 A “Generative“ Maximum Margin Formulation

As defined before, the probabilistic margin dB(c(n),x(n)) of the nth sample is defined as [12,
21]

dB(c(n),x(n)) =
PB(c(n)|x(n))

max
c,c(n)

PB(c|x(n))
=

PB(c(n),x(n))

max
c,c(n)

PB(c,x(n))
. (4.7)

By defining φc(x) = φ(c,x), we can express the logarithm of (4.7) as

logdB(c(n),x(n)) = min
c,c(n)

[
(φc(n)(x(n))−φc(x(n)))T w

]
. (4.8)

When we interpret φc(x(n)) as (class-dependent) feature transformation, we can formulate
the following multiclass SVM-type training for BNs [7, 8, 12]:

minimize
w,ξ

‖w‖+λ
N∑
n=1

ξn (4.9)

s.t. (φc(n)(x(n))−φc(x(n)))T w + ξn ≥ 1 ∀n,c , c(n)

Here, ‖w‖ denotes some norm, ξ = (ξ1, . . . ,ξM ) is a vector of margin slacks, and λ is a trade-
off parameter, set by cross validation. We call formulation (4.9) the BN-SVM. In general,
a solution of the BN-SVM is not normalized, i.e. typically log

∑
j ′ exp(wij ′ |h) , 0, for some

i, h. However, since we consider C-structures, we can simply apply Algorithm 1, cf. Ap-
pendix 4.A, and obtain valid BN parameters, with the same class conditional distribution
(i.e. the same classifier) as the unnormalized, optimal solution.

Although this approach allows to marry SVM-type training with BNs, the following
questions naturally rise: Why should we even care about renormalized parameters, cor-
responding to the same classifier as the solution of (4.9)? Why should we use a BN at all,
when, by training it like an SVM, we abandon any probabilistic interpretation? The answer
we give here, is that discriminative training in BNs can be meaningful, when we (partly)
maintain a generative interpretation. To this end, we modify (4.9) and use the following
weighted `1-norm for the BN-SVM norm term: Lm(w) =

∑
i,j,h |mij |hw

i
j |h|. Here, the weights

mij |h are the likelihood-counts according to (4.3), collected in a vector m. Furthermore,
we subject the vector w to sub-normalization constraints (4.1). These constraints restrict
the parameters to a smooth approximation of the negative orthant, but do not severely

39



restrict the solution space, since an arbitrary constant can be added to a solution vector
w, yielding the same classifier. However, for the BN-SVM according to (4.9), we are al-
lowed to arbitrarily assume a function margin of 1, since an optimal solution vector simply
scales with this value. By introducing the sub-normalization constraints, this does not
hold true any more. Therefore, we introduce a model parameter γ for the function margin,
which is set by cross-validation. Since constraints (4.1) imply wij |h ≤ 0, we can re-write

Lm(w) = −
∑
i,j,hm

i
j |hw

i
j |h = −mT w. Finally, we get the modified convex problem:

minimize
w,ξ

−mTw +λ
N∑
n=1

ξn (4.10)

s.t. (φc(n)(x(n))−φc(x(n)))T w + ξn ≥ γ ∀n,c , c(n)

log
∑
j ′

exp
(
wij ′ |h

)
≤ 0 ∀ 0 ≤ i ≤ L,∀ h ∈ val(Pa(Xi))

ξn ≥ 0 ∀n

Our first interpretation of (4.10) is that of a special instance of an BN-SVM, with (exotic)
weighted `1-norm term Lm(w) and an arbitrary (but not limiting) sub-normalization con-
straint on the solution vector. On the other hand, Lm(w) = −mTw is formally the nega-
tive log-likelihood of w. Therefore, although (4.10) is a discriminative formulation, we see
that as a side effect, it aims to maximize the data likelihood. However, there is still a major
problem about this generative interpretation: the solution vector w might be strictly sub-
normalized. In this case, w does not represent valid BN parameters, and strictly speaking,
Lm(w) can not be interpreted as negative log-likelihood. When Algorithm 1 is applied
to obtain normalized parameters, the discriminative character is left unchanged. But how
does the generative character change under Algorithm 1? Fortunately, as shown in Lemma 3,
for C-structures the log-likelihood can only increase when Algorithm 1 is applied to sub-
normalized parameters. The proofs for Lemma 3 and Theorems 2 and 3 can be found in
Appendices 4.B, 4.C and 4.D, respectively.

Lemma 3. Let G be a C-structure, w̃ be a sub-normalized parameter-vector for G, and m be a
nonnegative vector of consistent likelihood-counts. Then the likelihood is non-decreasing under
Algorithm 1, i.e. when w is the output of Algorithm 1 for input G, w̃, then Lm(w) ≤ Lm(w̃).

Using Lemma 3, it is easy to show that (4.10) always has a normalized solution, as stated
in Theorem 2.

Theorem 2. Let G be a C-structure, ((c(1),x(1)), . . . , (c(N ),x(N ))) be an arbitrary data set, and m
be an element-wise nonnegative vector of consistent likelihood-counts. Then problem (4.10) (for
λ ≥ 0) always has an optimal solution w, ξ, such that w is normalized.

Furthermore, for positive likelihood-counts, e.g. when α > 0 in (4.3), the solution is
unique and normalized.

Theorem 3. Assume the same conditions as in Theorem 2, but where m is element-wise positive.
Then problem (4.10) has a unique, normalized solution.

Lemma 3 and Theorems 2 and 3 show that for C-structures, we can always interpret
Lm(w) as negative log-likelihood. Due to this generative interpretation, we call formulation
(4.10) the maximum-likelihood BN-SVM (ML-BN-SVM). Problem (4.10) is convex and can
be addressed by standard solvers. However, this restricts learning to medium sized data
sets. In the following section we describe an optimization method which scales better to
large datasets.

4.4 Optimization for Large-scale Data

The main limitation in (4.10) is that we have N (|val(C)| − 1) linear constraints, which re-
stricts application currently to some thousand samples. Therefore, we slightly modify the
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Figure 4.1: Construction of the soft-hinge by fitting a circle segment (here with radius
R = 1) at the discontinuity of the (hard) hinge function.

problem and propose a scalable gradient-based optimization method. By expressing the
slacks as

ξn = max
(
max
c,c(n)

[
γ − (φc(n)(x(n))−φc(x(n)))T w

]
,0

)
, (4.11)

we can eliminate these constraints, or in other words, they are absorbed into the objective.
Since the hinge function max(·,0) and the maxc,cn [· · · ] are not differentiable, we replace

them by smooth approximations. The soft-hinge hR(·) used is defined as

hR(ζ) =


0 ζ < µ,

ζ ζ > µ+ R√
2
, and

R−
√
R2 − (ζ −µ)2 o.w.,

(4.12)

where R is the radius of a fitted circle-segment, smoothing the discontinuity of the hinge,
and µ = R (1−

√
2). The soft-hinge is illustrated in Figure 4.1. In our experiments we set

R = min(1,γ). The derivative of hR(·) is given as

∂hR(ζ)
∂ζ

=


0 ζ < µ,

1 ζ > µ+ R√
2
, and

ζ−µ√
R2−(ζ−µ)2

o.w.
(4.13)

The max function is approximated using the soft-max function

smax
ζ1,...,ζK

=
1
η

log
K∑
i=1

exp(η ζi). (4.14)

Here η is an approximation parameter, where for η→∞ the soft-max converges to the
(hard) max. In our experiments we set η = 10. The derivative of the soft-max is given as

∂ smax
ζ1,...,ζK

∂ζi
=

exp(ηζi)∑K
l=1 exp(ηζl)

. (4.15)

Now, the slack variables are (approximately) expressed as

ξn = hR

(
smax
c,c(n)

[
γ − (φc(n)(x(n))−φc(x(n)))T w

])
. (4.16)
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To this end, we obtain the following modified convex problem

minimize
w

−mTw +λ
N∑
n=1

hR

(
smax
c,c(n)

[
γ − (φc(n)(x(n))−φc(x(n)))T w

])
(4.17)

s.t. log
∑
j ′

exp
(
wij ′ |h

)
≤ 0 ∀ 0 ≤ i ≤ L,∀ h ∈ val(Pa(Xi))

The objective

O(w) =−mTw +λ
N∑
n=1

hR

(
smax
c,c(n)

[
γ − (φc(n)(x(n))−φc(x(n)))Tw

])
(4.18)

is continuously differentiable, where the derivative is given as

∂O(w)

∂wij |h
= −mij |h −λ

N∑
n

∂hR
∂smax

·
∑
c,c(n)

∂smax
∂ξnc

· (νi,nj |h − ν
i,n,c
j |h ), (4.19)

where

ξ
(n)
c = γ − (φc(n)(x(n))−φc(x(n)))w, and (4.20)

νi,n,cj |h = 1([c,x(n)](Xi )=j and [c,x(n)](Pa(Xi ))=h). (4.21)

For optimization of the objective, we use a projected gradient descent method, i.e. w is
projected onto the set of sub-normalized vectors after each gradient step. This can be done
independently for each CPT, i.e. for each combination of i ∈ {0, . . . ,L} and h ∈ val(Pa(Xi)).
Projecting an arbitrary vector ζ∗ = (ζ∗1, . . . ,ζ

∗
K )T onto the set of sub-normalized vectors is

formulated as

minimize
ζ

||ζ − ζ∗||2 (4.22)

s.t. log
K∑
l=1

exp(ζl) ≤ 0.

This problem has no closed-form solution, but can be addressed by the iterative algorithm
proposed in [18]. This algorithm neatly meets our requirements, since we can use the solu-
tion of the previous projected gradient step as initialization, and then perform only some
few iterations of the projection algorithm, without the need to iterate until convergence.
The proposed projected gradient method scales nicely to large data sets; the evaluation
of the objective and its gradient is linear in (|val(C)| − 1)N L. It is also straightforward to
implement parallel and stochastic versions of this method. Further details and the pseudo
code of the projection algorithm can be found in Appendix 4.E. Furthermore, an alternative
algorithm to the iterative algorithm is proposed in Appendix 4.G.

4.5 Experiments

In this section we present experiments for illustrative purposes (Sections 4.5.1 and 4.5.2)
and a comparison on real-world datasets (Section 4.5.3). We considered 30 datasets from
the UCI repository [1], TIMIT [21] and USPS data [13]. Datasets containing more than
5000 samples were split into training and test set; Otherwise 5-fold cross-validation was
used for testing. Dataset details are available in Chapter 2.3. For discretizing continuous
attributes, we used the algorithm described in [9]. The smoothing parameter α in (4.3)
was constantly set to 1. Although α can have a great impact on classification [10, 24], its
evaluation is out of the scope of this thesis.
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4.5.1 Generative-Discriminative Trade-off

The parameter λ in problem (4.10) allows to control the trade-off between the generative
and discriminative character of the model. Choosing λ = 0, the ML-BN-SVM parameters
coincide with the ML solution. When λ tends towards infinity, a large margin separa-
tion of training samples is emphasized. Intermediate choices of λ correspond to a gen-
erative/discriminative crossover. To illustrate the effect of parameter λ, we learned ML-
BN-SVMs with varying λ, assuming NB structure, using the car dataset. The results are
shown in Figure 4.2. With increasing λ, the negative log-likelihood increases (i.e. the log-
likelihood decreases), while the sum of slacks decreases. Qualitatively, the classification
rate increases correspondingly. Similar behavior can be observed on other datasets.
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Figure 4.2: Influence of parameter λ using the car dataset. (top) Negative log-likelihood
(neg. LL) and sum of slacks (SoS), normalized by N . (bottom) Classification rate (CR).

4.5.2 Classification with Missing Features

Although the ML-BN-SVM is primarily trained for classification, its generative character
justifies other inference tasks, e.g. marginalizing out missing features. The assumption
is that the more generative the model is, the more robust the classifier is against missing
data. To this end, we conducted an experiment with missing features in test data, using
the vehicle dataset. We trained ML-BN-SVMs for different values of λ, cross-validating γ .
In the test set, we varied the number of missing features, selected uniformly at random.
For classification, missing features were marginalized. Classification results are shown in
Figure 4.3, where results are averaged over 100 independent runs. While the purely gen-
erative model has the worst performance when no features are missing, its classification
rate is almost constant until about 40% of missing features, and degrades slowly over the
whole range of missing features. In contrast, models that are more discriminative (i.e. larger
λ) show a better performance when all features are used, but their classification rates de-
grade rapidly with increasing percentage of missing features. This effect can be controlled;
for λ = 1 and using all available features, the classification rate is almost as good as for
classifiers trained with larger values of λ. Furthermore, the results are better than for the
purely generative classifier for almost the whole range of missing features.

4.5.3 Benchmark Classification Results

We compared ML-BN-SVMs with ML, maximum conditional likelihood (MCL) and maxi-
mum margin (MM) parameters using the algorithm proposed in [21]. In order to enable a
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Figure 4.3: Classification rates (CR) for the vehicle dataset for varying numbers of missing
features and varying λ, using a NB structure.

fair comparison, MM was executed without early stopping. Experiments with early stop-
ping are provided in Appendix 4.F. Furthermore, we compared with linear SVMs and
SVMs equipped with Gaussian kernels [5]. For ML-BN-SVMs we validated the ranges
γ ∈ {0.1,1,5,10,15,20}, and λ ∈ {0,2−2,2−1, . . .210}. For MM, we used 10 values for κ and λ,
uniformly spaced in the intervals [0.01,0.5] and [0.01,1], respectively (see [21] for details).
For SVMs we validated the trade-off parameter λ ∈ {2−2,2−1, . . .210} and, for kernelized
SVMs, the kernel width σ ∈ {2−5,2−4, . . . ,25}. For the classifiers based on BNs, we used
NB and maximum-likelihood TAN structures [10], i.e. TAN-CMI. Classification results for
the compared methods are shown in Tables 4.1 and 4.2 for TAN and NB structures, re-
spectively. We see that ML-BN-SVM parameters clearly outperform both ML and MCL
parameters. Furthermore, ML-BN-SVM performs better than MM in 17 out of 27 datasets.
ML-BN-SVM also compares well to linear SVMs. We observe a slight preference for kernel-
ized SVMs, which can be attributed to the kernel trick, and its implicit high dimensional
feature transform. However, generally we see that the ML-BN-SVM delivers satisfying clas-
sification results.

To demonstrate the generative character of the ML-BN-SVM, we compare the likelihoods
of the trained BN models. In Figure 4.4 we plot the likelihood (normalized by the sample
size) of ML parameters against the likelihood of MCL, MM, and ML-BN-SVM parameters,
respectively. The results for NB and TAN are combined. For cross-validated results, each
fold is used as individual dataset, i.e. one dot in the scatter plot. Since ML parameters
maximize the likelihood, no points on the left hand side of the red line are possible. We
observe that the scatter plot for ML-BN-SVM is clearly more concentrated in the vicinity
of the red line than for MCL and MM parameters, constituting the generative character of
the ML-BN-SVM. A similar result is achieved for the likelihood on the test sets. Averaged
over all datasets, the ML-BN-SVM achieved a likelihood of 91.09% relative to maximum
likelihood (89.84% on the test sets); on the other hand, MCL training achieved on average
a likelihood of 67.23% (61.47% on the test sets) and MM 39.99% (39.10% on the test set),
relative to ML.

Furthermore, we performed missing feature experiments on the UCI datasets. We ran-
domly removed features from the test sets, were we varied the percentage of missing fea-
tures between 0 and 90%. Classifiers based on BNs treated missing features by marginal-
ization. For the SVM (here we only considered the Gaussian kernel), K-nearest-neighbor
(K-NN) imputation (with K = 5) was used to replace missing values. For all BN-classifiers,
TAN structures were used. We also provide results for logistic regression (LR), using K-NN
imputation. The result, averaged over all UCI datasets, are shown in Figure 4.5. As ex-
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Table 4.1: Detailed classification rates with 95% confidence intervals for BN parameters,
using TAN structures. ML: maximum likelihood, MCL: maximum condition likelihood,
MM: maximum margin BN parameters [21], ML-BN-SVM: proposed method, Linear SVM:
support vector machine without kernel, SVM: support vector machine with Gauss kernel.

dataset ML MCL MM ML-BN-SVM Linear SVM SVM

abalone 57.70± 1.58 57.92± 1.65 57.78± 0.96 58.69± 1.86 58.42± 1.77 59.29± 1.40
adult 85.70± 0.66 86.65± 0.64 86.54± 0.65 86.76± 0.64 86.86± 0.64 86.87± 0.64
australian 81.67± 2.66 81.97± 3.70 85.49± 3.40 84.76± 3.78 85.78± 1.69 86.80± 2.34
breast 95.56± 2.06 95.56± 1.45 96.59± 0.50 96.00± 2.31 96.15± 1.51 97.19± 0.41
car 94.24± 1.50 98.08± 0.75 97.79± 0.79 98.08± 1.07 93.84± 0.65 99.65± 0.30
chess 92.19± 1.62 97.65± 0.81 97.43± 0.79 97.99± 0.92 97.02± 0.82 99.50± 0.25
cleve 79.43± 6.34 77.74± 7.53 79.09± 7.56 80.79± 7.58 83.57± 5.29 82.19± 6.37
corral 97.53± 4.61 100.00± 0.00 100.00± 0.00 100.00± 0.00 93.36± 4.55 100.00± 0.00
crx 84.04± 4.64 80.32± 5.20 83.89± 5.89 84.20± 4.56 85.75± 3.20 85.75± 2.65
diabetes 74.35± 4.23 74.22± 5.50 73.31± 5.71 74.35± 5.42 73.96± 4.46 74.48± 4.65
flare 81.57± 1.27 81.48± 1.91 84.45± 0.28 83.30± 1.06 84.45± 0.28 84.45± 0.28
german 71.90± 1.83 69.50± 3.54 73.20± 4.01 72.60± 2.89 76.10± 1.11 75.80± 2.80
glass 72.68± 5.29 68.55± 4.03 71.71± 10.88 72.61± 6.35 71.61± 5.50 73.24± 5.33
glass2 81.38± 9.20 82.00± 8.05 80.75± 10.51 80.75± 10.51 79.38± 4.27 79.96± 8.90
heart 80.74± 10.36 77.04± 10.61 77.41± 9.81 81.48± 9.34 84.81± 4.11 81.85± 9.40
hepatitis 86.17± 10.00 86.08± 11.48 86.08± 3.38 86.17± 6.31 87.42± 10.89 88.67± 6.37
iris 94.00± 1.85 94.00± 1.85 92.67± 4.53 94.00± 1.85 93.33± 2.93 93.33± 2.93
letter 86.21± 0.84 87.65± 0.80 89.58± 0.74 88.57± 0.77 90.07± 0.73 94.07± 0.58
lymphography 80.77± 7.36 75.38± 10.86 80.66± 11.11 76.92± 10.54 83.57± 10.44 86.48± 9.99
mofn-3-7-10 92.62± 1.37 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
mushroom 100.00± 0.07 100.00± 0.07 100.00± 0.07 100.00± 0.07 100.00± 0.07 99.82± 0.19
nursery 92.96± 0.77 98.31± 0.40 98.84± 0.33 98.68± 0.35 93.31± 0.76 100.00± 0.04
satimage 85.79± 1.92 81.52± 0.95 86.82± 2.66 86.98± 1.30 88.36± 1.58 90.59± 1.59
segment 94.89± 1.02 94.37± 1.57 96.02± 1.21 95.76± 0.62 96.19± 0.73 96.84± 1.17
shuttle 99.88± 0.05 99.84± 0.06 99.91± 0.05 99.92± 0.04 99.96± 0.03 99.96± 0.03
soybean-large 91.88± 1.28 82.66± 4.59 90.77± 2.16 91.87± 2.26 91.15± 3.72 93.54± 1.19
spambase 92.97± 0.85 92.99± 1.10 93.62± 0.80 94.03± 0.84 94.27± 0.72 95.04± 0.37
TIMIT4CF 90.70± 0.42 87.25± 0.48 91.70± 0.40 91.59± 0.40 92.05± 0.39 92.38± 0.39
TIMIT4CM 90.47± 0.43 88.57± 0.46 85.62± 0.51 92.58± 0.38 92.88± 0.38 93.16± 0.37
TIMIT6CF 83.18± 0.52 80.92± 0.54 84.27± 0.50 84.89± 0.49 85.57± 0.48 85.74± 0.48
TIMIT6CM 83.05± 0.52 80.98± 0.54 85.45± 0.49 85.91± 0.48 86.66± 0.47 86.56± 0.47
USPS 91.20± 0.93 90.46± 0.97 95.98± 0.65 95.98± 0.65 95.82± 0.66 91.80± 0.90
vehicle 70.60± 2.00 69.64± 3.69 69.04± 4.30 69.88± 2.41 70.12± 1.26 69.76± 2.43
vote 94.37± 2.62 94.15± 2.04 96.01± 2.45 95.31± 2.74 94.85± 2.20 95.54± 3.18
waveform-21 82.36± 0.71 80.55± 1.00 82.86± 0.51 83.48± 0.56 84.78± 1.77 85.16± 1.29

45



Table 4.2: Detailed classification rates with 95% confidence intervals for BN parameters,
using NB structures. ML: maximum likelihood, MCL: maximum condition likelihood,
MM: maximum margin BN parameters [21], ML-BN-SVM: proposed method, Linear SVM:
support vector machine without kernel, SVM: support vector machine with Gauss kernel.

dataset ML MCL MM ML-BN-SVM Linear SVM SVM

abalone 53.64± 1.45 59.12± 1.71 56.62± 0.88 59.12± 1.69 58.42± 1.77 59.29± 1.40
adult 83.37± 0.71 86.90± 0.64 86.92± 0.64 86.94± 0.64 86.86± 0.64 86.87± 0.64
australian 85.92± 2.92 84.02± 2.76 85.34± 2.64 87.24± 2.86 85.78± 1.69 86.80± 2.34
breast 97.63± 1.01 95.56± 1.45 95.85± 2.22 97.04± 1.45 96.15± 1.51 97.19± 0.41
car 85.64± 1.59 93.43± 1.76 93.78± 1.63 92.73± 1.14 93.84± 0.65 99.65± 0.30
chess 87.45± 2.57 97.11± 1.02 97.58± 0.86 97.68± 1.21 97.02± 0.82 99.50± 0.25
cleve 82.87± 6.79 82.52± 6.36 82.17± 6.94 82.53± 7.64 83.57± 5.29 82.19± 6.37
corral 89.16± 8.67 93.36± 4.55 93.36± 4.55 93.36± 4.55 93.36± 4.55 100.00± 0.00
crx 86.84± 3.29 85.13± 4.10 84.82± 3.71 86.06± 3.54 85.75± 3.20 85.75± 2.65
diabetes 73.96± 4.17 75.40± 5.41 74.61± 4.94 74.87± 3.47 73.96± 4.46 74.48± 4.65
flare 76.58± 1.04 83.40± 1.02 82.63± 1.79 83.11± 0.82 84.45± 0.28 84.45± 0.28
german 74.20± 3.58 75.10± 1.42 76.50± 1.52 75.30± 3.12 76.10± 1.11 75.80± 2.80
glass 71.66± 3.58 68.05± 0.63 68.03± 1.91 70.61± 3.63 71.61± 5.50 73.24± 5.33
glass2 81.29± 10.50 82.63± 8.12 80.09± 9.96 82.63± 8.12 79.38± 4.27 79.96± 8.90
heart 81.85± 9.40 82.59± 5.77 81.85± 5.73 83.33± 5.14 84.81± 4.11 81.85± 9.40
hepatitis 88.58± 6.57 86.08± 3.38 84.92± 8.69 92.33± 6.75 87.42± 10.89 88.67± 6.37
iris 93.33± 2.93 92.67± 3.46 93.33± 2.93 93.33± 2.93 93.33± 2.93 93.33± 2.93
letter 74.95± 1.05 85.97± 0.84 82.53± 0.92 85.79± 0.85 90.07± 0.73 94.07± 0.58
lymphography 84.23± 5.60 84.23± 4.47 82.80± 5.54 82.80± 4.39 83.57± 10.44 86.48± 9.99
mofn-3-7-10 87.31± 1.94 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
mushroom 98.04± 0.54 100.00± 0.07 100.00± 0.07 99.78± 0.20 100.00± 0.07 99.82± 0.19
nursery 89.97± 0.91 92.38± 0.80 92.98± 0.77 93.03± 0.77 93.31± 0.76 100.00± 0.04
satimage 81.56± 1.80 87.29± 1.11 88.82± 1.26 88.41± 1.33 88.36± 1.58 90.59± 1.59
segment 92.68± 1.78 94.29± 0.77 94.98± 1.66 95.37± 0.86 96.19± 0.73 96.84± 1.17
shuttle 99.62± 0.09 99.91± 0.05 99.94± 0.04 99.95± 0.04 99.96± 0.03 99.96± 0.03
soybean-large 93.35± 1.91 92.98± 3.88 92.79± 1.59 91.50± 3.81 91.15± 3.72 93.54± 1.19
spambase 90.03± 1.11 93.73± 0.95 94.01± 0.97 94.08± 0.75 94.27± 0.72 95.04± 0.37
TIMIT4CF 87.88± 0.47 92.04± 0.39 91.90± 0.40 91.95± 0.39 92.05± 0.39 92.38± 0.39
TIMIT4CM 88.86± 0.46 93.04± 0.37 92.88± 0.38 92.71± 0.38 92.88± 0.38 93.16± 0.37
TIMIT6CF 82.20± 0.53 85.50± 0.49 85.20± 0.49 85.49± 0.49 85.57± 0.48 85.74± 0.48
TIMIT6CM 82.43± 0.53 86.24± 0.48 86.04± 0.48 86.50± 0.47 86.66± 0.47 86.56± 0.47
USPS 86.89± 1.11 94.37± 0.76 95.44± 0.69 95.08± 0.71 95.82± 0.66 91.80± 0.90
vehicle 61.57± 1.44 68.67± 3.03 69.76± 2.56 67.95± 6.00 70.12± 1.26 69.76± 2.43
vote 90.16± 4.70 94.61± 2.21 95.78± 2.21 94.61± 3.19 94.85± 2.20 95.54± 3.18
waveform-21 81.14± 1.05 85.10± 1.53 85.43± 1.34 85.14± 1.52 84.78± 1.77 85.16± 1.29
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Figure 4.4: Likelihood scatter plot over all data sets. The train likelihoods (normalized by
the sample size) of ML parameters are plotted against the train likelihoods of MCL (top),
MM (center), and ML-BN-SVM (bottom).
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Figure 4.5: Classification results, averaged over UCI datasets, with varying percentage of
missing features.

pected, the ML solution shows the most robust behavior against missing features, and for a
percentage larger 60%, it performs best of all compared methods. However, ML-BN-SVMs
perform better than ML in the case of no or little missing features, and are almost as robust
against missing features as the ML solution. The purely discriminative BN parameters,
MCL and MM, show a quick drop-off in performance when the percentage of missing fea-
tures is increased. For large portions of missing features (> 60%) also SVMs perform poorly
compared to ML and ML-BN-SVM. This experiments indicates that ML-BN-SVMs are fa-
vorable in conditions where many features might be missing, and where the percentage of
missing features varies strongly.

To summarize our results, in Table 4.3, we provide pair-wise comparisons of all methods
conducted on the UCI datasets: Plain numbers denote the number of times where the
algorithm in the row outperforms the algorithm in the column at a significance level of
68%. Bold face numbers denote a significance level of 95%. When using 5-fold cross-
validation for testing, we used a one-sided t-test, otherwise we used a one-sided binomial
test for testing significance. Tables 4.4 and 4.5 show the corresponding results, when 50%
and 90% percent of features are missing in the test data, respectively. Similar as before,
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these results demonstrate the robustness against missing features of ML and ML-BN-SVM
parameters.

Table 4.3: Number of times classifier in row outperforms classifier in column with signifi-
cance 68 % (plain) and 95 % (bold), when no features are missing.

ML MCL MM ML-BN-SVM SVM

NB TAN NB TAN NB TAN NB TAN Linear Gauss

ML NB – 9/5 8/4 11/7 9/4 11/4 7/2 9/5 5/1 5/0
ML TAN 20/18 – 8/3 14/8 8/3 8/1 7/3 4/1 6/1 4/1
MCL NB 21/18 20/10 – 19/11 10/2 13/6 8/1 13/2 5/1 5/2

MCL TAN 17/14 8/6 7/5 – 7/4 8/0 7/5 1/0 6/4 3/1
MM NB 20/18 15/11 14/8 17/11 – 15/8 9/3 12/4 8/2 4/2

MM TAN 18/18 18/12 12/7 19/12 10/6 – 10/8 8/3 8/4 3/2
ML-BN-SVM NB 24/19 21/11 15/9 21/14 14/7 20/8 – 15/4 9/3 7/1

ML-BN-SVM TAN 19/18 21/15 13/8 21/16 12/8 15/3 12/6 – 10/4 3/2
LinSVM 21/18 22/14 19/7 21/14 16/6 15/7 15/7 15/8 – 6/2

SVM 23/18 26/18 20/14 25/18 18/12 25/13 17/10 21/11 17/9 –

Table 4.4: Number of times classifier in row outperforms classifier in column with signifi-
cance 68 % (plain) and 95 % (bold), with 50% missing features.

ML MCL MM ML-BN-SVM SVM

NB TAN NB TAN NB TAN NB TAN Linear Gauss

ML NB – 8/2 23/19 20/13 25/18 25/15 14/7 8/5 11/5 12/3
ML TAN 20/13 – 24/20 25/16 26/21 28/17 18/13 9/3 13/4 13/3
MCL NB 6/2 2/0 – 13/5 11/7 16/9 2/0 2/2 4/3 4/2

MCL TAN 10/7 4/1 15/9 – 15/13 19/8 9/6 5/2 5/3 5/2
MM NB 5/3 5/2 14/11 12/7 – 16/10 4/4 3/1 2/1 3/2

MM TAN 5/4 2/1 11/9 11/6 10/6 – 6/4 4/2 1/0 1/0
ML-BN-SVM NB 12/6 7/1 25/19 18/12 23/15 22/13 – 7/2 11/4 11/6

ML-BN-SVM TAN 18/11 13/3 25/19 24/20 26/22 27/17 18/11 – 10/4 10/6
LinSVM 17/11 12/6 26/22 25/18 26/23 27/17 18/11 14/7 – 10/3

SVM 16/12 13/9 25/22 24/19 26/20 25/17 17/12 14/9 15/7 –

Table 4.5: Number of times classifier in row outperforms classifier in column with signifi-
cance 68 % (plain) and 95 % (bold), with 90% missing features.

ML MCL MM ML-BN-SVM SVM

NB TAN NB TAN NB TAN NB TAN Linear Gauss

ML NB – 3/0 22/16 20/15 26/18 24/17 18/10 16/4 23/12 24/13
ML TAN 8/4 – 22/16 20/14 26/18 24/17 19/11 18/4 24/13 25/14
MCL NB 0/0 0/0 – 8/4 14/7 13/7 6/2 5/1 7/4 8/4

MCL TAN 3/1 2/1 15/10 – 13/8 15/8 7/5 2/1 13/5 11/6
MM NB 0/0 0/0 11/8 10/5 – 15/8 7/3 6/2 7/5 8/4

MM TAN 0/0 0/0 9/5 8/6 9/3 – 4/3 3/1 9/6 10/6
ML-BN-SVM NB 1/0 2/0 18/11 14/7 19/9 20/13 – 6/2 16/6 14/7

ML-BN-SVM TAN 5/3 3/1 19/14 20/11 22/14 20/14 17/10 – 23/11 23/11
LinSVM 2/2 1/1 17/10 13/8 17/10 19/9 7/3 5/1 – 7/4

SVM 3/2 2/1 15/11 14/7 17/9 19/9 8/3 6/1 11/4 –

4.6 Conclusion

A BN distribution is a log-linear model, enabling SVM-type training for BNs [12, 21], which
we call BN-SVM. For a large class of network structures [27], one can always obtain cor-
rectly normalized parameters, i.e. a formally valid BN. In this chapter, we proposed the
maximum-likelihood BN-SVM, where during discriminative training the log-likelihood of
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the model is maximized as a desired side-effect, partly maintaining a generative interpre-
tation. In experiments we showed that in terms of classification our models outperform
standard generative and discriminative learning methods for BNs (i.e. ML, MCL and MM),
compete with linear SVMs, and are in range with kernelized SVMs. Furthermore, our
models achieve likelihoods close to the ML solutions. We demonstrated the benefit of the
generative character in missing feature experiments. In future work, we will extend the
ML-BN-SVM to treat missing data during learning — a similar extension for MM BNs has
been investigated in Tschiatschek et al. [25]. In the BN framework, this naturally includes
learning with missing features and semi-supervised learning.
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Appendix

4.A Parameter Renormalization

The parameters of a BNC B with C-structure [27], cf. Condition 2, can be normalized with-
out changing the class-conditional distribution PB(C|X) using Algorithm 1. Roughly speak-
ing, normalization can be achieved as follows: First, the nodes of the BNC are topologically
ordered. Second, the conditional probabilities of the nodes can be sequentially normalized
in a bottom up manner starting with the last node in the topological ordering. Multiplica-
tive factors required for normalization are handed to the parent nodes. This does not affect
the normalization of previous nodes.

Algorithm 1 Renormalization [27]

Require: G, unnormalized parameters w̃
Ensure: Normalized parameters w, with PB(C|X;w) = PB(C|X;w̃)

1: w← w̃
2: Find a topological order (π0, . . . ,πL), i.e. any edge Xπi → Xπj is not contained in G,
∀0 ≤ i < j ≤ L.

3: for i = 0, . . . ,L do
4: for h ∈ val(Pa(Xπi )) do
5: β← log

∑
j ′ exp

(
wπij ′ |h

)
6: wπij |h← wπij |h − β ∀j ∈ val(Xπi )
7: if Xπi is a class-child then
8: Let Xki be a covering parent of Xπi
9: I← Pa(Xki )∩Pa(Xπi )

10: A← Pa(Xki ) \Pa(Xπi )
11: for a ∈ val(A) do
12: wkih(Xki )|[h(I),a]← wkih(Xki )|[h(I),a] + β

13: end for
14: end if
15: end for
16: end for

4.B Proof of Lemma 3

Proof of Lemma 3. First note that in Algorithm 1, w always remains sub-normalized: If w
is sub-normalized, then β ≤ 0 in step 5. In step 6, a CPT becomes normalized, and in step
12, β is added to some CPT entry, which again yields a sub-normalized CPT. By induction,
w remains sub-normalized and β ≤ 0.

Algorithm 1 iterates over all Xπi and all h ∈ val(Pa(Xπi )), modifying w. Let w′ be the
vector before some modification, and w′′ the vector afterwards. We show, that Lm(w′′) ≤
Lm(w′), and therefore Lm(w) ≤ Lm(w̃).
First, w is modified in step 6, where w′′πij |h = w′πij |h − β, ∀j ∈ val(Xπi ). By nonnegativity of n
and β ≤ 0 we have

Lm(w′′)−Lm(w′) = −mT w′′ + mT w′ (4.23)

= β
∑
j

mπij |h (4.24)

≤ 0. (4.25)
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Therefore, when Xπi is not a class-child, Lm(w′′) ≤ Lm(w′). When Xπi is a class-child, we
additionally have in step 12 that

w′′kih(Xki )|[h(I),a] = w′kih(Xki )|[h(I),a] + β ∀a ∈ val(A), (4.26)

where Xki is a covering parent of Xπi , I are their common parents, and A are the extra

parents of Xki . Since G is a C-structure, it holds that Pa(Xπi ) \
(
Pa(Xki )∪ {Xki }

)
= ∅. There-

fore, since n are consistent likelihood-counts, cf. (4.6), we have that
∑

a∈val(A)n
ki
h(Xki )|[h(I),a] =∑

j ′∈val(Xπi )
mπij ′ |h, and thus

Lm(w′′)−Lm(w′) = −mT w′′ + mT w′ (4.27)

= β
∑
j ′
mπij ′ |h − β

∑
a

mkih(Xki )|[h(I),a] (4.28)

= 0. (4.29)

We see that Lm(w′′) ≤ Lm(w′), and by induction Lm(w) ≤ Lm(w̃).

4.C Proof of Theorem 2

Proof of Theorem 2. Let w∗,ξ∗ be an optimal solution of (4.10). When we apply Algorithm 1
to w∗, obtaining the normalized w as output, we see that w, ξ, with ξ = ξ∗, is feasible, since
the class-conditional distribution is invariant under Algorithm 1. Furthermore, since w∗ is
sub-normalized, we have by Lemma 3 that Lm(w) ≤ Lm(w∗). Therefore,

Lm(w) +C
∑
n

ξn ≤ Lm(w∗) +C
∑
n

ξ∗n, (4.30)

which implies that w, ξ is optimal.

4.D Proof of Theorem 3

Proof of Theorem 3. We first prove by contradiction, that under the conditions of Theo-
rem 3, all solutions are normalized. Assume that w∗,ξ∗ are optimal for (4.10), where for
some Xπi and h ∈ val(Pa(Xπi )), the corresponding CPT in w∗ is strictly sub-normalized. Let
w be the output of Algorithm 1 for input G, w∗. Let w′ be the vector before the strictly
sub-normalized CPT is processed, and w′′ be the vector afterwards.
When Xπi is not a class child, then the negative log-likelihood is strictly decreased in step
6, i.e.

Lm(w′′) < Lm(w′).

Since the negative log-likelihood is never increased afterwards, w∗, ξ∗ can not be optimal.
When Xπi is a class child, this decrease of negative log-likelihood is compensated in step 12
(cf. (4.27)). However, at the same time, some entries of some CPTs of the covering parent
are strictly decreased, i.e. they become strictly sub-normalized. Due to the topological or-
dering, these CPTs are processed at a later step. By induction, some CPTs of the class node
become strictly sub-normalized, since the class node has to be the covering parent for some
class child. Finally, when the CPTs of the class node are normalized, the negative log-
likelihood is strictly decreased, which contradicts that w∗,ξ∗ are optimal.
Now we show that the solution is unique. Assume two optimal solutions w∗, ξ∗ and w∗′ ,
ξ∗′ , w∗ ,w∗′ . Since (4.10) is a convex problem, the convex combination w = 0.5w∗+ 0.5w∗′ ,
ξ = 0.5ξ∗ + 0.5ξ∗′ is also optimal. Since all solutions are normalized,

log
∑
j

exp(w∗ij |h) = log
∑
j

exp(w∗′ ij |h) = 0 ∀i,h. (4.31)

However, since log
∑

exp is a strictly convex function, w is strictly sub-normalized, which
contradicts that w, ξ is optimal.
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4.E Projection for Projected Gradient Descent

The gradient (4.19) is used in conjugate gradient descent, where w is projected onto the
set of sub-normalized vectors after each gradient step. This can be done for each CPT
individually. For projecting, we use a variant of the algorithm described in [18], which
projects an arbitrary vector onto the intersection of strictly convex sets. Here, we have the
set M = {ζ | log

∑
l exp(ζl) ≤ 0}, which is only a single strictly convex set. The algorithm

is depicted in Algorithm 2, where ζ∗ is some arbitrary input vector, i.e. some CPT which
has to be projected ontoM. The solution vector ζ is initialized with some arbitrary vector
ζ0, with log

∑
l exp(ζ0,l) = 0. Vector g is the normalized gradient vector of the log

∑
exp(·)

function at the current solution vector ζ, which is the normal vector ofM. Vector d is the
normalized residual vector. As easily shown via the KKT conditions, ζ is optimal when
g ∝ d, as checked in step 10. Following [18], in each iteration,M is locally approximated
with a ball of radius ρ and center µ, and the projection ζ̄ onto this ball is calculated. In
our experiments we used a radius ρ = 1. When ζ̄ is feasible (steps 14-15), this solution is
improved by finding the point closest to ζ∗ on the line segment [ζ̄,ζ∗]. When ζ̄ is infeasible
(steps 17-18), a feasibility restoration is performed as depicted in [18]. In both cases, the
Newton-Raphson method is used to find scalar κ.

The projection algorithm interacts nicely with the projected gradient method, since we
use the solution of the previous gradient step as initialization ζ0. Therefore, since in each
iteration of Algorithm 2 the distance ‖ζ∗−ζ‖ is reduced (see [18]), we do not need to run the
projection algorithm until convergence, but only for some few iterations (in fact, a single
iteration is sufficient).

Algorithm 2 Projection onto subnormalized set

Input: ζ∗, ζ0 with log
∑
l exp(ζ0,l) = 0, ρ > 0

Output: ζ = argmin
ζ
‖ζ∗ − ζ‖, s.t. log

∑
l expζl ≤ 0

1: if log
∑
i exp(ζ∗i ) ≤ 0 then

2: ζ← ζ∗

3: return
4: end if
5: ζ← ζ0
6: g← exp(ζ)
7: g← g

‖g‖2
8: d← ζ∗ − ζ
9: d← d

‖d‖2
10: while gT d < 1 do
11: µ = ζ − ρg
12: ζ̄ = µ+ ρd
13: if log

∑
l exp(ζ̄l) ≤ 0 then

14: find κ: log
∑
l exp

(
ζ̄l +κ (ζ∗l − ζ̄l)

)
= 0

15: ζ← ζ̄ +κ (ζ∗ − ζ̄)
16: else
17: find κ: log

∑
l exp

(
ζ̄l +κ (ζl − ζ̄l)

)
= 0

18: ζ← ζ̄ +κ (ζ − ζ̄)
19: end if
20: g← exp(ζ)
21: g← g

‖g‖2
22: d← ζ∗ − ζ
23: d← d

‖d‖2
24: end while
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4.F Effect of Early Stopping

In the main part, we compared our method with state-of-the art maximum margin (MM)
training for BNs [21]. In [21], MM training was proposed with early stopping. This makes
it hard to assess, to which part the classification performance stems from the problem for-
mulation, and to which part from the early stopping heuristic. Therefore, in the main part,
we performed all experiments without early stopping. However, early stopping is easy to
use, and an effective method to improve classification results. Here we show results for
MM and ML-BN-SVM training when using early stopping; for both methods we performed
gradient descent until convergence, but maximally for 10000 iterations, recording the per-
formance on the validations set and storing maximizing parameter vectors. Finally, we
used those parameters achieving the highest performance over all iterations and hyperpa-
rameters (γ and λ in our method, λ and κ for MM, see [21]). Table 4.6 compares results
with and without early stopping. We see that for NB, the ML-BN-SVM performs in 25 cases
better than MM, while MM performs better in 9 cases. For TAN, the ML-BN-SVM performs
in 22 cases better than MM, while MM performs better in 12 cases. We see that also in the
case of early stopping the ML-BN-SVM performs favorable in comparison to MM. Further-
more, we see that early stopping tends to improve classification results significantly. In
cases where methods with early stopping perform worse than the version without early
stopping, the degradation is small.

Table 4.6: Classification results for MM [21] and ML-BN-SVM (this chapter), with and
without early stopping.

without early stopping with early stopping

MM ML-BN-SVM MM ML-BN-SVM

dataset NB TAN NB TAN NB TAN NB TAN

abalone 56.62± 0.88 57.78± 0.96 59.12± 1.69 58.69± 1.86 58.16± 0.96 58.11± 1.65 58.88± 1.71 58.90± 1.49
adult 86.92± 0.64 86.54± 0.65 86.94± 0.64 86.76± 0.64 86.89± 0.64 86.38± 0.65 86.96± 0.64 86.47± 0.65
australian 85.34± 2.64 85.49± 3.40 87.24± 2.86 84.76± 3.78 85.48± 3.57 85.04± 2.33 86.80± 2.75 85.93± 1.95
breast 95.85± 2.22 96.59± 0.50 97.04± 1.45 96.00± 2.31 97.04± 0.65 96.59± 1.05 97.04± 0.92 96.74± 1.67
car 93.78± 1.63 97.79± 0.79 92.73± 1.14 98.08± 1.07 93.84± 1.68 98.26± 0.92 92.97± 1.43 97.85± 0.83
chess 97.58± 0.86 97.43± 0.79 97.68± 1.21 97.99± 0.92 97.21± 0.94 97.40± 0.62 97.62± 1.33 97.93± 0.84
cleve 82.17± 6.94 79.09± 7.56 82.53± 7.64 80.79± 7.58 81.51± 7.16 83.90± 4.95 82.53± 7.49 83.55± 7.08
corral 93.36± 4.55 100.00± 0.00 93.36± 4.55 100.00± 0.00 87.73± 10.44 100.00± 0.00 93.36± 4.55 100.00± 0.00
crx 84.82± 3.71 83.89± 5.89 86.06± 3.54 84.20± 4.56 86.21± 3.96 84.81± 5.20 86.37± 3.26 84.97± 3.64
diabetes 74.61± 4.94 73.31± 5.71 74.87± 3.47 74.35± 5.42 74.22± 4.01 73.96± 4.14 73.44± 4.14 74.61± 5.09
flare 82.63± 1.79 84.45± 0.28 83.11± 0.82 83.30± 1.06 81.09± 2.92 84.26± 0.73 83.88± 0.34 84.17± 0.57
german 76.50± 1.52 73.20± 4.01 75.30± 3.12 72.60± 2.89 74.10± 1.42 72.00± 2.15 74.60± 2.46 74.70± 4.09
glass 68.03± 1.91 71.71± 10.88 70.61± 3.63 72.61± 6.35 71.61± 6.96 71.13± 5.18 72.16± 4.60 72.13± 6.23
glass2 80.09± 9.96 80.75± 10.51 82.63± 8.12 80.75± 10.51 83.98± 6.92 83.34± 6.52 81.29± 10.50 84.00± 7.38
heart 81.85± 5.73 77.41± 9.81 83.33± 5.14 81.48± 9.34 82.96± 6.97 80.74± 9.97 81.48± 8.13 82.22± 10.61
hepatitis 84.92± 8.69 86.08± 3.38 92.33± 6.75 86.17± 6.31 89.83± 8.95 89.92± 6.86 96.17± 4.35 87.42± 7.63
iris 93.33± 2.93 92.67± 4.53 93.33± 2.93 94.00± 1.85 93.33± 2.93 94.00± 1.85 93.33± 2.93 94.67± 2.27
letter 82.53± 0.92 89.58± 0.74 85.79± 0.85 88.57± 0.77 82.40± 0.92 89.55± 0.74 86.06± 0.84 90.25± 0.72
lymphography 82.80± 5.54 80.66± 11.11 82.80± 4.39 76.92± 10.54 83.52± 11.07 82.91± 10.65 86.54± 10.49 82.14± 5.76
mofn-3-7-10 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 99.90± 0.27 100.00± 0.00 100.00± 0.00
mushroom 100.00± 0.07 100.00± 0.07 99.78± 0.20 100.00± 0.07 99.56± 0.27 100.00± 0.07 99.67± 0.24 100.00± 0.07
nursery 92.98± 0.77 98.84± 0.33 93.03± 0.77 98.68± 0.35 92.66± 0.79 98.80± 0.34 92.92± 0.78 98.38± 0.39
satimage 88.82± 1.26 86.82± 2.66 88.41± 1.33 86.98± 1.30 89.17± 1.39 88.33± 1.60 88.61± 1.42 87.68± 1.47
segment 94.98± 1.66 96.02± 1.21 95.37± 0.86 95.76± 0.62 94.94± 1.21 95.80± 1.15 95.15± 0.62 95.54± 0.94
shuttle 99.94± 0.04 99.91± 0.05 99.95± 0.04 99.92± 0.04 99.94± 0.04 99.91± 0.05 99.96± 0.03 99.91± 0.05
soybean-large 92.79± 1.59 90.77± 2.16 91.50± 3.81 91.87± 2.26 92.62± 1.61 91.32± 3.30 92.24± 1.80 92.79± 1.95
spambase 94.01± 0.97 93.62± 0.80 94.08± 0.75 94.03± 0.84 93.99± 0.66 94.27± 0.59 93.97± 0.80 94.06± 0.39
TIMIT4CF 91.90± 0.40 91.70± 0.40 91.95± 0.39 91.59± 0.40 91.82± 0.40 87.46± 0.48 91.95± 0.39 91.78± 0.40
TIMIT4CM 92.88± 0.38 85.62± 0.51 92.71± 0.38 92.58± 0.38 92.89± 0.38 85.84± 0.51 92.88± 0.38 92.62± 0.38
TIMIT6CF 85.20± 0.49 84.27± 0.50 85.49± 0.49 84.89± 0.49 85.20± 0.49 83.86± 0.51 85.21± 0.49 84.99± 0.49
TIMIT6CM 86.04± 0.48 85.45± 0.49 86.50± 0.47 85.91± 0.48 85.98± 0.48 85.68± 0.49 86.47± 0.47 86.04± 0.48
USPS 95.44± 0.69 95.98± 0.65 95.08± 0.71 95.98± 0.65 94.89± 0.73 95.77± 0.67 95.68± 0.67 95.44± 0.69
vehicle 69.76± 2.56 69.04± 4.30 67.95± 6.00 69.88± 2.41 66.99± 3.10 70.60± 1.93 68.80± 4.41 70.72± 1.70
vote 95.78± 2.21 96.01± 2.45 94.61± 3.19 95.31± 2.74 96.01± 3.50 95.32± 2.72 95.31± 3.86 94.37± 2.40
waveform-21 85.43± 1.34 82.86± 0.51 85.14± 1.52 83.48± 0.56 85.29± 1.26 84.18± 0.59 85.55± 0.98 84.00± 0.90
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4.G An Alternative Projection Algorithm1

For convenience and reference, we restate the projection that we need to compute:

minimize
ξ

1
2
‖ξ −ξ∗‖22 (4.32)

s.t.
∑
l

exp(ξl) ≤ 1,

where ξ∗ = (ξ∗1, . . . ,ξ
∗
L) is the point that is to be projected and where ξ = (ξ1, . . . ,ξL). An

optimal solution of the above problem corresponds to the `2-projection of ξ∗ onto the set
of sub-normalized probability mass functions over L logarithmic probabilities ξl .

Algorithm

The projection according to (4.32) can be computed using Algorithm 3. The algorithm
works as follows: In line 1, the algorithm checks if the point ξ∗ to project is already feasi-
ble. If it is feasible, no projection is necessary and ξ∗ is the optimal solution for (4.32). Oth-
erwise, the algorithms computes a lower bound αmin and an upper bound αmax in lines 4
and 5, respectively. Within the interval [αmin,αmax], a root α+ of the function

f (α) =
∑
l

exp(ξ∗l −W (α exp(ξ∗l )))− 1 (4.33)

is determined in line 6, where W (·) denotes the real branch of Lambert W function [26].
Exploiting this root, the optimal projection is computed and returned in lines 7 and 8,
respectively.

Note that for root-finding a multitude of algorithms can be used [15]. In our experi-
ments, we used the bisection method, that repeatedly bisects the interval [αmin,αmax] and
selects the sub-interval in which the root must lie for further processing. A popular alter-
native to the bisection method is for example Newton’s method. This latter method has the
disadvantage that it requires the computation of the gradient of f (α) but, as an advantage,
converges quadratically [15].

Algorithm 3 Project(ξ∗): Solve problem (4.32)

Require: Point ξ∗ to project
1: if

∑
l exp(ξ∗l ) ≤ 1 then . Is ξ∗ already feasible?

2: return ξ∗ . Yes, i.e. no projection necessary
3: end if
4: αmin← 0 . Lower bound on α
5: αmax←maxl

(
(ξ∗l − ξ̃l)exp(−ξ̃l

)
. Upper bound on α

6: α+← Root of f (α) = [
∑
l exp(ξ∗l −W (α exp(ξ∗l )))− 1] in the interval [αmin,αmax]

7: ξ+← ξ∗ −W (α+ exp(ξ∗)) . Apply operations element-wise
8: return ξ+

Correctness of the Algorithm

Consider the projection in (4.32). If
∑
l exp(ξ∗l ) ≤ 1, then ξ∗ optimally solves (4.32). There-

fore, assume throughout this section that
∑
l exp(ξ∗l ) > 1. The Lagrangian L(ξ,α) of (4.32)

is

L(ξ,α) =
1
2
‖ξ −ξ∗‖22 +α

∑
l

exp(ξl)− 1

 , (4.34)

1The algorithm presented in this section was derived after the original paper [20] was published. It provides
advantages with respect to runtime compared to the general purpose projection algorithm proposed by [18].
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where α ≥ 0 is a Lagrange multiplier. According to the KKT conditions, if ξ+ is an optimal
solution of (4.32), then there exists α+ ≥ 0 such that (ξ+,α+) is a stationary point of the
Lagrangian and such that

α+

∑
l

exp(ξ+
l )− 1

 = 0. (4.35)

We now exploit the KKT conditions to derive an algorithm for solving (4.32). Differen-
tiating the Lagrangian (4.34) with respect to ξl and comparing to zero gives the optimality
condition

∂L(ξ,α)
∂ξl

= ξl − ξ∗l +α exp(ξl) = 0. (4.36)

Solving for ξl yields2

ξl(α) = ξ∗l −W (α exp(ξ∗l )), (4.37)

where we wrote ξl = ξl(α) to explicitly show the dependency of ξl on α. Note that ξl(α)
as a function of α is continuous and strictly monotone decreasing in [0,∞)3. Hence, there
exists a unique α+ such that ∑

l

exp(ξl(α
+)) = 1. (4.38)

This α+ can be determined by finding the root of the auxiliary function f (α) given as

f (α) =
∑
l

exp(ξl(α
+))− 1. (4.39)

The following Lemma provides bounds on α+ that can be used for bisection.

Lemma 4. Assume
∑
l exp(ξ∗l ) > 1. Then, there exists α+ ∈

[
0,maxl

(
(ξ∗l − ξ̃l)exp(−ξ̃l)

)]
such

that f (α+) = 0, where ξ̃l = ξ∗l − log
∑
j exp(ξ∗j ).

Proof. For brevity, let αmin = 0 and αmax = maxl
(
(ξ∗l − ξ̃l)exp(−ξ̃l)

)
.

As mentioned above, ξl(α) is continuous and strictly monotone decreasing in [0,∞)
as a function of α. Therefore, the auxiliary function f (α) is also continuous and strictly
monotone decreasing in α. Hence, it suffices to show that f (αmin) > 0 and f (αmax) ≤ 0 to
prove the claim:

• f (αmin) > 0. Note that W (0) = 0. Therefore, ξl(αmin) = ξl(0) = ξ∗l . Consequently,

f (αmin) =
∑
l

exp(ξ∗l )− 1 > 0, (4.40)

by assumption that ξ∗ is super-normalized.

• f (αmax) ≤ 0. First, note that

∑
l

exp(ξ̃l) =
∑
l

 exp(ξ∗l )∑
j exp(ξ∗j )

 = 1. (4.41)

2By substituting z = ξ∗l −ξl in ξl −ξ∗l +α exp(ξl ) = 0 we obtain z = α exp(ξ∗l )exp(−z), or equivalently, zexp(z) =
α exp(ξ∗l ). By the definition of the Lambert W function, W (α exp(ξ∗l )) = z. Consequently, ξl = ξ∗l −W (α exp(ξ∗l )).

3According to [6], the Lambert W function is differentiable in [0,∞). Therefore, it is also continuous in that
region. Furthermore, the derivative is positive in [0,∞) and, hence, the function is strictly monotone increasing
in [0,∞).
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Furthermore,

ξl(αmax) = ξ∗l −W
(
αmax exp(ξ∗l )

)
(4.42)

(a)
≤ ξ∗l −W

(
(ξ∗l − ξ̃l)exp(−ξ̃l)exp(ξ∗l )

)
(4.43)

= ξ∗l −W

log

∑
j

exp(ξ∗j )


∑
j

exp(ξ∗j )


 (4.44)

(b)
= ξ∗l − log

∑
j

exp(ξ∗j ), (4.45)

where (a) is because of the definition of αmax and because ξl(α) is monotone decreas-
ing in α, and (b) is because of the definition of the Lambert W function. Consequently,

∑
l

exp(ξl(αmax)) ≤
∑
l

exp

ξ∗l − log
∑
j

exp(ξ∗j )

 (4.46)

=
∑
l

exp(ξ̃l) = 1. (4.47)

We immediately obtain the following theorem:

Theorem 4 (Correctness of Algorithm 3). Algorithm 3 optimally solves (4.32).

Proof. If ξ∗ is sub-normalized, the algorithm is trivially optimal. Therefore, assume ξ∗ is
super-normalized. Lemma 4 ensures that α+ as determined by the algorithm is a root of
the auxiliary function f (α). Therefore, ξ+ = ξ∗−W (α+ exp(ξ∗)) satisfies

∑
l exp(ξ+

l ) = 1. It is
further a stationary point of the Lagrangian and also satisfies all other KKT conditions.
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5 Reduced-Precision BNCs

This chapter is mainly a compilation of the following three papers that are either already pub-
lished or were accepted for publication: The conference paper Bayesian Network Classifiers
with Reduced Precision Parameters [33] which appeared in the proceedings of the European
Conference on Machine Learning in 2012, the journal article On Reduced Precision Bayesian
Network Classifiers [32] which was accepted for publication in IEEE Transactions on Pattern
Analysis and Machine Intelligence in 2014, and the conference paper Integer Bayesian Net-
work Classifiers [35] which will appear in the proceedings the European Conference on Machine
Learning in 2014. As minor modifications, overlapping sections of the papers were merged or
removed. Furthermore, some additional, yet unpublished, material was added.

5.1 Introduction and Overview

Most commonly BNCs are implemented on nowadays desktop computers, where double-
precision floating-point numbers are used for parameter representation and arithmetic op-
erations. In these BNCs, inference and classification is typically performed using the same
precision for parameters and operations, and the executed computations are considered as
exact (this does not mean that inference is exact, but only that computations therefore are
considered as exact). However, there is a need for BNCs working with limited computa-
tional resources. Such resource-constrained BNCs are important in domains such as ambi-
ent computing, on-satellite computations,1 acoustic environment classification in hearing
aids, machine learning for prosthetic control (consider for example a brain implant to con-
trol hand movements), etc. In these kinds of applications, a trade-off between accuracy
and required computational resources is essential.

In this chapter, we investigate BNCs with limited computational demands by consid-
ering BNCs with reduced-precision parameters, e.g. fixed-point/floating-point parameters
with limited precision. Using reduced-precision parameters is advantageous in many ways:
For example, power consumption compared to full-precision implementations can be re-
duced [30]. Another advantage is that reduced-precision parameters enable one to imple-
ment many BNCs in parallel on field programmable gate arrays (FPGAs), i.e. the circuit
area requirements on the FPGA correlate with the parameter precision [15]. Our investiga-
tions are similar to those performed in digital signal-processing, where reduced-precision
implementations for digital signal processors are of great importance [18].

Even though we already narrowed down the field of interest, a multitude of further
design decisions and research questions remains, as well as potential approaches for an-
swering them. Some intriguing questions are:

• Parameter domain. To use reduced-precision arithmetic for BNCs, the parameters
of the BN have to be represented in a reduced-precision format. These parameters
can be either specified in the linear or in the logarithmic domain. Which type of
parametrization is more promising/advantageous? Logarithmic representation of the
parameters is advantageous as a large range of parameters can be efficiently repre-
sented. But, when aiming for BNCs with low computational demands, also the infer-
ence scenario of interest should be taken into account:

– Classification. This type of inference can be performed using max-product [13]
message passing. If parameters are represented in the logarithmic domain, max-
sum message passing can be performed instead [13]. This is computationally
advantageous, especially if used in conjunction with fixed-point representations
for which addition of numbers is easy.

1Computational capabilities on satellites are still severely limited due to power constraints and restricted
availability of hardware satisfying the demanding requirements with respect to radiation tolerance.
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– Marginalization. This type of inference requires sum-product message passing,
i.e. summations and products must be computed. If logarithmic parameters are
used, these need to be exponentiated when summing, which is computational
expensive. Thus, using a linear representation of the parameters could be ad-
vantageous.

• Number format. The parameters of BNCs can be either represented using fixed-
point or floating-point numbers. Is any of these two representations advantageous
compared to the other? A brief description of these representations and some advan-
tages and disadvantageous are:

– Fixed-point: Numbers are essentially integers scaled by a constant factor, i.e. the
fractional part has a fixed number of digits. We characterize fixed-point num-
bers by the number of integer bits bi and the number of fractional bits bf . The
addition of two fixed-point numbers can be easily and accurately performed,
while the multiplication of two fixed-point numbers often leads to overflows
and requires truncation to achieve results in the same format.

– Floating-point: Numbers are represented by a mantissa and an exponent, e.g.
a = m · 2e, where a is the represented number, m the mantissa and e the expo-
nent. Typically, by convention, |m| < 1. A fixed number of bits be is used to
represent the exponent and a fixed number of bits bm to represent the mantissa.
In floating-point arithmetic, computing the product of two numbers is easy and
accurate while computing the sum of two numbers causes larger inaccuracies.

• Feasibility. Given choices for the above two design decisions, are reduced-precision
BNCs feasible, i.e. does the performance of BNCs degrade with decreasing precision
in an acceptable manner? This question is partially answered in Section 5.2.

• Performance Limits. Can we provide guarantees or limits on how much performance
we lose by using reduced-precision parameters? This issue is discussed in Section 5.3.

• Reduced-Precision Parameter Learning. Should reduced-precision parameters be
learned in a pre-computation step in which we can exploit the full computational
power of nowadays computers? Or is it necessary to learn/adopt parameters using
reduced-precision arithmetic only? The answer to this question depends on the ap-
plication of interest. This is depicted in Figure 5.1 and allows us to identify four
potential scenarios:

– Training and testing using full-precision arithmetic. This corresponds to what
machine learners typically do, i.e. all computations are performed using full-
precision arithmetic.

– Training using reduced-precision and testing using full-precision arithmetic.
Not of interest.

– Training using full-precision and testing using reduced-precision arithmetic.
This describes an application scenario where BNCs with pre-computed param-
eters can be used, e.g. hearing-aids for auditory scene classification. This sce-
nario enables one to exploit large computational resources for parameter learn-
ing, while limiting computational demands at test time. In Section 5.4, we show
that learning parameters considering constraints on available computational re-
sources at test time, can be advantageous.

– Training and testing using reduced-precision arithmetic. This is the most
challenging case and briefly considered in Section 5.5. Possible applications
include for example hearing-aids that continuously adapt their parameters us-
ing reduced-precision computations only. Another example could be a satellite-
based system for remote sensing that tunes its parameter according to changing
atmospheric conditions.

62



full-precision
reduced-
precision

full-precision

reduced-
precision

no real need for reduced-precision,
but theoretical analysis possible

full-precision
pre-computation
of parameters

e.g. parameter
adaptation during

testing

T
e
st

in
g

Training

Figure 5.1: Combinations of training/testing using full-precision/reduced-precision arith-
metic.

There is clearly a wide range of related questions and issues that we did not mention here.
A small collection of such questions as well as possible directions for future research are
given in Section 5.6.

Related work deals with sensitivity analysis of BNs, cf. Section 5.2.2, and with credal
networks, i.e. generalizations of BNs that associate a whole set of CPDs with every node
in the DAG [39], allowing for robust classification and supporting imprecisely specified
CPDs. Furthermore, there is related work in terms of undirected graphical networks; re-
cently, a paper on approximating undirected graphical models using integer parameters
has been published [27]. The authors propose methods to perform inference and learning
entirely in the integer domain. While undirected graphical models are more amenable to
an integer approximation, there are domains where directed graphical models are more
desirable and describe the probability distributions of interest more naturally, e.g. expert
systems in the medical domain.

In the remainder of this chapter, we answer some of the raised questions more thor-
oughly:

1. Section 5.2 addresses the feasibility of BNCs with reduced-precision floating-point
parameters. The feasibility of reduced-precision BNCs with fixed-point parameters
has already been investigated briefly in the literature [24]. We extend these investi-
gations by considering the feasibility of reduced-precision BNCs with floating-point
parameters, i.e. we analyze the effect of precision-reduction of the parameters repre-
sented by floating-point numbers on the classification performance of BNCs. Further-
more, we show how BNCs with reduced-precision parameters can be implemented
using integer computations only. The parameters of BNCs are either determined gen-
eratively or discriminatively. Discriminatively optimized parameters are typically
more extreme, i.e. they take on values close to zero or one. However, our results in-
dicate that BNCs with discriminatively optimized parameters are almost as robust to
precision-reduction as BNCs with generatively optimized parameters. Furthermore,
even large precision-reduction does not decrease classification performance signifi-
cantly. This supports application in embedded systems using floating-point numbers
with small bit-width.

2. In Section 5.3, we continue our investigations only using fixed-point parameters for
the following two reasons: First, because fixed-point parameters can even be used on
computing platforms without floating-point processing capabilities. Second, because

63



summation of fixed-point numbers is exact (neglecting the possibility of overflows),
while summation of floating-point numbers is in general not exact.

We investigate the quantization of the parameters of BNCs with discrete valued nodes
including the implications on the classification rate (CR). We derive worst-case and
probabilistic bounds on the CR for different bit-widths. These bounds are evaluated
on several benchmark datasets. Furthermore, we compare the classification perfor-
mance and the robustness of BNCs with generatively and discriminatively optimized
parameters, i.e. parameters optimized for high data likelihood and parameters op-
timized for classification, with respect to parameter quantization. Generatively op-
timized parameters are more robust for very low bit-widths, i.e. less classifications
change because of quantization. However, classification performance is better for
discriminatively optimized parameters for all but very low bit-widths. Additionally,
we perform analysis for margin-optimized TAN structures which outperform gener-
atively optimized TAN structures in terms of CR and robustness.

3. Section 5.4 addresses learning of reduced-precision parameters using full-precision
computations. An algorithm for the computation of margin maximizing reduced-
precision parameters is presented and its efficiency is demonstrated. The resulting
parameters have superior classification performance compared to parameters ob-
tained by simple rounding of double-precision parameters, particularly for very low
numbers of bits.

4. In Section 5.5, we briefly consider parameter learning using reduced-precision com-
putations only. We start by investigating the effect of approximate computations on
online parameter learning. This leads to the observation that the approximate projec-
tions needed in the used projected gradient ascent/descent algorithms can severely
affect the learning process. We circumvent the need for these projections by propos-
ing special purpose learning algorithms for ML and MM parameters.

5. We end this chapter by briefly considering some open questions and directions for
future research in Section 5.6.

5.2 Bayesian Network Classifiers with Reduced-Precision
Floating-Point Parameters2

As already mentioned, parameters of BNCs are typically represented using high numerical
precision, i.e. double-precision floating-point numbers. This high precision representation
results in large storage requirements for the parameters, cf. Table 5.1. Furthermore, per-
forming inference using these parameters, requires complex computer architectures (high
precision floating-point processing units running at reasonable clock-speeds). Low energy
computers or integrated solutions that need to optimize the used hardware resources do
not necessarily provide a suitable computing platform. To aid complexity reduction, we in-
vestigate the performance of BNCs with reduced-precision floating-point parameters. Espe-
cially, we are interested in comparing the robustness of generatively (ML) and discrimina-
tively (MCL, MM) optimized probability distributions with respect to precision reduction
of their parameters using various BN structures.

Some of our findings can be related to results from sensitivity analysis of BNs [4, 5].
Amongst others, the framework of sensitivity analysis describes the dependency of infer-
ence queries to variations in the local conditional probability parameters. The precision
reduction of the probability parameters resorts to such variations and can, therefore, be
interpreted in this framework. However, the focus in this section is different. We are par-
ticularly interested in analyzing the classification performance of BNCs when reducing

2This section was published in the proceedings of ECML 2012 as Bayesian Network Classifiers with Reduced
Precision Parameters [33]. ©Springer-Verlag Berlin Heidelberg 2012
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Table 5.1: Number of probability parameters (# parameters) and the storage requirements
(storage) for these parameters in BNCs with different graph structures and for different
datasets. Each parameter is assumed to be stored in double-precision floating-point format,
i.e. 64 bits are required for each parameter. Details on the structures and datasets are
provided in Chapter 2.

data structure # parameters storage [kB]

USPS
NB 8650 67.6
TAN-CR 20840 162.8

MNIST
NB 6720 52.5
TAN-CR 39980 312.3

TIMIT (4 classes) NB 1320 10.3
TIMIT (6 classes) NB 1998 15.6

the bit-width of all parameters simultaneously. Additionally, we are interested in com-
paring the robustness of the classification of BNCs with generatively and discriminatively
optimized parameters with respect to this precision reduction. As the local conditional
probability parameters of discriminatively optimized BNCs tend to be more extreme, we
suspected classification rates of these classifiers to depend stronger on the used precision
than the classification rates of BNCs with generatively optimized parameters. Neverthe-
less, our results demonstrate that this is not true.
Our main findings are:

• The number of extreme conditional probability values, i.e. probabilities close to 0
or 1, in BNCs with discriminatively optimized parameters is larger than in BNCs with
generatively optimized parameters, cf. Section 5.2.4. Using results from sensitivity
analysis, this suggests that BNCs with discriminatively optimized parameters might
be more susceptible to precision reduction than BNCs with generatively optimized
parameters. Nevertheless, we observed in experiments that BNCs with both types
of parameters can achieve good classification performance using reduced-precision
floating-point parameters. In fact, the classification performance is close to BNCs
with parameters represented in full double-precision floating-point format, cf. Sec-
tion 5.2.4.

• The reduction of the precision allows for mapping the classification process of BNCs
to the integer domain, cf. Section 5.2.3. Thereby, exact computation in that domain,
reduced computational resource requirements and implementation on simple em-
bedded hardware is supported. In fact, some of the considered BNCs can perform
classification using integer arithmetic without significant reduction of performance.

The outline of this section is as follows: In Section 5.2.1 we provide a motivating ex-
ample demonstrating that there is large potential in reducing the precision of the param-
eters of BNCs. Afterwards, we review some results from sensitivity analysis of BNs in
Section 5.2.2. An approach for mapping the parameters of BNCs to the integer domain is
presented in Section 5.2.3 and various experiments are provided in Section 5.2.4. Finally,
we summarize this section in Section 5.2.5.

5.2.1 Motivating Example

In this section, we provide an example demonstrating that the parameters of BNs employed
for classification do not require high precision. They can be approximated coarsely without
reducing the classification rate significantly. In some cases, only a few bits for representing
each probability parameter of a BNC are necessary to achieve classification rates close to
optimal.

The probability parameters of BNCs are typical stored in double-precision floating-
point format [19, 16]. We use logarithmic probability parameters w = log(θ), with 0 ≤ θ ≤
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1, represented as

w = (−1)s
1 +

52∑
k=1

bk2−k
2(

∑10
l=0 e

l2l−1023), (5.1)

where s ∈ {0,1}, bk ∈ {0,1} for all k, and el ∈ {0,1} for all l. The term

• (−1)s is the sign,

• (1 +
∑52
k=1 b

k2−k) is the mantissa, and

• (
∑10
l=0 e

l2l − 1023) is the exponent

of w, respectively. In total 64 bits are used to represent each log-parameter. Processing
these parameters on desktop computers does not impose any problems. However, this large
bit-width of the parameters can be a limiting factor in embedded systems or applications
optimized for low run-times or low energy-consumption.

The range of the parameters using double-precision floating-point format is approxi-
mately ±10300 and by far larger than required; The distribution of the log-parameters of a
BNC with ML parameters for handwritten digit data (USPS data, cf. Section 2.3) is shown
in Figure 5.2a. Additionally, the distribution of the values of the exponent is shown in
Figure 5.2b. All the log-parameters are negative and their range is [−7,0]. The range of the
exponent of the log-parameters is [−10,2].
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Figure 5.2: Histograms of (a) the log-parameters, and (b) the exponents of the log-
parameters of a BNC for handwritten digit data with ML parameters assuming NB struc-
ture.

The required bit-width to store the log-parameters in a floating-point format, cf. Equa-
tion (5.1), can be reduced in three aspects:

1. Sign bit. Every probability θ satisfies 0 ≤ θ ≤ 1. Therefore, its logarithm is in the
range −∞ ≤ w ≤ 0. Consequently, the sign bit can be removed without any change in
the represented parameters.

2. Bit-width of the mantissa. We varied the bit-width of the mantissa of the log-
parameters while keeping the exponent unchanged. As a result, we observed that this
does not influence the classification rate significantly when using ML parameters, cf.
Figure 5.3a. When using 4 or more bits to represent the mantissa, the performance
is almost the same as when using the full double-precision floating-point format, i.e.
53 bits for the mantissa.

3. Bit-width of the exponent. Changing the bit-width of the exponent has the largest
impact on the classification performance. A change of the exponent of a parameter
results in a change of the scale of this parameter. The classification rates resulting
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from reducing the bit-width of the exponent are shown in Figure 5.3b. Note that we
reduced the bit-width starting with the most significant bit (MSB). Only a few bits
are necessary for classification rates on par with the rates achieved using full double-
precision floating-point parameters.

Based on this motivating example demonstrating the potential of precision reduction
we can even map BNCs to the integer domain, cf. Section 5.2.3. Further experimental
results are shown in Section 5.2.4.

85

86

87

88

89

90

0 10 20 30 40 50

cl
as
si
fic
at
io
n
ra
te

mantissa bit-width

(a) varying mantissa bit-width, using full bit-
width for exponent

30

40

50

60

70

80

90

0 2 4 6 8 10

cl
as
si
fic
at
io
n
ra
te

exponent bit-width

(b) varying exponent bit-width, using full bit-
width for mantissa

Figure 5.3: Classification rates for varying bit-widths of (a) the mantissa, and (b) the expo-
nent, for handwritten digit data, NB structure, and log ML parameters. The classification
rates using full double-precision logarithmic parameters are indicated by the horizontal
dotted lines.

5.2.2 Background: Sensitivity of Bayesian Networks

The sensitivity of a BN B = (G,PG) describes the change of a query with respect to changes
in the local conditional probabilities in PG. For example, a query is the calculation of a
posterior probability of the form PB(Xq |Xe), with Xq,Xe ⊆ {C,X1, . . . ,XL} and Xq ∩Xe = ∅,
where Xq denotes the query variables and Xe denotes the evidence (observed) variables.
Several results on estimating and bounding this sensitivity exist in the literature, cf. for
example [4, 36]. The results therein essentially state that the sensitivity of BNs depends
mainly on probability parameters being close to 0 or 1 and queries being close to uniform.

In this context, consider the following theorem:

Theorem 5 (from [4]). Let Xi be a binary RV in a BN B = (G,PG), then∣∣∣∣∣∣∂PB(Xi |Xe)
∂τXi |Pa(Xi )

∣∣∣∣∣∣ ≤ PB(Xi |Xe) · (1−PB(Xi |Xe))
PB(Xi |Pa(Xi)) · (1−PB(Xi |Pa(Xi))

, (5.2)

where τXi |Pa(Xi ) is a meta-parameter such that

PB(Xi = 0|Pa(Xi)) = τXi |Pa(Xi ), and (5.3)

PB(Xi = 1|Pa(Xi)) = 1− τXi |Pa(Xi ). (5.4)

The Theorem states that the magnitude of the partial derivative of PB(Xi |Xe) with re-
spect to τXi |Pa(Xi ) is bounded above. The bound depends on the query under the current pa-
rameters PB(Xi |Xe) and on the conditional probabilities PB(Xi |Pa(Xi)). The partial deriva-
tive is large whenever PB(Xi |Xe) is close to uniform and whenever PB(Xi = 0|Pa(Xi)) is
close to 0 or 1. In classification, the query of interest is the probability of the class vari-
able given the features, i.e. PB(Xi |Xe) = PB(C|X). Discriminative objectives for parameter
learning in BNs aim at good class separation, i.e. PB(C|X) or 1−PB(C|X) is typically large.
However, also the parameters tend to be extreme, i.e. PB(Xi |Pa(Xi)) is close to 0 or 1 (some
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empirical results supporting this are shown in Section 5.2.4). We expect the bound to be
large for discriminatively optimized parameters, as the denominator in the above theorem
scales the bound inversely proportional [4]. Hence, either the bound is loose or the par-
tial derivative is actually large resulting in high sensitivity to parameter deviations. This
could be the tripping hazard for BNCs with discriminatively optimized parameters. How-
ever, experimental observations in Section 5.2.4 show a robust classification behavior using
discriminatively optimized small bit-width parameters.

The above Theorem only describes the sensitivity with respect to a single parameter.
There are some extensions of sensitivity analysis describing the sensitivity of queries with
respect to changes of many parameters [5]. However, to the best of the authors knowl-
edge, these do not extend to changes of all parameters, which is the focus of this analysis.
Furthermore, in classification we are not directly interested in the sensitivity of certain
queries. The focus is rather on the maximum of a set of queries, i.e. the sensitivity of the
MAP classification.

5.2.3 Bayesian Network Classifiers in the Integer Domain

In this section, we present how to cast classification using BNCs to the integer domain. This
is possible when using reduced-precision log-parameters for the BNCs. Without reduced-
precision, the mapping can not be achieved considering the large range of numbers repre-
sentable by double-precision floating-point numbers.

Remember, a BNC given by the BN B = (G,PG) where the class variable has no parents
assigns an instantiation x of the attributes to class

c = arg max
c′∈val(C)

PB(c′ ,x) (5.5)

= arg max
c′∈val(C)

P(C = c′)
L∏
i=1

P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi))), (5.6)

where x(Xk) denotes the entry in x corresponding to Xk . This classification rule can be
equivalently stated in the logarithmic domain, i.e. x is assigned to class

c = arg max
c′∈val(C)

logP(C = c′) +
L∑
i=1

logP(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi)))

 . (5.7)

As shown in Sections 5.2.1 and 5.2.4 the logarithmic probabilities in the above equation
can often be represented using only a few bits without reducing the classification rate
significantly. In many cases, 2 bits for the mantissa and 4 bits for the exponent are suf-
ficient to achieve good classification rates. Using these 6 bits, the logarithmic probability
wij |h = logθij |h is given as

wij |h = −(1 + bi,1j |h · 2
−1 + bi,2j |h · 2

−2) · 2
(∑3

k=0 e
i,k
j |h·2

k−7
)
. (5.8)

Hence,

c =arg max
c′∈val(C)

w0
c′ +

L∑
i=1

wix(Xi )|x(Pa(Xi ))

 (5.9)

=arg min
c′∈val(C)

−w0
c′ −

L∑
i=1

wix(Xi )|x(Pa(Xi ))

 (5.10)

=arg min
c′∈val(C)

(1 + b0,1
c′ · 2

−1 + b0,2
c′ · 2

−2) · 2
(∑3

k=0 e
i,k
c′ ·2

k−7
)
+ (5.11)

L∑
i=1

(1 + bi,1x(Xi )|x(Pa(Xi ))
2−1 + bi,2x(Xi )|x(Pa(Xi ))

2−2) · 2
(∑3

k=0 e
i,k
x(Xi )|x(Pa(Xi ))

2k−7
).
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Multiplying (5.11) by the constant 29 does not change the classification. Hence, classifica-
tion can be performed by

c =arg min
c′∈val(C)

(4 + b0,1
c′ · 2 + b0,2

c′ ) · 2
(∑3

k=0 e
i,k
c′ ·2

k
)
+ (5.12)

L∑
i=1

(4 + bi,1x(Xi )|x(Pa(Xi ))
· 2 + bi,2x(Xi )|x(Pa(Xi ))

) · 2
(∑3

k=0 e
i,k
x(Xi )|x(Pa(Xi ))

·2k
)

which resorts to integer computations only. Furthermore, no floating-point rounding er-
rors of any kind are introduced during computation when working purely in the integer
domain. Integer arithmetic is sufficient for implementation.

5.2.4 Experiments

In this section, we present classification performance experiments using reduced-precision
log-probability parameters for BNCs. Throughout this section we consider the TIMIT-4/6,
USPS and MNIST data, cf. Section 2.3. As BN structures, we considered the naive Bayes
(NB) structure, the generative TAN-CMI structure [6] and the discriminative TAN-OMI-CR
and TAN-CR structures [23], cf. Section 2.2.2.

Number of Extreme Parameter Values in BNCs

We determined BNCs with ML, MCL and MM parameters. For calculating the MCL and
MM parameters we used the conjugate gradient based approaches proposed in [25]. How-
ever, we did not use the proposed early-stopping heuristic for determining the number of
conjugate gradient iterations but rather performed up to 200 iterations (or until there was
no further increase in the objective). We then counted the number of conditional probabil-
ity parameters with a maximal distance of ε to the extreme values 0 and 1, i.e. the count is
given as

Mε =
∑
i,j,h

1(
(1−θij |h)<ε

) +
∑
i,j,h

1(
θij |h<ε

). (5.13)

The results for USPS and MNIST data are shown in Tables 5.2(a) and 5.2(b), respectively.
The number of extreme parameter values in BNCs with MCL parameters is larger than in
BNCs with MM parameters, and the number of extreme parameter values in BNCs with
MM parameters is larger than in BNCs with ML parameters. This suggests that classifi-
cation using MCL parameters is more sensitive to parameter deviations than classification
with MM parameters, and classification using MM parameters is more sensitive to devia-
tions than classification with ML parameters.

Reduced-Precision Classification Performance

We evaluated the classification performance of BNCs with ML, MCL and MM parameters
on the USPS, MNIST and TIMIT data. Results are shown in Figures 5.4, 5.5, and 5.6,
respectively. Classification rates using full double-precision floating-point parameters are
indicated by the dotted lines. The classification performance resulting from BNCs with
reduced-precision ML, MCL, and MM parameters are shown by the solid lines. Reduced-
precision parameters were determined by firstly learning parameters in double-precision,
and secondly reducing the precision of these parameters. Even when using only 4 bits to
represent the exponent and 1 bit to represent the mantissa, the classification rates are close
to full-precision performance on USPS data. On MNIST and TIMIT data the results are
similar when 4 and 2 bits are used to represent the mantissa, respectively.

Furthermore, we evaluated the classification rates of BNCs with reduced-precision pa-
rameters for training sets with varying sizes. The training sets were obtained by select-
ing the desired number of samples randomly from all available samples. The remaining
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Figure 5.4: Classification rates of BNCs with (a) NB, (b) TAN-CMI, (c) TAN-OMI-CR, and
(d) TAN-CR structures using reduced-precision ML, MCL, and MM parameters on USPS
data. The bit-width of the mantissa was fixed to 1 bit and the bit-width of the exponent
was varied. The classification rates for full double-precision floating-point parameters are
indicated by the horizontal dotted lines. Error bars indicate the 95 % confidence intervals
of the mean classification rate over 5 different training/test splits.
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Figure 5.5: Classification rates of BNCs with NB structure using reduced-precision ML,
MCL, and MM parameters on MNIST data. The bit-width of the mantissa was fixed to 4
bits and the bit-width of the exponent was varied. The classification rate for full double-
precision floating-point parameters is indicated by the horizontal dotted lines. Error bars
indicate the 95 % confidence intervals of the mean classification rate over 5 different train-
ing/test splits.
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Table 5.2: Number of probability parameters θij |h close to the extreme values 0 and 1.
Additionally, the total number of parameters (# par.) and classification rates (CR) on the
test set using parameters in full double-precision floating-point format on (a) USPS data
and (b) MNIST data are shown.

(a) USPS

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 8650 1478 4143 1837 364 2134 446 87.10 93.93 95.00
TAN-CMI 33040 12418 14712 13002 8271 9371 8428 91.90 95.70 95.37
TAN-OMI-CR 25380 6677 8167 7441 3486 3937 3624 92.40 95.73 95.40
TAN-CR 20840 5405 7344 6519 2666 3503 3009 92.57 95.97 95.87

(b) MNIST

M0.05 M0.01 CR

structure # par. ML MCL MM ML MCL MM ML MCL MM

NB 6720 3252 3289 3170 1784 1513 1520 83.73 92.00 91.97
TAN-CMI 38350 15772 25327 16790 8603 18647 9448 91.28 92.91 94.21
TAN-OMI-CR 44600 22488 29159 24048 13615 20419 15147 92.01 93.59 94.60
TAN-CR 39980 19557 25733 23308 11794 17702 16020 92.58 93.72 95.02
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Figure 5.6: Classification rates of BNCs with NB structure using ML, MCL, and MM pa-
rameters with reduced-precision on TIMIT data with (a) 4 classes and (b) 6 classes, respec-
tively. The bit-width of the mantissa was fixed to 2 bits and the bit-width of the exponent
was varied. The classification rates for full double-precision floating-point parameters are
indicated by the horizontal dotted lines. Error bars indicate the 95 % confidence intervals
of the mean classification rate over 5 different training/test splits.

samples were used as test set. For every sample size, 5 different training/test splits were
evaluated. Results on USPS data are shown in Figure 5.7. Classification performance using
reduced-precision parameters is close to optimal for all sample sizes.

5.2.5 Summary

In this section, we presented classification results of BNCs when reducing the precision
of the probability parameters. Contrary to the authors’ expectation, even discriminatively
optimized BNCs are robust to distortions in the parameters resulting from the bit-width
reduction. About 6 to 10 bits are necessary to represent each probability parameter while
maintaining classification rates close to full-precision performance. This allows either to
implement BNCs with reduced-precision floating point arithmetic or to cast the classifica-
tion to the integer domain. In both cases, computational and run-time benefits arise when
implementing BNCs on embedded systems or low-power computers.
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Figure 5.7: Classification rates of BNCs with NB structures using reduced-precision ML
and MM parameters on USPS data. The parameters were learned from training sets with
varying sizes. The bit-width of the mantissa was fixed to 1 bit. The bit-width of the expo-
nent is (a) 3 bits and (b) 5 bits, respectively. The classification rates for full double-precision
floating-point parameters using the same training data are indicated by the dashed lines.
Error bars indicate the 95 % confidence intervals of the mean classification rate over 5
different training/test splits.

5.3 Bounds for Bayesian Network Classifiers with Reduced-
Precision Parameters3

In this section, we extend the promising results from the last section by presenting novel
theoretical results and extended empirical results for BNCs with finite precision fixed-point
parameters. All our results are based on the assumption that parameters are learned in
full-precision and rounded to the desired precision for classification. We derive three
types of bounds on the classification performance after parameter precision reduction
and compare these in experiments. Additionally, we empirically compare the classifica-
tion performance and robustness of BNCs with respect to precision reduction for different
learning paradigms. In particular, we use generatively and discriminatively optimized pa-
rameters/structures [6, 23, 21, 7, 28, 25]. For generative parameter learning, we resort to
Bayesian parameter estimation [3, 9]. This type of parameter learning results in a posterior
distribution over the parameters, enabling us to consider the uncertainty in the parameter
estimates in our bounds. Taking this uncertainty into account is crucial as the common as-
sumptions of uniform and independent quantization error are incorrect and result in loose
bounds. However, ML estimates do not provide this uncertainty information.

Our main results presented in this section are:

• Derivation of probabilistic and worst-case bounds on the classification performance
of BNCs with quantized parameters.

• An empirical evaluation of these bounds on classical machine learning datasets.

• Empiric evidence that BNCs with discriminatively optimized parameters are not
more robust to parameter quantization than BNCs with generatively optimized pa-
rameters.4 However, classification performance using discriminatively optimized pa-
rameters is better when using bit-widths of 3 bits or more.

• Empiric evidence that BNCs with generatively optimized parameters and discrimi-
natively optimized structures, i.e. structures optimized using a large margin score,

3This section is published as On Bayesian Network Classifiers with Reduced Precision Parameters in TPAMI [32].
©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

4Robustness compares the number of changing classifications of generatively and discriminatively optimized
BNCs with respect to parameter quantization.
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(1) yield higher classification performance, and (2) are more robust to parameter
quantization than BNCs with generatively optimized structures. The former state-
ment holds for all considered bit-widths (1–10 bits), and the latter statement holds
for small bit-widths (5/10 bits, depending on the dataset).

This part of this thesis is structured as follows: In Section 5.3.1 we introduce our no-
tation, formally introduce BNCs, and describe methods for assessing the CPTs of BNCs.
In Section 5.3.2 we derive bounds on the CR performance of BNCs with reduced-precision
parameters and present experiments supporting our arguments in Section 5.3.3. We sum-
marize our analysis in Section 5.3.4.

5.3.1 Background: Learning Bayesian Network Classifiers

We assume BNs with a fixed graph. As already mentioned, for learning the parameters
PG of a BN two paradigms exist, namely generative parameter learning and discriminative
parameter learning: An instance of the generative paradigm is ML parameter learning. Its
objective is maximization of the likelihood of the data with respect to the parameters. ML
parameter learning is not well suited for our needs, as it only results in a point estimate
of the parameters and does not capture information on the distribution of the parameters.
However, this distribution is important when investigating effects of precision reduction.
Therefore, we resort to Bayesian parameter estimation using Dirichlet priors [9, 26]. We as-
sume global parameter independence, i.e. the CPTs corresponding to the different nodes in
the BNC are independent, and local parameter independence, i.e. the parameters for differ-
ent parent states are independent [9]. In detail, assuming Dirichlet priors, the parameters5

P(Xi |Pa(Xi) = h) follow a Dirichlet distribution Dir
(
α̃ih

)
with concentration parameters

α̃ih =
[
α̃i1,h, . . . , α̃

i
|val(Xi )|,h

]
, (5.14)

i.e. P(Xi |Pa(Xi) = h) ∼ Dir
(
α̃ih

)
. Given the training data D, the posterior parameter distri-

bution is

P(Xi |Pa(Xi) = h;D) ∼Dir
(
α̃ih + nih

)
, (5.15)

where nih is a vector of frequency counts obtained from the training data. The jth entry of
nih, denoted as nij |h, is the number of times Xi = j together with Pa(Xi) = h is observed in
the training data. Each parameter instantiation is marginally beta distributed, i.e.

Θi
j |h = P(Xi = j |Pa(Xi) = h) ∼ Beta

(
αij |h,β

i
j |h

)
, (5.16)

where

αij |h = α̃ij |h +nij |h, and (5.17)

βij |h =
|val(Xi )|∑
j ′=1
j ′,j

(
α̃ij ′ |h +nij ′ |h

)
. (5.18)

From these beta distributions, maximum a-posteriori (MAP) parameters can be computed
as

θi,MAP
j |h =

αij |h − 1

αij |h + βij |h − 2
. (5.19)

In contrast to generative parameter learning, discriminative parameter learning aims at
identifying parameters leading to good CR performance. An instance of this discriminative

5For convenience, we denote the RVs P(Xi |Pa(Xi ) = h) as parameters.
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paradigm is MM parameter learning, which is restated here for reference. We use the
formulation proposed in Pernkopf et al. [25]: MM parameters PMM

G are found as

PMM
G = argmax

PG

N∏
n=1

min
(
γ,dB(c(n),x(n))

)
, (5.20)

where min(γ,dB(c(n),x(n))) denotes the hinge loss and dB(c(n),x(n)) is the margin of the nth

sample given as

dB(c(n),x(n)) =
PB(c(n),x(n))

maxc,c(n) PB(c,x(n))
, (5.21)

and γ > 1 is a parameter scaling the margin. In this way, the margin measures the likelihood
of the nth sample belonging to the correct class c(n) in relation to the strongest competing
class. The nth sample is correctly classified if dB(c(n),x(n)) > 1 and vice versa. This type of
learning results in a point estimate for the parameters, i.e. no information on the distribu-
tion of the parameters is obtained.

5.3.2 Performance Bounds

In this section, we derive worst-case and probabilistic bounds on the classification rate of
BNCs with CPTs represented by reduced-precision fixed-point numbers. Before deriving
these bounds, we formalize the considered scenario.

Setting

When representing the parameters of BNCs in reduced-precision, one has to decide if to
represent the probabilities or the logarithmic probabilities. Typically, log-probabilities are
favored for numerical reasons, i.e. a large dynamic range is achieved and classification
resorts to a simple addition. However, reduced-precision log-probabilities have the draw-
back that the resulting CPTs are in general not normalized. In contrast, when representing
probabilities in reduced-precision, ensuring proper normalization is easy. Note that to
overcome this normalization issue, undirected graphical models are an appealing alter-
native as well [27]. As we only consider classification tasks in this section, we focus on
reduced-precision log-probabilities.

The logarithm of the joint probability induced by a BN B according to (2.5) is

logPB(C = c,X = x) =
L∑
i=0

logP(Xi = xi |Pa(Xi) = x(Pa(Xi))) (5.22)

=
L∑
i=0

∑
h

∑
j

1([c,x](Xi )=j and [c,x](Pa(Xi ))=h)W
i
j |h (5.23)

= φ(c,x)TW, (5.24)

where we used that we identify the class C also as X0, and where φ(c,x) collects the terms
1([c,x](Xi )=j and [c,x](Pa(Xi ))=h) in a vector and W the terms W i

j |h = logΘi
j |h, respectively. Conse-

quently, the probability PB(C = c,X = x) can be written as

PB(C = c,X = x) = eφ(c,x)T W. (5.25)

In the remainder of this section, we consider the effect of quantizing the RVs W using
fixed-point numbers with B bits. Quantization of these RVs is performed by rounding, i.e.
let wij |h denote an instantiation of W i

j |h and QBS (wij |h) its quantized value using a scale factor
S > 0. Then

QBS (wij |h) = 2−B
wij |h/S2−B


R

, (5.26)
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where [a]R means that a is rounded to the closest integer number. Note that we can arbitrar-
ily scale all parameters by some constant factor S without changing the class assignment
of any sample. The usefulness and selection of the scale factor S is explained in the next
section. In the remainder of this section we denote the width of the quantization interval as
q, i.e. q = 2−B. Additionally, for ease of notation we write Q(·) instead of QBS (·) and assume
some fixed S and B.

Selection of the Scale Factor

By appropriately selecting the scale factor S, we ensure that all parameters can be repre-
sented using a desired number of B bits — without the need for integer bits. This alleviates
our analysis since only the fractional bits of the fixed-point representation of all parameters
have to be considered. Note that in general the scale factor should be as small as possible
to ensure that the scaled parameters exploit the full range of representable numbers. For
example, if we use a 5 bit fixed-point representation and the parameters are in the range
[0,−20], then these parameters should rather be scaled to [0,−(1− 2−5)] than to [0,−0.5].

For generative or discriminative parameters, S is selected as follows:

Generative parameters. We use MAP scaled log-parameters in the reduced-precision
BNCs. Let Z ∼ Beta

(
αij |h,β

i
j |h

)
with shape parameters αij |h,β

i
j |h > 1. Further, let Y = 1

S log(Z)

be the corresponding scaled log-parameters, where S > 0. The distribution f SY (y) of Y can
be easily determined as

f SY (y) = S
e
αij |hSy(1− eSy)β

i
j |h−1

B
(
αij |h,β

i
j |h

) , (5.27)

where B(c,d) =
∫ 1

0 u
c−1(1−u)d−1du is the beta function. Assuming that we quantize Y using

B bits and that quantization extends over the negative real numbers, the possible values
are CB = {−n · 2−B : n ∈N0}. For all n ∈N0, the probability of Q(Y ) = −nq is [38]

P(Q(Y ) = −nq) =
∫ min{0,−nq+ q

2 }

−nq− q2
f SY (y)dy (5.28)

=
B
(
eSmin{0,−nq+ q

2 };αij |h,β
i
j |h

)
−B

(
e−Snq−S

q
2 ;αij |h,β

i
j |h

)
B
(
αij |h,β

i
j |h

) , (5.29)

where B(k;c,d) =
∫ k

0 u
c−1(1−u)d−1du is the incomplete beta function. The distribution f SY (y)

is unimodal, i.e. its only maximum m is attained6 at

m =
1
S

log
αij |h

αij |h + βij |h − 1
. (5.30)

Hence, we can easily determine the quantized parameter value with highest a-posteriori
probability as

n∗ = arg max
ñ∈N0

P(Q(Y ) = −ñq) (5.31)

= arg max
n∈{bm/qc,dm/qe}

P(Q(Y ) = nq), (5.32)

where b·c and d·e denote the floor and ceiling functions, respectively. To ensure that n∗ can
be represented using B bits, S > 0 is selected such that

|arg max
n∈{bm/qc,dm/qe}

P(QBS (W i
j |h) = nq)| ≤ 2B − 1. (5.33)

6The maximum can be determined by solving d
dy f

S
Y (y) = 0.
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Hence, we need that |bm/qc| ≤ 2B − 1 (note that m is negative). This inequality certainly
holds if −m/q ≤ 2B − 1. Thus it suffices to select S such that

S ≥max
i,j,h

− 1
1− q

log

 αij |h

αij |h + βij |h − 1


 . (5.34)

Discriminative parameters. Only a point estimate of the MM parameters wMM is avail-
able. We scale these parameters such that they can be represented using B bits. Hence, we
require |wi,MM

j |h |/S ≤ 1− 2−B for all |wi,MM
j |h |. This is satisfied by selecting

S ≥max
i,j,h

|wi,MM
j |h |

1− q
. (5.35)

On the Quantization Error

Given the training data and having performed parameter estimation, we want to obtain
bounds on the CR of BNCs when using fixed-point numbers with B bits to represent their
CPTs. As explained in Section 5.3.1, the components of the random vector Θ = exp(W)
for Bayesian parameter estimates are marginally beta-distributed. A first observation is
that in general the quantization error of the logarithmic parameters W is not uniform.
This is especially true, when only few bits are used. For example, consider Figure 5.8; the
distribution of the quantization error over quantization interval q of an RV log(Y ), where
Y is beta-distributed is shown. For convenience, the scale factor introduced above is set
to S = 1. The RVs Y corresponding to the left and right subfigures are distributed as
Y ∼ Beta

(
1 · 103,9 · 103

)
and Y ∼ Beta

(
1 · 105,9 · 105

)
, respectively. When using sufficiently

many bits, the quantization error is uniformly distributed in the quantization interval q.
However, in the case of few bits, the distribution of the quantization error is not uniform.
Consequently, assuming a uniformly distributed quantization error can be inappropriate.
Furthermore, note that although both RVs have the same expected value, their quantization
errors are different. As a consequence, also the average quantization error, indicated by the
vertical red line in Figure 5.8, differs.

The setting considered above describes the situation when a fixed but unknown dis-
tribution of some RV is estimated from training sets of different sizes. The more training
samples are observed, the more peaked the beta distribution becomes and the more con-
centrated is the quantization error (for small number of bits). This matches our intuition
— the more training samples are available, the less uncertain are the parameter estimates.
Consequently, the uncertainty about the expected quantization error is reduced with in-
creasing sample size. This observation is reflected in the bounds derived below.

Worst-Case Bound

We are now able to derive a worst-case bound on the CR. For ease of notation, we state this
bound for the single-sample case:

Theorem 6 (Worst-Case Bound). Let PB be the probability distribution defined by a BN, and
let S, B, q be as introduced above. Further, let (c,x) be a sample belonging to class c with
feature instantiation x. Assuming that the parameters of the BN are independent, the expected
classification rate for this sample can be lower bounded as

E

[
1(c=hPB (x))

]
≥ 1−min

1,
∑
c′,c

eS(L+1)q

 ∏
(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h


 , (5.36)
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Figure 5.8: Quantization error of log(Y ), where Y is beta-distributed. Error histograms are
computed from 105 samples. Left: Y ∼ Beta

(
1 · 103,9 · 103

)
; Right: Y ∼ Beta

(
1 · 105,9 · 105

)
;

in both cases EP(Y ) [logY ] = −2.3026; q is the quantization interval width; average quanti-
zation error (vertical red line).

where

A1 = {(i, j,h) : φ(c,x)ij |h = 1}, (5.37)

A2 = {(i, j,h) : φ(c′ ,x)ij |h = 1}, (5.38)

M i
j |h =

αij |h + βij |h − 1

αij |h − 1
, and (5.39)

M̃ i
j |h =

αij |h

αij |h + βij |h
. (5.40)

Before proceeding to the proof, we want to make some comments on the above bound:
Typically this bound is not tight and rather conservative. Nevertheless, it allows for simple
determination of a worst-case performance, by noting that the term ∏

(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h

 (5.41)

is constant for different choices of bits used for quantization. Hence, the lower bound
in (5.36) can be evaluated by performing parameter learning once, computing the terms
M i
j |h and M̃ i

j |h for all samples and classes and then performing a weighting by the exponen-

tial function eS(L+1)q.
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Proof of Theorem 6. The expected CR of a sample belonging to class c having feature in-
stantiation x using BNC B with log-parameters W can be lower bounded by

E

[
1(c=hPB (x))

]
= P

(
φ(c,x)TQ(W) >max

c′,c
φ(c′ ,x)TQ(W)

)
(5.42)

= 1−P

⋃
c′,c

[
(φ(c,x)−φ(c′ ,x))T Q(W) ≤ 0

] (5.43)

(a)
≥ 1−min

1,
∑
c′,c

P
(
(φ(c,x)−φ(c′ ,x))T Q(W) ≤ 0

) (5.44)

(b)
≥ 1−min

1,
∑
c′,c

P
(
(φ(c,x)−φ(c′ ,x))T

W
S
≤ q(L+ 1)

) , (5.45)

where the expectation is with respect to the distribution of the parameters W. Inequality
(a) is by the union bound and (b) is because

(φ(c,x)−φ(c′ ,x))T Q(W) ≤ 0 (5.46)

implies

(φ(c,x)−φ(c′ ,x))T
W
S
≤ 2(L+ 1)

q

2
(5.47)

assuming the worst-case quantization error of q
2 for each

W i
j |h
S . We can further bound the

above expression by determining Chernoff-type bounds on the terms of the form

P
(
(φ(c,x)−φ(c′ ,x))T W/S ≤ (L+ 1)q

)
. (5.48)

In a first step, for t > 0 we obtain

(5.48) = P
(
e−t(φ(c,x)−φ(c′ ,x))T W ≥ e−t(L+1)qS

)
. (5.49)

As t > 0 can be arbitrarily selected,

(5.48)
(a)
≤ inf
t>0
et(L+1)qS

∏
(i,j,h)∈A1

EP(W i
j |h)

[
e
−tW i

j |h
] ∏

(i,j,h)∈A2

EP(W i
j |h)

[
e
tW i

j |h
]

(5.50)

(b)
≤ eS(L+1)q

∏
(i,j,h)∈A1

E

[
e
−W i

j |h
] ∏

(i,j,h)∈A2

E

[
e
W i
j |h
]

(5.51)

= eS(L+1)q

 ∏
(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h

 , (5.52)

where (a) is by Markov’s inequality and independence of the parameters7, and (b) is by
arbitrarily selecting t = 1; A1 = {(i, j,h) : φ(c,x)ij |h = 1}, A2 = {(i, j,h) : φ(c′ ,x)ij |h = 1}.

Further, M̃ i
j |h =

αij |h
αij |h+βij |h

, i.e. the expectation of the beta-distributed RV e
W i
j |h . Further-

more, M i
j |h is computed as follows: The RV e

−W i
j |h is distributed as the RV Z = 1/Y , where

Y ∼ Beta
(
αij |h,β

i
j |h

)
. The density fZ (z) can be computed [20] as

fZ (z) =


0 0 ≤ z ≤ 1,

(1/z)
αi
j |h+1

(1−1/z)
βi
j |h−1

B
(
αij |h,β

i
j |h

) 1 < z.
(5.53)

7The assumed independence does not hold exactly for the RVs in W corresponding to the class node. Fur-
ther, it does not hold for nodes independent of the class node. This later case however is uninteresting, as the
introduced quantization error affects all classes in the same way.
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Hence, the expected value evaluates to

M i
j |h = EfZ [Z] (5.54)

=
∫ ∞

1
zfZ (z)dz (5.55)

=
1

B
(
αij |h,β

i
j |h

) Γ (αij |h − 1)Γ (βij |h)

Γ (αij |h + βij |h − 1)
(5.56)

=
αij |h + βij |h − 1

αij |h − 1
, (5.57)

where Γ (·) is the gamma function and where we used B(c,d) = Γ (c)Γ (d)
Γ (c+d) and the recurrence

equation Γ (c) = Γ (c+1)
c .

The final bound is derived by using (5.52) in (5.45), i.e.

E

[
1(c=hPB (x))

]
≥ 1−min

1,
∑
c′,c

eS(L+1)q

 ∏
(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h


 . (5.58)

Probabilistic Bound

The bound according to Theorem 6 is conservative and is, empirically, often very loose, cf.
the experiments in Section 5.3.3. However, we can obtain a tighter bound by considering
the stochastic nature of the quantization error. Due to quantization, each of the entries in
W is distorted by a quantization error, i.e.

Q(W i
j |h) =

W i
j |h

S
+Eij |h, (5.59)

where Eij |h is the error introduced by quantization. Note, that the error is a deterministic

function of the scaled log-parameters 1
SW. Therefore, it depends on both the number of

bits B and the scale factor S. The error Eij |h can assume values in [− q2 ,+
q
2 ], cf. Figure 5.8.

Similar to before, the expected classification rate of a sample belonging to class c with
feature instantiation x can be bounded:

Theorem 7 (Probabilistic Bound). Let PB be the probability distribution defined by a BN,
and let S, B, q be as introduced above. Further, let (c,x) be a sample belonging to class c with
feature instantiation x. Assuming that the parameters of the BN are independent, the expected
classification rate for this sample can be lower bounded as

E

[
1(c=hPB (x))

]
≥ 1−min

1,
∑
c′,c

F2(L+1)

 ∏
(i,j,h)∈A1

Bij |h


 ∏

(i,j,h)∈A2

B̃ij |h


 , (5.60)

where F = eSq/2−e−Sq/2
Sq , where

Bij |h =
1

B
(
αij |h,β

i
j |h

) ∞∑
k=0

eSkq ·
[
B
(
eSmin(0,−k·q+q/2);αij |h,β

i
j |h

)
−B

(
eS(−kq−q/2);αij |h,β

i
j |h

)]
, (5.61)

B̃ij |h =
1

B
(
αij |h,β

i
j |h

) ∞∑
k=0

e−Skq ·
[
B
(
eSmin(0,−k·q+q/2);αij |h,β

i
j |h

)
−B

(
eS(−kq−q/2);αij |h,β

i
j |h

)]
, (5.62)

and where A1, A2 are as in Theorem 6.
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Before proceeding to the proof, we want to make a brief remark: For many combinations
of α,β and q, the quantities Bij |h and B̃ij |h can be approximated as

Bij |h ≈
1
Sq
− e
−Sq/2

Sq

B(α + 1,β)
B(α,β)

− 1
Sq

B
(
e−Sq/2;α,β

)
B(α,β)

− eSq/2
B
(
e−Sq/2;α + 1,β

)
B(α,β)

 . (5.63)

and

B̃ij |h ≈ −
1
Sq

+
e−Sq/2

Sq

B(α − 1,β)
B(α,β)

− 1
Sq

e−Sq/2 B
(
e−Sq/2;α − 1,β

)
B(α,β)

−
B
(
e−Sq/2;α,β

)
B(α,β)

 . (5.64)

Details on these approximations are provided after the proof. In cases in which these ap-
proximations are not accurate, Equations (5.61) and (5.62) can be approximated by partial
sums with only few terms.

Proof of Theorem 7. The expected classification rate of a sample belonging to class c with
feature instantiation x is given as

E

[
1(c=hPB (x))

]
= P

(
φ(c,x)TQ(W) >max

c′,c
φ(c,x)TQ(W)

)
(5.65)

≥ 1−min

1,
∑
c′,c

P
(
(φ(c,x)−φ(c′ ,x))T Q(W) ≤ 0

) , (5.66)

where the quantization error is included in Q(W). Chernoff-type bounds for the terms

P
(
(φ(c,x)−φ(c′ ,x))TQ(W) ≤ 0

)
(5.67)

read as

(5.67) ≤

 ∏
(i,j,h)∈A1

E

[
e
SQ(W i

j |h)
]

 ∏
(i,j,h)∈A2

E

[
e
−SQ(W i

j |h)
] (5.68)

For ease of notation, let Y = log(Z) and Z ∼ B(α,β). Then, the quantities in (5.68) read as

E

[
e±SQ(Y )

]
=

∫ 0

−∞
e±Sq[y/q]Rf SY (y)dy, (5.69)

where Y corresponds to W i
j |h. As e±Sq[y/q]R is constant for all y in any fixed quantization

interval, we obtain

(5.69) =
0∑

k=−∞

∫ min(0,kq+q/2)

kq−q/2
e±Skqf SY (y)dy (5.70)

(a)
=
∞∑
k=0

e∓Skq

B(α,β)

∫ eSmin(0,−kq+q/2)

eS(−kq−q/2))
wα−1(1−w))β−1dw (5.71)

=
1

B(α,β)

∞∑
k=0

e∓Skq ·B(w;α,β)
∣∣∣∣∣eSmin(0,−kq+q/2)

eS(−kq−q/2)
, (5.72)

where (a) is by substituting w = eSy . Hence, using (5.72) and (5.68) in (5.66) results in the
desired bound.

In the following, we present the derivation of the approximations for the terms Bij |h and

B̃ij |h mentioned above.
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Approximations. Consider Equation (5.72). For the lower limit and the negative-sign
case of the term e∓Skq,

∞∑
k=0

e−SkqB
(
eS(−kq−q/2);α,β

) (a)
≈

∫ ∞
0
e−SxqB

(
e−Sqxe−Sq/2;α,β

)
dx (5.73)

(b)
=

1
Sq

∫ 1

0
B
(
ye−Sq/2;α,β

)
dy (5.74)

(c)
=

1
Sq

[
B
(
e−Sq/2;α,β

)
−
∫ 1

0
(ye−Sq/2)α(1− ye−Sq/2)β−1dy

]
(5.75)

(d)
=

1
Sq

B(
e−Sq/2;α,β

)
− eSq/2

∫ e−Sq/2

0
zα(1− z)β−1dz

 (5.76)

=
1
Sq

[
B
(
e−Sq/2;α,β

)
− eSq/2B

(
e−Sq/2;α + 1,β

)]
, (5.77)

where (a) is by approximating the sum by an integral, (b) by substituting y = e−Sqx, (c) by
integration by parts, and (d) by substituting z = ye−Sq/2. Thus,

1
B(α,β)

∞∑
k=0

e−SkqB
(
eS(−2k−1)q/2;α,β

)
≈ 1
Sq

B
(
e−Sq/2;α,β

)
B(α,β)

− eSq/2
B
(
e−Sq/2;α + 1,β

)
B(α,β)

 . (5.78)

Similarly, for the upper limit in (5.72),

1
B(α,β)

∞∑
k=0

e−SkqB
(
min(1, eS(−2k+1)q/2);α,β

)
≈ 1
Sq
− e
−Sq/2

Sq

B(α + 1,β)
B(α,β)

. (5.79)

Hence, using (5.77) and (5.79) in (5.72) we obtain

Bij |h ≈
1
Sq
− e
−Sq/2

Sq

B(α + 1,β)
B(α,β)

− 1
Sq

B
(
e−Sq/2;α,β

)
B(α,β)

− eSq/2
B
(
e−Sq/2;α + 1,β

)
B(α,β)

 . (5.80)

Analogously, we obtain

B̃ij |h ≈ −
1
Sq

+
e−Sq/2

Sq

B(α − 1,β)
B(α,β)

− 1
Sq

e−Sq/2 B
(
e−Sq/2;α − 1,β

)
B(α,β)

−
B
(
e−Sq/2;α,β

)
B(α,β)

 . (5.81)

Probabilistic Bound Assuming Uniform and Independent Quantization Errors

In the following, to emphasize the need for considering an accurate model of the quanti-
zation error in (5.59), we determine CR bounds by assuming that the quantization error is
uniform and independent of W. This assumption is common although often inappropriate
when analyzing quantization effects. In experiments, cf. Section 5.3.3, the resulting bounds
are looser than the ones in Theorem 7. The bound can be stated as follows:

Theorem 8 (Uniform and Independent Error Bound). Let PB be the probability distribution
defined by a BN, and let S, B, q be as introduced. Further, let (c,x) be a sample belonging to class
c with feature instantiation x. Assuming that the parameters of the BN are independent and that
the quantization errors of the parameters are independent and uniformly distributed within a
quantization interval, the expected classification rate for this sample can be lower bounded as

E

[
1(c=hPB (x))

]
≥ 1−min

1,
∑
c′,c

F2(L+1)

 ∏
(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h


 , (5.82)

where F = eSq/2−e−Sq/2
Sq , and A1, A2, M i

j |h, M̃ i
j |h are as in Theorem 6.
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Proof. Using B bits for quantization, Eij |h ∼ U (± q2 ), where U (±a) denotes a uniform distri-
bution on the interval [−a,+a]. Hence,

EEij |h∼U (± q2 )

[
e
SEij |h

]
= EEij |h∼U (± q2 )

[
e
−SEij |h

]
(5.83)

=
∫ q/2

−q/2
eSx

1
q

dx =
eSq/2 − e−Sq/2

Sq
. (5.84)

Thus, similar as in the proof of Theorem 7, we obtain

P
(
(φ(c,x)−φ(c′ ,x))T (W/S + E) ≤ 0

)
≤

∏
(i,j,h)∈A1

E

[
e
−W i

j |h
]
E

[
e
−SEij |h

] ∏
(i,j,h)∈A2

E

[
e
W i
j |h

]
E

[
e
SEij |h

]
.

(5.85)

Consequently,

∑
c′,c

P
(
(φ(c,x)−φ(c′ ,x))T (W/S + E) ≤ 0

)
≤

∑
c′,c(n)

F2(L+1)

 ∏
(i,j,h)∈A1

M i
j |h


 ∏

(i,j,h)∈A2

M̃ i
j |h

 , (5.86)

where F = eSq/2−e−Sq/2
Sq .

5.3.3 Experiments

The derived bounds are evaluated on real-world datasets. Additionally, we compare gen-
eratively and discriminatively optimized BNCs with respect to classification performance
and robustness against parameter quantization. The investigation of classification perfor-
mance compares the absolute CRs of generatively and discriminatively optimized BNCs
with respect to parameter quantization, while the investigation of robustness compares
the number of changing classifications due to parameter quantization of these two types of
BNCs.

In all experiments, we select the scale factor S as the minimum value such that all
parameters can be represented using B bits, cf. Section 5.3.2. We perform experiments for
USPS, MNIST and DC-Mall data, cf. Section 2.3.

Classification Performance Bounds

We evaluate the bounds derived in Section 5.3.2. For all datasets, we perform Bayesian
parameter estimation, where we assume a uniform parameter prior, i.e. α̃ij |h = 1. For
B ∈ {1, . . . ,10} bits we determine the scale factor as stated above and quantize the MAP
parameters. BNCs using the resulting reduced-precision parameters are evaluated by com-
puting the CR performance on the test set. Additionally, the bounds on the CR derived in
the previous section are computed. As reference, we also determine the CR performance of
BNCs using double-precision MAP parameters. Furthermore, we compare BNCs with NB
and generatively optimized TAN structures. These TAN structures are learned using the
conditional mutual information (TAN-CMI) criterion [6]. We did not consider more gen-
eral structures, e.g. 2-trees for augmenting NB, because (1) there is no significant increase
in classification performance on several standard benchmarks for these structures [23],
(2) inference complexity scales with the tree-width of the corresponding moralized graph,
i.e. computational complexity increases drastically which conflicts with our interest for
computationally highly efficient models, and (3) more general models have more parame-
ters to be estimated (from the same number of samples) and therefore parameter estimates
have a higher variance.

Experimental results are shown in Figure 5.9. CR performance of the reduced-precision
BNCs increases with the number of bits and is close to optimal when using 3 to 4 bits for
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Table 5.3: Number of parameters of BNCs for different datasets and structures.

Dataset Structure #Parameters Samples/Parameter

USPS
NB 8650 0.92
TAN-CMI 33040 0.24
TAN-MM 31320 0.26

MNIST
NB 6720 8.93
TAN-CMI 38350 1.56
TAN-MM 39370 1.52

DC-Mall
NB 21490 12.19
TAN-CMI 574406 0.46
TAN-MM 484813 0.54

all datasets8. The worst-case bounds are conservative and rather loose. In contrast, the
probabilistic bounds are much tighter. The bounds derived assuming uniform and inde-
pendent quantization errors, cf. Theorem 8, are less tight than those obtained by assuming
beta distributed parameters, cf. Theorem 7.

While BNCs with TAN structures typically achieve better CRs, the determined bounds
for TAN structures are looser than the bounds for NB structures. This is because in the
case of TAN structures, less samples are available for estimating the CPTs, cf. Table 5.3.
Therefore, parameter estimates are more uncertain and quantization effects can have larger
impact. This effect is strongest for the USPS dataset which consists only of a small number
of training samples, i.e. the number of samples per parameter, as shown in Table 5.3, is
low.

To emphasize the dependence of the bounds on the sample size, we performed the
following experiment: For MNIST data, we trained BNCs with TAN-CMI structure on 10%,
20%, 50%, and 100% of the samples and computed the performance bounds, respectively.
The results are shown in Figure 5.10. With increasing sample size, the bounds become
tighter because the variance of the parameter estimates reduces.

Classification Performance of BNCs Optimized for Large Margin

We compare the classification performance of BNCs with generatively and discriminatively
optimized parameters/structure with respect to parameter quantization. One motivation
for this is that determining whether parameter quantization changes the decision of a BNC
B for a sample belonging to class c with feature instantiation x or not, is equivalent to
determining whether the error introduced by quantization is larger than its log margin, i.e.

logdB(c,x) = logPB(c,x)−max
c′,c

logPB(c′ ,x). (5.87)

Maximizing this margin is essentially the objective of large margin training of BNCs [25,
8, 22, 24]. Hence, the assumption that BNCs optimized for a large margin are more robust
to parameter quantization than for other BNC learning approaches is obtruding (this as-
sumption is also supported by experimental results presented in [33, 34]). In the following,
we compare two different approaches for obtaining large margin BNCs.

Discriminatively versus generatively optimized parameters. We compare the classifi-
cation performance of BNCs with MAP parameters and of BNCs with MM parameters over
varying numbers of bits used for quantization. MM parameters are determined using the
algorithm described in [25]. The structures considered are NB and TAN-CMI. The results
for USPS, MNIST and DC-Mall data are shown in Figure 5.11. Our hypothesis is that the

8Classification requires adding up L+1 reduced-precision parameters and performing a maximum operation.
Hence, additional log2(L + 1) bits are required to avoid an overflow during summation. For easier comparison
across different datasets, these additional bits are not considered in the presented figures.
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Figure 5.9: CRs and bounds on the CRs of BNCs with reduced-precision parameters for
varying number of bits; worst-case bounds (grey ×), probabilistic bound (cyan ×+), prob-
abilistic bound assuming uniform quantization error (black �), reduced-precision MAP
parameters (blue +), full-precision MAP parameters (green, no marker).
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Figure 5.10: Sample size dependence of the proposed performance bounds for MNIST
data and BNCs with TAN-CMI structure; worst-case bounds (dashed grey), probabilistic
bounds (dotted cyan), probabilistic bounds assuming uniform quantization error (dash-
dotted black), reduced-precision MAP parameters (solid blue), full-precision MAP param-
eters (green, horizontal); bounds are learned on 10%, 20%, 50% and 100% of the training
data (from bottom to top).

Table 5.4: Comparison of the CRs of BNCs with MAP and MM parameters; a plus (minus)
sign indicates that for the corresponding dataset/structure/number of bits BNCs with MM
(MAP) parameters have a significantly higher CR.

number of bits

Dataset Structure 1 2 3 4 5 6 7 8 9 10

USPS
NB − − + + + + + + + +
TAN-CMI − − + + + + + + + +

MNIST
NB − − + + + + + + + +
TAN-CMI − − + + + + + + + +

DC-Mall
NB − + − + + + + + + +
TAN-CMI − − + + + + + + + +

classification rate of BNCs with MM parameters is higher than that of BNCs with MAP
parameters, i.e.

CR
(
hQ(wMM)

)
≥ CR

(
hQ(wMAP)

)
, (5.88)

where, in abuse of notation, hQ(w) is the BNC induced by the quantized parameters Q(w).
We use a one-tailed dependent t-test for paired samples at significance level 0.01 for testing
significance. Results are summarized in Table 5.4. For all but small bit-widths and all
datasets and structures, discriminatively optimized parameters yield significantly higher
CRs.

Discriminatively optimized BN structures. We compare the CR performance of BNCs
with MAP parameters using TAN-CMI and margin-optimized TAN structures (TAN-MM).
TAN-MM structures are determined using the margin objective (5.21) embedded in a hinge
loss function as objective for scoring BN structures. Optimization is performed using a
greedy hill climbing heuristic. Details are provided in [24]. CR results for MNIST and DC-
Mall data are shown in Figure 5.12. Formally, our hypothesis is that the classification rate
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Figure 5.11: CRs of BNCs with MAP and MM parameters over varying number of bits;
MAP parameters (red); MM parameters (blue).

of BNCs with TAN-MM structure is higher than that of BNCs with TAN-CMI structures,
i.e.

CR
(
hQ(wTAN-MM)

)
≥ CR

(
hQ(wTAN-CMI)

)
, (5.89)

where wTAN-MM denotes the MAP parameters for the TAN-MM structure and wTAN-CMI

denotes the MAP parameters for the TAN-CMI structure, respectively. We performed the
same statistical tests as above. In all cases, i.e. for all datasets and considered bit-widths (1
to 10 bits), the CR of BNCs with TAN-MM structure is significantly higher.

Robustness of BNCs Optimized for Large Margin

We compare the robustness of BNCs with generatively and discriminatively optimized pa-
rameters and structure with respect to parameter quantization. We denote a classifier as
robust if only a small number of classifications change due to parameter quantization —
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Figure 5.12: CRs of BNCs with MAP parameters over varying number of bits, TAN-CMI
and TAN-MM structures; Left: MNIST, Right: DC-Mall.

Table 5.5: Comparison of the robustness of BNCs with MAP and MM parameters; a plus
(minus) sign indicates that for the corresponding dataset/structure/number of bits BNCs
with MM (MAP) parameters are significantly more robust.

number of bits

Dataset Structure 1 2 3 4 5 6 7 8 9 10

USPS
NB − −
TAN-CMI − − +

MNIST
NB − − − − − −
TAN-CMI − −

DC-Mall
NB − − − − − − − − − −
TAN-CMI − − + + + + + + +

this is formalized below. The assumption, that BNCs with parameters/structures opti-
mized for a large margin are more robust than other BNCs seems likely (this assumption
is also supported by experimental results presented in [33, 34]). However, this higher ro-
bustness cannot be observed empirically in all cases. Again, we compare two different
approaches for obtaining large margin BNCs.

Discriminatively versus generatively optimized parameters. Our hypothesis for testing
robustness is

E

[
1(
hwMM (X)=hQ(wMM)(X)

)] ≥ E

[
1(
hwMAP (X)=hQ(wMAP)(X)

)] . (5.90)

Significance of results is assessed using a dependent t-test for paired samples at significance
level 0.01. Then, BNCs with discriminatively optimized parameters are almost never sig-
nificantly more robust to parameter quantization, cf. Table 5.5 (the only exception is BNCs
with TAN-CMI structure for DC-Mall data). This can be explained with results from sen-
sitivity analysis — discriminatively optimized BNCs have more extreme parameters, i.e.
parameters close to zero or one, than generatively optimized BNCs [33]. Nevertheless, us-
ing only 3 to 4 bits, the discriminatively optimized parameters yield higher absolute CRs,
cf. Section 5.3.3 and Table 5.4.

Discriminatively optimized BN structures. Our hypothesis is that BNCs with large mar-
gin structures are more robust to quantization, i.e.

E

[
1(
hwTAN-MM (X)=hQ(wTAN-MM)(X)

)] ≥ E

[
1(
hwTAN-CMI (X)=hQ(wTAN-CMI)(X)

)] . (5.91)

For assessing results, we used the same statistical test as above. BNCs with structures op-
timized for a large margin show a higher robustness to parameter quantization than TAN-
CMI structures, cf. Table 5.6. Additionally, the CR performance using margin-optimized
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Table 5.6: Comparison of the robustness of BNCs with TAN-CMI and TAN-MM structures
and MAP parameters; a plus sign indicates that for the corresponding dataset/number of
bits BNCs with TAN-MM structure are significantly more robust.

number of bits

Dataset 1 2 3 4 5 6 7 8 9 10

USPS + + + + +
MNIST + + + + +
DC-Mall + + + + + + + + + +

structures is always better, cf. Section 5.3.3 and Figure 5.12. Hence, in this case the large
margin structures seem favorable.

5.3.4 Summary

We considered BNCs with reduced-precision parameters and derived an easy to evaluate
worst-case bound on the CR performance. Furthermore, a probabilistic bound on the CR
and approximations for the expected value of the quantized parameters were derived. In
experiments, we evaluated the performance of reduced-precision BNCs and the derived
bounds. Only 3 to 4 bits for representing each parameter are necessary to achieve CR
performance close to double-precision floating-point performance. We investigated classi-
fication performance and robustness of BNCs with generatively and discriminatively opti-
mized parameters and structures with respect to parameter quantization. While discrimi-
natively optimized parameters do not show higher robustness than generatively optimized
parameters, the CR performance of BNCs in the former case is already better when using
only 2 to 3 bits for representing each parameter. When using discriminatively optimized
TAN-MM structures, robustness to parameter quantization as well as CR performance is
increased.

5.4 Learning Reduced-Precision Parameters With Full-Pre-
cision Arithmetic9

In this section, we consider learning reduced-precision parameters for BNCs using full-
precision computations. In contrast to before, parameters are not initially learned in full-
precision and then rounded, but parameters are optimized over the space of reduced-
precision parameters. We claim that learning reduced-precision parameters by explicitly
considering the reduced-precision constraints of the destination platform is advantageous.
Furthermore, we argue that discriminatively optimized BNCs achieve a good trade-off be-
tween accuracy and required computational resources. This is motivated in Figure 5.13 for
the satimage dataset from the UCI repository [2]. The model complexity in terms of bits
required to store the classifier parameters versus the achieved classification error for SVMs
with radial-basis-function kernels and for MM BNs is shown. In case of MM BNs, the per-
formance of conventionally full-precision optimized and subsequently rounded parame-
ters (RD) and that of parameters optimized for resource constraint environments using
branch and bound (BB) techniques is presented — details on parameter learning using the
hybrid generative-discriminative objective from Chapter 4 are provided in the forthcoming
sections. Note that the model complexity of the SVM is significantly higher than that of
MM BNs, while classification performance is only slightly better. Thus, if the application
of interest allows to trade-off (slightly) reduced classification performance for tremendous
savings in model complexity, MM BNs are obviously a good choice. If very low complexity
models are desired, then MM BNs using BB are the best choice.

9Published as Integer Bayesian Network Classifiers [35] in the proceedings of ECML 2014. ©Springer-Verlag
Berlin Heidelberg 2014
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Note, that in terms of parameter learning using a BB scheme, there is related work for
integer parameter learning of SVMs in the dual [1]. While some of the ideas presented
by the authors are similar, classification with non-linear SVMs is computationally more
demanding than classification using BNs.10 Furthermore, when memory consumption is
an issue, non-linear SVMs are disadvantageous because all support-vectors must be stored
for classification.
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Figure 5.13: Model complexities versus classification errors. Nonlinear SVM refers to SVMs
with radial-basis-function kernels, MM BN (RD) refers to MM BNs with parameters ob-
tained by rounding, and MM BN (BB) refers to MM BNs with parameters obtained by the
method proposed in this section.

In this section, we devise algorithms for efficiently learning high performance low
complexity models. While we already showed in Section 5.2 that parameters of BNCs
can be mapped to the integer domain without considerable loss in CR performance, we
take the analysis further: A principled approach for BNC parameter learning of margin-
maximizing parameters over a discrete search space, i.e. MM (BB) parameters, is consid-
ered. This includes BNs with fixed-point parameters and (by proper scaling) integer pa-
rameters. An algorithm for parameter optimization based on BB techniques is presented.
For low bit-widths, the obtained parameters lead to significantly better performance than
parameters obtained by rounding double-precision MM parameters.

Our main contributions can be summarized as follows:

• An efficient algorithm for computing margin maximizing reduced-precision param-
eters. The algorithm is based on the BB algorithm and a set of greedy heuristics. This
offers a gain in computation time and makes learning tractable.

• Experiments demonstrating that reduced-precision BNs with small bit-widths can be
widely applied. We especially show that a very low number of reduced-precision
bits is often sufficient to obtain classification performance close to full-precision
MM BNs. This offers considerable advantages when implementing BNs on embed-
ded systems, i.e. data storage and bandwidth requirements are minimized.

• A brief theoretical analysis of BNs with rounded parameters.

This part of the thesis is structured as follows: In Section 5.4.1, an efficient algorithm
for learning margin maximizing reduced-precision parameters of BNCs is provided. Sec-
tion 5.4.2 considers reduced-precision parameter learning by rounding from a theoretical
perspective. Experimental results are provided in Section 5.4.3. We conclude our investi-
gations in Section 5.4.4.

10For classification with non-linear SVMs, the kernel must be evaluated for all support-vectors and a weighted
summation must be performed. Classification using BNs with NB or TAN structures [6] corresponds to a simple
summation of log-probabilities followed by an arg-max operation. Classification using linear SVMs is similar to
classification using BNs.
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5.4.1 Bayesian Network Classifiers with Reduced-Precision Parameters

In this section, we review how to represent reduced-precision parameters of BNCs by in-
teger parameters and present an algorithm for determining margin maximizing reduced-
precision parameters for BNCs.

Integer Representation of BNCs With Reduced-Precision Parameters

According to (2.5), the BN B assigns the probability

PB(x) =
L∏
i=0

P(Xi = x(Xi)|Pa(Xi) = x(Pa(Xi)), (5.92)

to an instantiation x of X, where x(Xk) denotes the instantiation of Xk and x(Pa(Xk)) the
instantiation of the parents of Xk according to x, respectively. The above equation can be
equivalently stated in the logarithmic domain, i.e.

logPB (x) =
L∑
i=0

logP(Xi = x(Xi )|Pa(Xi ) = x(Pa(Xi ))). (5.93)

Hence, computing the log-likelihood of a sample x corresponds to a summation of log-
probabilities. Assuming that all log-probabilities are represented using bi integer bits and
bf fractional bits, these log-probabilities can be written as

wij |h = logP(Xi = j |Pa(Xi) = h) = −
bi−1∑
k=−bf

bi,kj |h · 2
k , (5.94)

where bi,kj |h ∈ {0,1} denotes the kth bit of the binary representation of wij |h. Hence, ignoring

the possibility of underflows, all wij |h are in the set of negative fixed-point numbers −Bbibf
with bi integer bits and bf fractional bits, i.e.

wij |h ∈ −B
bi
bf

= −


bi−1∑
k=−bf

dk · 2k : dk ∈ {0,1}

 . (5.95)

Introducing this in (5.93) and scaling by 2bf results in

2bf logPB(x) = −
L∑
i=0

bi−1∑
k=−bf

bi,kx(Xi )|x(Pa(Xi ))
· 2k+bf , (5.96)

i.e. all summands are integer valued. The largest summand is at most 2bi+bf − 1. The
summation is over L+ 1 (scaled) log-probabilities, i.e. the number of nodes in B. Hence, in
total at most

log2(L+ 1) + bi + bf (5.97)

bits are required to calculate the joint probability. This transformation to the integer do-
main, as already shown in Section 5.2.3, is advantageous in several aspects: (1) no floating-
point rounding errors of any kind are introduced when working purely in the integer do-
main, (2) computations using integer arithmetic are typically faster and more efficient, (3)
the need for a floating-point processing unit is eliminated which encourages usage in many
embedded systems, and (4) the integer parameters require less memory for storage.
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Learning Reduced-Precision BNCs Using Full-Precision Arithmetic

In principle, parameters for BNCs with reduced-precision parameters can be determined
by first learning BNC parameters using full-precision floating-point computations and
subsequent rounding (and scaling) to the desired number format — a brief analysis of
this approach is provided at the end of this section. However, such parameters are in gen-
eral not optimal in the sense of the MM criterion (5.98) and we aim at a more principled
approach.

We advocate the hybrid generative-discriminative parameter learning according to [22],
cf. Chapter 4. The objective is the joint maximization of the data likelihood and the margin
on the data. Formally, MM parameters PMM

G are learned as

PMM
G = argmax

PG

 N∑
n=1

logPB(c(n),x(n)) +λ
N∑
n=1

min
(
γ, logPB(c(n),x(n))−max

c,c(n)
logPB(c,x(n))

) ,
(5.98)

where PB(C,X) is the joint distribution in (2.5) induced by the BN (G,PG), λ is a trade-off
parameter between likelihood and margin, i.e. generative and discriminative optimiza-
tion, and γ is the desired margin. The margin of sample n is defined as the difference in
log-likelihood of the sample belonging to the correct class to belonging to the most likely
alternative class, i.e. logPB(c(n),x(n)) −maxc,c(n) logPB(c,x(n)). Consequently, a sample is
classified correctly iff it has positive margin and incorrectly otherwise. Both parameters λ
and γ are typically set using cross-validation.

Our approach is based on the BB procedure [14], exploiting convexity of (5.98) under
suitable parametrization. The implications will become clear immediately. Optimization
of the MM criterion can be represented as

maximize
w

N∑
n=1

φ(c(n),x(n))Tw +λ
N∑
n=1

min
(
γ,φ(c(n),x(n))Tw−max

c,c(n)
φ(c,x(n))Tw

)
(5.99)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) = 1 ∀i,h,

where we exploit that any log-probability logPB(c,x) can be written as

logPB(c,x) = φ(c,x)Tw, (5.100)

cf. Section 2.2.1. The above problem in (5.99) is nonconvex and hard to solve. However,
when relaxing the normalization constraints to

|val(Xi )|∑
j=1

exp(wij |h) ≤ 1, (5.101)

the problem becomes convex and can hence be solved efficiently. If all components of∑N
n=1φ(c(n),x(n)) are positive, e.g. when applying Laplace smoothing, then (5.101) is auto-

matically satisfied with equality by any optimal solution of the relaxed problem, i.e. the
original constraints are recovered [22].

For learning reduced-precision parameters, we restrict the parameters w to −Bbibf and

further relax the normalization constraints to

|val(Xi )|∑
j=1

exp(wij |h) ≤ 1 + ξ(|val(Xi)|,bi ,bf ), ∀i,h (5.102)

where ξ(|val(Xi)|,bi ,bf ) is an additive constant depending on |val(Xi)|, bi and bf . This
further relaxation of the normalization constraints is necessary, as in general reduced-
precision parameters do not correspond to correctly normalized parameters. The additive
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constant is required, as for very small bit-widths there are no parameters that are sub-
normalized, i.e.

∑
j exp(M) > 1, where M = −2bi + 2−bf is the smallest value that can be

represented. Therefore, without this additional constant, our optimization problem would
be infeasible. In our experiments, we set

ξ(|val(Xi)|,bi ,bf ) = max
(
0,
|val(Xi)|

2
[exp(M) + exp(M + 2−bf )]− 1

)
, (5.103)

allowing at least half of the parameters of every CPD P(Xi |Pa(Xi)) to take on values larger
thanM. Note that ξ(|val(Xi)|,bi ,bf ) quickly goes down to zero with increasing bi . Thus, our
final optimization problem for learning reduced-precision parameters using full-precision
arithmetic is

maximize
w

N∑
n=1

φ(c(n),x(n))Tw +λ
N∑
n=1

min
(
γ,φ(c(n),x(n))Tw−max

c,c(n)
φ(c,x(n))Tw

)
(5.104)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) ≤ 1 + ξ(|val(Xi)|,bi ,bf ) ∀i,h,

wij |h ∈ −B
bi
bf

∀i, j,h,

where we additionally include the quantization constraint wij |h ∈ −B
bi
bf

. For efficiently

finding (global) minimizers of (5.104), we propose to use a BB algorithm [11] and greedy
heuristics for creating candidate solutions and branching orders:

Branch and Bound Algorithm. The optimal BNC parameters have to be searched in a
discrete solution space, i.e. wij |h ∈ −B

bi
bf

. For optimization, the BB algorithm is used. BB

searches the solution space by creating a tree of subproblems and dynamically adding
(branch) and discarding (bound, also referred to as pruning) branches. The algorithm iter-
atively solves (5.104) using upper and lower bounds for wij |h depending on the considered

leaf of the search tree, i.e. the subproblem corresponding to the kth leaf is given as

maximize
w

N∑
n=1

φ(c(n),x(n))Tw +λ
N∑
n=1

min
(
γ,φ(c(n),x(n))Tw−max

c,c(n)
φ(c,x(n))Tw

)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) ≤ 1 + ξ(|val(Xi)|,bi ,bf ) ∀i,h,

l
i,(k)
j |h ≤ w

i
j]h ≤ u

i,(k)
j |h ∀i, j,h,

where li,(k)
j |h ,u

i,(k)
j |h ∈ [−∞,0] are the lower and upper bounds on the parameters, respectively.

These subproblems are convex and can be exactly and efficiently solved.11 If the deter-
mined solution does not fit the required precision for all parameters, the algorithm per-
forms one of the following options:

(a) Bound. If no global maximizer is to be found within the bounds, the algorithm prunes
the whole subtree (this happens if the best feasible solution found so far is better (has
larger objective) than the optimal solution of the subproblem of the current leaf).

(b) Branch. Alternatively, the algorithm creates two new problems by adding new lower
and upper bounds to one of the parameters (branching variable) which does not sat-
isfy the desired precision. If multiple parameters do not satisfy the desired precision,

11When solving these problems using gradient-ascent methods, a projection onto the feasible set must be
performed in every iteration. In the original publication, we used a general purpose convex solver for computing
these projections. However, this is very time-consuming. Thus, we derived a specialized projection algorithm
that shows much better performance. This algorithm is presented in Appendix 5.A.
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i.e. different branching variables are possible, we use the branching heuristic described
below to select the branching variable. Furthermore, to efficiently prune subtrees, it is
important to generate good lower bounds for the objective at this stage, cf. the para-
graph on rounding heuristics below.

Subproblems in the search tree are processed in order of their highest achievable objective
value (the achievable objective value of subproblem k is upper bounded by the objective
value of the relaxed problem of the parent of k according to the search tree). In this way,
the subproblem of the search tree with highest upper-bound is processed next. The BB
algorithm terminates either after a specified amount of time, returning the best solution
found so far (anytime solution), or after there are no more open subproblems. In the latter
case, the found solution is the global optimizer of (5.104).

Rounding heuristic. To efficiently apply the BB algorithm, it is important to prune large
parts of the search space at an early stage. Therefore, we need to obtain good lower bounds
for the objective every time a problem corresponding to a leaf in the search tree has been
solved. We try to achieve this using two simple rounding heuristics. If any of these heuris-
tics yields a better feasible solution for (5.104) than the best solution found so far, the best
solution is updated.

Let ŵ correspond to the intermediate solution. Then, the candidate solutions a and b
are generated by the following two heuristics:

• Rounding: The idea of this heuristic is that by rounding the intermediate solution ŵ,
we may be able to create a solution that is almost as good as ŵ in terms of the objec-
tive, i.e. close to the best solution that can be found within the considered bounds.
Therefore, set

âij |h = max

M,
 ŵij |hq


R

q

 , (5.105)

where [·]R denotes rounding to the closest integer, q = 2−bf is the quantization interval
and M = −2bi + 2−bf the minimum value that can be represented. Set a = Π(â), where
Π is a projection-like operator ensuring that a is feasible for (5.104).12

• Gradient Guided Rounding: Let g be the gradient of the objective at ŵ. The intuition
of this heuristic is that the gradient conveys information about directions in which
the objective would increase if there were no constraints — we try to exploit this in-
formation by rounding according to the sign information of the gradient. Therefore,

b̂ij |h =


⌈
ŵij |h
q

⌉
q if g ij |h > 0,and

max
(
M,

⌊
ŵij |h
q

⌋
q

)
if g ij |h ≤ 0,

(5.106)

where b·c and d·e denote the floor and ceil function, respectively. Set b = Π(b̂), where
Π is as above.

Branching Heuristics. After solving one of the subproblems of the search tree, we check
the obtained solution ŵ for optimality. If the solution is not optimal, we branch on the
entry ŵi

′

j ′ |h′ that has the largest deviation from the desired precision, i.e.

(i′ , j ′ ,h′) = argmax
i,j,h

∣∣∣∣∣∣∣ŵij |h −
 ŵij |hq


R

q

∣∣∣∣∣∣∣ . (5.107)

12A description of the algorithm used for projection is provided in Appendix 5.B
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5.4.2 Theoretical Analysis: Approximate Bayesian Network Classifiers
by Rounding

In this section, we provide a short analysis of the effect of rounding log-parameters to their
closest fixed-point representation. This reveals interesting insights into why classification
performance of BNCs with rounded parameters is better than one might anticipate. Per-
forming a similar analysis for BNCs with MM BB parameters is much more difficult for
the following two reasons: (1) The objective for learning margin maximizing parameters
does not decompose as a product of conditional probabilities. (2) There is no closed-form
solution for the parameters.

We start by analyzing the KL-divergence introduced by rounding, i.e. we consider the
KL-divergence between an optimal distribution, e.g. the original full-precision distribu-
tion, and its approximation obtained by rounding of the log-probabilities. Clearly, the ap-
proximate distribution is not necessarily properly normalized. Therefore, we compare the
KL-divergence of the optimal distribution and the renormalized approximate distribution.
This yields the following lemma:

Lemma 5 (KL-divergence). Let wi
·|h be a vector of normalized log-probabilities (optimal distri-

bution), i.e.
∑
j exp(wij |h) = 1, and let w̃i

·|h (approximate distribution) be such that

w̃ij |h =

wij |hq

R

q, (5.108)

where q = 2−bf is the quantization interval. Then, the KL-divergence between the optimal and
the renormalized approximate distribution is bounded by q, i.e.

D(wi
·|h||logα + w̃i

·|h) ≤ q, (5.109)

where α = (
∑
j exp(w̃ij |h))−1 ensures renormalization such that

∑
j exp(logα + w̃ij |h) = 1.

Proof. We calculate

D(wi
·|h||logα + w̃i

·|h) =
∑
j

exp(wij |h) log
exp(wij |h)

α exp(w̃ij |h)
(5.110)

=
∑
j

exp(wij |h)
[
(wij |h − w̃

i
j |h)− logα

]
(5.111)

(a)
≤

∑
j

exp(wij |h)
[q

2
− logα

]
(5.112)

=
q

2
− logα, (5.113)

where (a) is because w̃i
·|h is derived from wi

·|h by rounding the parameters, i.e. (wij |h−w̃
i
j |h) ≤

q
2 . It remains to upper bound − logα. Straightforward calculation yields

− logα = log
∑
j

exp(w̃ij |h) ≤ log
∑
j

exp(wij |h +
q

2
) =

q

2
. (5.114)

Hence, the statement follows.

This bound is tight. Assuming that sufficient (integer) bits are used, no log-probabilities
have to be truncated (truncation must be performed if some wij |h ≤ −2bi + 2−bf , i.e. wij |h is
smaller than the smallest value that can be represented using the chosen number format).
In this case, the KL-divergence decays rapidly with increasing bf .

When using only a finite number of bits for the integer part, log-probabilities may be
truncated. Still, a bound on the KL-divergence can be derived:
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Lemma 6 (KL-divergence). Let wi
·|h be a vector of normalized log-probabilities (optimal distri-

bution), and let w̃i
·|h (approximate distribution) be such that

w̃ij |h = max

M,
wij |hq


R

q

 , (5.115)

where q = 2−bf is the quantization interval and where M is the minimal representable log-
probability. Then the KL-divergence between the optimal and the renormalized approximate
distribution is bounded as

D(wi
·|h||logα + w̃i

·|h) ≤
3q
2

+ |val(Xi)|exp(M), (5.116)

where α = (
∑
j exp(w̃ij |h))−1 ensures renormalization.

Typically, M = −2bi + 2−bf . Hence, also in this case the bound decays with an increasing
number of bits. One can further observe a dependency on the size of individual CPTs.

Both, Lemma 5 and 6, guarantee that simply rounding the log-probabilities of an op-
timal distribution does yield a good approximation in terms of KL-divergence. Therefore,
it is not surprising that BNCs with parameters obtained by rounding achieve good perfor-
mance. Furthermore, this justifies the rounding heuristics for obtaining good candidate
solutions in the BB algorithm.

5.4.3 Experimental Results

In the following, we present classification experiments using the MM objective in (5.104).
In particular, we use BNCs with parameters determined as follows:

• branch and bound (BB): These reduced-precision parameters are obtained using the
BB algorithm presented in Section 5.4.1.

• rounded (RD): Parameters are obtained by rounding double-precision log-parameters
to the desired number format. If necessary, parameters are truncated.

• double-precision (DP): Double-precision parameters are obtained by solving (5.99) us-
ing methods proposed in [22].

Classification Experiments

We consider classification experiments for four real world datasets, i.e. USPS data, MNIST
data and satimage/letter data from the UCI repository. Details on these datasets are avail-
able in Section 2.3. On these datasets, we compare the CR performance of BNCs with BB,
RD, and DP parameters.13

For RD parameters and a specific number of bits B = bi +bf , we determine the splitting
into integer bits bi and fractional bits bf such that the classification rate on held out valida-
tion data is maximized. For learning BB parameters with B bits, we determine the splitting
into integer bits and fractional bits, as well as the hyper-parameters λ and γ in (5.104),
using 5-fold cross-validation. For every setting of the parameters B, λ and γ , we allowed
for up to five hours CPU time on a 3 GHz personal computer. If the parameter learning did
not finish within this time, the best solution found so far was returned, cf. Section 5.4.1.

The observed CRs are shown in Figures 5.14, 5.15 and 5.16, for satimage, letter, USPS,
and MNIST data using BNCs with NB structures, respectively. In case of USPS data, also
CR performance for BNCs with TAN-CMI structures is shown. Only 5 to 6 bits for RD pa-
rameters are necessary to achieve CRs close to DP CRs. BNCs with BB parameters achieve

13As mentioned in Section 5.4.1, up to log2(L+1)+bi +bf bits are necessary for classification using BNCs with
reduced-precision parameters. In the presented experiments, we assume that these additional bits are available,
i.e. summation does not cause overflows.
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better CRs than BNCs with RD parameters. Especially for low number of bits, BNCs with
BB parameters are significantly better in terms of CR performance. This suggests that pa-
rameter learning under precision constraints is advantageous over full-precision parameter
learning followed by subsequent rounding.
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Figure 5.14: CRs for satimage and letter data of BNCs with BB, RD and DP parameters for
NB structures.
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Figure 5.15: CRs for USPS data of BNCs with BB, RD and DP parameters for NB and TAN-
CMI structures.
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Figure 5.16: CRs for MNIST of BNCs using NB structure with DP, RD and BB parameters.

One important aspect of reduced-precision parameters, is their lower memory usage.
This is exemplarily shown for USPS and MNIST data and NB and TAN-CMI structures in
Table 5.7. The reduction in storage requirements by a factor of∼ 10 can positively influence
the memory access when implementing BNCs on embedded hardware.
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Table 5.7: Memory usage for parameter storage of DP, BB and RD parameters in reduced-
precision.

Storage [kB]

Dataset Structure # Parameters # bits DP BB/RD

USPS
NB 8650 6 67.6 6.3
TAN 32970 6 257.6 24.1

MNIST NB 25800 3 201.6 9.4

5.4.4 Summary

We presented an efficient algorithm for computing margin maximizing reduced-precision
parameters using full-precision arithmetic. If desired, these parameters can be scaled to
integer values. The subproblems of the proposed algorithm are convex and can be solved
efficiently.

In experiments, we showed that a low number of bits is sufficient to achieve good perfor-
mance in classification scenarios. Furthermore, we showed that parameter learning under
precision constraints is advantageous over full-precision parameter learning followed by
subsequent rounding to the desired precision. The presented results support to understand
the implications of implementing BNCs on embedded hardware and can greatly reduce the
storage requirements and thus the time required for memory access.

5.5 Learning Reduced-Precision Parameters With Reduced-
Precision Arithmetic

In this section, we very briefly consider learning reduced-precision parameters for BNCs
using reduced-precision computations only. We present some algorithms we experimented
with and show some preliminary experimental results. The algorithms are ad hoc and we
did not perform any theoretical analysis. We start by considering learning ML parameters
in Section 5.5.1 and then move on to learning MM parameters in Section 5.5.2. Please note
that experiments do not cover all important details and effects. A more detailed investiga-
tion is subject to future work.

We claim that learning using reduced-precision arithmetic is most useful in online set-
tings, i.e. parameters are updated on a per-sample basis. This online learning scenario
captures the important case in which initially pre-computed parameters are used and
these parameters are updated online as new samples become available, e.g. adaptation
of a hearing-aid to a new acoustic environment. In this setting, learning using reduced-
precision computations requires specialized algorithms, i.e. gradient-descent (or gradient-
ascent) procedures using reduced-precision arithmetic do not perform well. This is mainly
because we cannot perform exact projections that are necessary when we want to learn
normalized parameters satisfying the sum-to-one constraints. Another issue may arise be-
cause the learning rate cannot be annealed arbitrarily. However, we do not find this issue
as import as the inexact projections.

5.5.1 Maximum Likelihood Parameters

We consider an online algorithm for learning ML parameters. Recall the ML objective for
the offline scenario, i.e.

PML
G = argmax

PG

N∏
n=1

PB(c(n),x(n)), (5.117)
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or equivalently,

wML = argmax
w

N∑
n=1

φ(c(n),x(n))Tw s.t.
∑
j

exp(wij |h) = 1,∀i, j,h. (5.118)

In an online scenario, not all samples are available for learning at once but are available
one at a time; the parameters wML,t at time-step t are updated according to the gradient
of a single sample (c,x) (or, alternatively, a batch of samples) and projected such that they
satisfy the sum-to-one constraints, i.e.

wML,t+1 = Π
[
wML,t + η

(
∇wφ(c,x)Tw

)
(wML,t)

]
(5.119)

= Π
[
wML,t + ηφ(c,x)

]
, (5.120)

where η is the learning rate, where ∇w(f )(a) denotes the gradient of f with respect to w
at a, and where Π[w] denotes the `2-norm projection of the parameter vector w onto the
set of normalized parameter vectors. Note that the gradient has a simple form: it consists
only of zeros and ones, where the ones are indicators of active entries in the CPTs of sample
(c,x). Furthermore, assuming normalized parameters at time-step t, the direction of the
gradient is always such that the parameters wML,t+1 are super-normalized. Consequently,
after projection the parameters satisfy the sum-to-one constraints.

We continue by analyzing the effect of using reduced-precision arithmetic on the online
learning algorithm. Therefore, we performed the following experiment: Assume that the
projection can only be approximately performed. We simulate the approximate projection
by performing an exact projection and subsequently adding quantization noise (this is sim-
ilar to reduced-precision analysis in signal processing [18]). We sample the noise from a
Gaussian distribution with zero mean and with variance σ2 = q2/12, where q = 2−bf . For
the satimage dataset we construct BNCs with TAN-CMI structure. As initial parameters
we use rounded ML parameters computed from one tenth of the training data. Then, we
present the classifier further samples in an online manner and update the parameters ac-
cording to (5.120). During learning, we set the learning rate η to η = η0/

√
1 + t, where η0

is some constant (η0 is tuned by hand such that the test set performance is maximized).
The resulting classification performance is shown in Figures 5.17a and 5.17b for the exact
and the approximate projection, respectively. One can observe, that the algorithm does
not properly learn using the approximate projection. Thus, it seems crucial to perform the
projections rather accurately. To circumvent the need for accurate projections, we propose
a method that avoids computing a projection at all in the following.

Consider again the offline parameter learning case. ML parameters can be computed in
closed-form by computing relative frequencies, i.e.

θij |h =
mij |h

mih
, (5.121)

where

mij |h =
N∑
n=1

φ(c(n),x(n))ij |h, and (5.122)

mih =
∑
j

mij |h. (5.123)

This can be easily extended to online learning. Assume that the counts mi,tj |h at time t are

given and that a sample (ct ,xt) is presented to the learning algorithm. Then, the counts are
updated according to

mi,t+1
j |h =mi,tj |h +φ(ct ,xt)ij |h. (5.124)
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Figure 5.17: Classification performance of BNCs with TAN-CMI structure for satimage
data in an online learning scenario; (a) Online ML parameter learning with exact pro-
jection after each parameter update, (b) online ML parameter learning with approximate
projection after each parameter update (see text for details), (c) proposed algorithm for
online ML parameter learning.
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Exploiting these counts, the logarithm of the ML parameters θi,tj |h at time t can be computed
as

wi,tj |h = log

m
i,t
j |h

mi,th

 , (5.125)

where similarly to before

mi,th =
∑
j

mi,tj |h. (5.126)

A straightforward approximation of (5.125) is to (approximately) compute the counts mi,tj |h
and mi,th , respectively, and to use a lookup table to determine wi,tj |h. The lookup table can be

indexed in terms ofmi,tj |h andmi,th and stores values forwi,tj |h in the desired reduced-precision
format. To limit the maximum size of the lookup table and the bit-width required for the
counters formi,tj |h andmi,th , we assume some maximum integer numberM. We pre-compute
the lookup table L such that

L(i, j) =
[

log2(i/j)
q

]
R

· q, (5.127)

where q is the quantization interval of the desired fixed-point representation, where log2(·)
denotes the base-2 logarithm, and where i and j are in the range 0, . . . ,M −1. Given sample
(ct ,xt), the countsmi,t+1

j |h andmi,t+1
h are computed according to Algorithm 4 from the counts

mi,tj |h and mi,th . To guarantee that the counts stay in range, the algorithm identifies counters
that reach their maximum value, and halves these counters as well as all other counters
corresponding to the same CPTs. This division by 2 can be implemented as a bitwise shift
operation.

Algorithm 4 Reduced-precision ML online learning

Require: Old counts mi,tj |h; sample (ct ,xt)

mi,t+1
j |h ←mi,tj |h +φ(ct ,xt)ij |h ∀i, j,h . update counts

for i, j,h do
if mi,t+1

j |h =M then . maximum value of counter reached?

mi,t+1
j |h ← bmi,t+1

j |h /2c ∀j . halve counters of considered CPT
end if

end for
return mi,t+1

j |h

We performed experiments using M = 127, i.e. we used counters with 7 bits. The num-
ber of integer bits and fractional bits was set to 4 bits each. Initially, we set all counts to
zero, i.e. mi,0j |h = 0, respectively. For the cumulative counts, i.e. mi,th in (5.125), we did not
limit the number of bits (for real implementations the necessary number of bits for this
counter can be computed from the bit-width of the individual counters that are summed
up and the graph structure of the considered BNC). Logarithmic parameters wi,tj |h are com-
puted using the lookup table described above and using Algorithm 5. The classification
performance during online learning is shown in Figure 5.17c. We can observe, that the
algorithm behaves pleasant and the limited range of the used counters does not seem to af-
fect classification performance (compared to the classification performance using rounded
ML parameters computed using full-precision computations and all training samples).

Further experimental results are shown in Table 5.8 for more datasets and different
classifier structures. All samples from the training set were presented to the proposed
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Algorithm 5 Computation of logarithmic probabilities from lookup table

Require: Counts mi,tj |h and mi,th ; lookup table L of size (M + 1)× (M + 1)
div← 0
while mi,th >M do . ensure that index into lookup table is in range

mi,th ← bm
i,t
h /2c

div← div + 1
end while
wi,tj |h← L(mi,tj,h,m

i,t
h ) ∀j . get log-probability from lookup table

while div > 0 and ∀j : wi,tj |h > (−2bi + 2bf ) + 1 do . revise index correction

wi,tj |h← wi,tj |h − 1 ∀j
div← div− 1

end while
return wi,tj |h

algorithm for five times in random order. The absolute reduction in classification rate
is at most 2.3% for the considered datasets and below 2.8% relative. Thus the proposed
reduced-precision computation scheme seems to be sufficiently accurate to yield good clas-
sification performance while employing only range-limited counters and a lookup table of
size (M + 1) × (M + 1). Clearly, the performance of the proposed method can be improved
by using larger and more accurate lookup tables and counters with larger bit-width.

Table 5.8: Learning ML parameters using reduced-precision computations; CRs using ML
parameters according to (5.121) are denoted as ML exact, CRs using reduced-precision ML
parameters computed according to Algorithm 4 using only reduced-precision arithmetic
are denoted as ML proposed; red. abs. and red. rel. denote the absolute and the relative
reduction in CR of the BNC using exact ML parameters to the BNC using the proposed
reduced-precision ML parameters, respectively.

CR [%]

Dataset Structure ML exact ML proposed red. abs. red. rel.

satimage NB 83.26 82.79 0.47 0.56
satimage TAN-CMI 87.62 87.46 0.16 0.18

USPS NB 86.89 86.34 0.55 0.63
USPS TAN-CMI 91.39 90.05 1.34 1.46

MNIST NB 82.88 80.61 2.26 2.73
MNIST TAN-CMI 93.11 93.00 0.11 0.12

5.5.2 Maximum Margin Parameters

The MM objective is

wMM = argmax
w

 N∑
n=1

φ(c(n),x(n))Tw +λ
N∑
n=1

min
(
γ,min
c,c(n)

[
(φ(c(n),x(n))−φ(c,x(n)))Tw

]) ,
(5.128)

where we used the notation and formulation from Chapter 4. Note that we rearranged
terms and replaced the soft-hinge with a hard version and the soft-max by a regular max
because these operations would be difficult to implement in reduced-precision. In the
online learning case, given sample (c,x), the parameters wMM,t+1 at time t+1 are computed
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from the parameters wMM,t at time t as

wMM,t+1 = Π
[
wMM,t + ηφ(c,x) + ηλg(c,x)

]
, (5.129)

where

g(c,x) =

0 min
c′,c

[
(φ(c,x)−φ(c′ ,x))Tw

]
≥ γ,

φ(c,x)−φ(c′ ,x) o.w., where c′ = argminc′
[
(φ(c,x)−φ(c′ ,x))Tw

] (5.130)

and where, as before, Π[w] denotes the `2-norm projection of the parameter vector w onto
the set of normalized parameter vectors.

For learning MM parameters, a similar observation with respect to the accuracy of the
projection can be made as for ML parameters. But we cannot proceed exactly as in the
case of learning ML parameters because we cannot compute MM parameters in closed-
form. As in the ML parameter learning case, the gradient for the parameter update has a
rather simple form, but the projection to satisfy the sum-to-one constraints is difficult to
compute. Therefore, for online MM parameter learning, we propose Algorithm 6 that is
similar to Algorithm 4 in Section 5.5.1, i.e. we avoid to compute the projection explicitly.
From the counts computed by the algorithm, log-probabilities can be computed using Al-
gorithm 5. Note that the proposed algorithm does not exactly optimize (5.128) but a, not
explicitly defined, surrogate. The idea behind the algorithm is to (1) to optimize the likeli-
hood term in (5.128) as in the algorithm for ML parameter learning, and (2) to optimize the
margin term by increasing the likelihood for the correct class and simultaneously decreas-
ing the likelihood for the strongest competitor class. Note that the idea of optimizing the
margin term as explained above is similar in spirit to that of discriminative frequency es-
timates [29]. However, discriminative frequency estimates do not optimize a margin term
but a term more closely related to the class-conditional likelihood.

We performed experiments using the same setup as in Section 5.5.1. We set the hyper-
parameters λ = 4 and γ = 0.25 without performing cross-validation. For this setup, we
observed the classification performance summarized in Table 5.9. While the results are
not as good as those of the exact MM solution, we can clearly observe an improvement
in classification performance using the proposed MM parameter learning method over the
proposed ML parameter learning method, cf. Table 5.8. A proper investigation using cross-
validation for setting hyper-parameters is subject to future work. Furthermore, a detailed
investigation of effects decreasing the CR, e.g. bit-width of counters, should be conducted
in the future.

Table 5.9: Learning MM parameters using reduced-precision computations; CRs using MM
parameters according to (5.128) are denoted as MM exact, CRs using reduced-precision
MM parameters computed according to Algorithm 6 are denoted as MM proposed; red. abs.
and red. rel. denote the absolute and the relative reduction in CR of the BNC using exact
MM parameters to the BNC using the proposed MM learning method, respectively.

CR [%]

Dataset Structure MM exact MM proposed red. abs. red. rel.

satimage NB 87.07 86.68 0.39 0.45
satimage TAN-CMI 86.84 86.60 0.23 0.27

USPS NB 93.91 93.17 0.74 0.79
USPS TAN-CMI 93.01 93.50 −0.49 −0.53

MNIST NB 90.49 87.92 2.57 2.84
MNIST TAN-CMI 93.49 93.83 −0.34 −0.36

102



Algorithm 6 Reduced-precision MM online learning

Require: Old counts mi,tj |h; sample (ct ,xt); hyper-parameters γ,λ ∈N+ for MM formulation

mi,t+1
j |h ←mi,tj |h +φ(ct ,xt)ij |h ∀i, j,h . update counts (likelihood term)

for i, j,h do . ensure that parameters stay in range
if mi,t+1

j |h =M then

mi,t+1
j |h ← bmi,t+1

j |h /2c ∀j
end if

end for
c′← strongest competitor of class c for features x
if

[
(φ(ct ,x(n))−φ(c′ ,x(n)))Tw < γ

]
then

for k = 1, . . . ,λ do
mi,t+1
j |h ←mi,tj |h +φ(ct ,xt)ij |h ∀i, j,h . update counts (margin term)

mi,t+1
j |h ←mi,tj |h −φ(c′ ,xt)ij |h ∀i, j,h . update counts (margin term)

for i, j,h do . ensure that parameters stay in range
if mi,t+1

j |h = 0 then

mi,t+1
j |h ←mi,t+1

j |h + 1 ∀j
end if
if mi,t+1

j |h =M then

mi,t+1
j |h ← bmi,t+1

j |h /2c ∀j
end if

end for
end for

end if
return mi,t+1

j |h
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5.6 Open Questions and Directions for Future Research

The results presented in this chapter only form the basis of an interesting research field,
letting a large number of questions unanswered. We discuss some of them in the following:

• Underlying graphical model. Recently, Piatkowski et al. [27] proposed an integer
approximation for undirected graphical models. Clearly, undirected graphical mod-
els solve the normalization problem because of their definition, i.e. normalization is
achieved by dividing the specified unnormalized probability densities by the parti-
tion function. But, computing the partition function can be expensive. While this
is unproblematic for classification of fully observed data, it can make a significant
difference when marginalization is necessary because of hidden variables or for other
inference scenarios. Thus it would be interesting to compare approaches for reduced-
precision directed graphical models and undirected graphical models.

• More complex BNCs. Our theoretical and empirical investigations consider only BNs
with simple structures, i.e. NB and TAN. It is interesting to investigate how results
carry over to more general and complex BNs, e.g. HMMs. For the class of HMMs it
may also be possible to derive performance bounds using results from propagation of
error theory (by applying the theory to the forward-backward recursion that is used
to compute marginals, etc.). For arbitrary BNs, derivation of useful bounds might be
difficult.

• General message passing. It seems important to analyze message passing in general,
i.e. the behavior of the sum-product and the max-product algorithm under quantiza-
tion noise. Such an analysis could yield a high level view on the subject of reduced-
precision BNs and could help to guide the development of specialized algorithms.
This analysis could extend studies by Ihler et al. [12] that investigate effects of mes-
sage approximations, for example caused by rounding, on loopy belief propagation.
However, their focus is mainly on convergence issues and does not cover effects on
the classification performance.

• Structure learning. Another interesting direction for future work is to incorporate
reduced-precision constraints into the task of structure learning, e.g. learning BN
structures such that rounding of the parameters degrades classification performance
as little as possible.

• Mixed-precision designs. Mixed-precision designs could be of interest. These de-
signs would allow one to spend more computational resources, i.e. more bits for pa-
rameter storage and computation, on crucial parts of a BN, while saving resources
in other parts. Crucial parts of a BN could be those parts that if quantized coarsely
severely degrade classification performance or severely degrade marginalization ac-
curacy for some variables of interest.

• Generative parameters. Learning generatively optimized reduced-precision param-
eters considering reduced-precision constraints of the destination platform should
be considered, cf. Appendix 5.C. In a first step, we want to boost performance of this
type of learning to obtain better results.

• Real-world implementation. We work towards a real-world reduced-precision im-
plementation of BNCs that could be used in hearing aids for acoustic scene classifica-
tion. Once the implementation is completed, we want to compare it to full-precision
implementations with respect to speedup, power consumption and classification per-
formance.
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Appendix

5.A A Projection Algorithm14

Consider the problem of projecting a given point ξ∗ ∈RL onto the set S = {x ∈RL : al ≤ xl ≤
bl ,

∑
l exp(xl) ≤ z}, i.e. the optimization problem

minimize
ξ

1
2
‖ξ∗ −ξ‖22 (5.131)

s.t.
∑
l

exp(ξl) ≤ z, and

al ≤ ξl ≤ bl , ∀l,

where z > 0 is a real constant, and where al ,bl are lower and upper bounds for the pa-
rameters in each dimension, respectively. If z = 1, the set S describes all sub-normalized
probability mass functions over L logarithmic probabilities ξl . Problem (5.131) is similar
to the problem considered in Appendix 4.G but additionally includes box-constraints.

5.A.1 Algorithm

The projection (5.131) can be computed using the specialized projection algorithm pre-
sented in Algorithm 7. The definitions of ξ(γ) and ξl(γ), as well as a proof of correctness
of the algorithm, are provided in the next section.

The algorithm works as follows: In lines 1–3, it is verified if ξ∗ is feasible for (5.131) and,
in the case, ξ∗ is returned as the desired projection. Otherwise, in lines 4–7, the projection
ξB of ξ∗ onto the box-constraints given by al ,bl (l = 1, . . . ,L) is computed; if ξB is feasible
for (5.131), ξB is returned as the desired projection. If ξB is not the sought after projection,
then the constraint exp(ξl) ≤ zmust be active for an optimal solution of (5.131). The closest
point to ξ∗ that satisfies exp(ξl) ≤ z with equality is uniquely parameterized by some γ+, cf.
proofs in next section. This γ+ is found in lines 8–13. Exploiting γ+, the optimal solution
to (5.131) is computed and returned in lines 14–15.

Note that for root finding in line 13 of the algorithm, a multitude of algorithms can be
used [10]. We used the bisection method in our experiments.

5.A.2 Correctness of the Algorithm

To prove the correctness of Algorithm 7, we need a collection of helpful lemmata which are
given below. Most proofs are based on the observation that (5.131) is convex and consider
the Lagrangian of (5.131), i.e.

L(ξ,α,β,γ) =
1
2
‖ξ∗ −ξ‖22 +

∑
l

αl(al − ξl) +
∑
l

βl(ξl − bl) +γ

∑
l

exp(ξl)− z

 , (5.132)

where αl ≥ 0 is the Lagrange multiplier of al ≤ ξl , where βl ≥ 0 is the Lagrange multiplier
of ξl ≤ bl , and where γ ≥ 0 is the Lagrange multiplier of

∑
l exp(ξl) ≤ z. The stationarity

condition of the Lagrangian is

ξl − ξ∗l −αl + βl +γ exp(ξl) = 0, ∀l. (5.133)

Lemma 7. For fixed γ ≥ 0 and al < bl , there are three mutually excluding possibilities to simul-
taneously satisfy the stationarity condition (5.133), the complementary slackness conditions of
the box-constraints, and the box-constraints:

14The algorithm presented in this section was derived after the original paper [35] was published. For com-
puting the projections for the simulations in that paper, we used a general purpose convex optimizer. This was
however disadvantageous in terms of runtime.
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Algorithm 7 Projection algorithm for solving (5.131)

Require: Point ξ∗ to project, lower bounds a, upper bounds b, normalization z
1: if ξ∗ feasible for (5.131) then . Nothing to do?
2: return ξ∗

3: end if
4: ξBl ←min(bl ,max(al ,ξ∗l )) ∀l . Project ξ∗ using box-constraints only
5: if

∑
l exp(ξBl ) ≤ z then . Feasible for (5.131)?

6: return ξB
7: end if
8: γmin← 0 . Lower bound on γ
9: γmax← 1

10: while
∑
l exp(ξl(γmax)) > z do . Find upper bound γmax on γ

11: γmax← 2γmax
12: end while
13: γ+← Root of g(γ) = [

∑
l exp(ξl(γ))− z] in the interval [γmin,γmax] . Optimal γ

14: ξ+
l ← ξl(γ+) ∀l . Construct solution

15: return ξ+

(1) ξl = ξ∗l −W (γ exp(ξ∗l )) solves ξl − ξ∗l +γ exp(ξl) = 0 such that al < ξl < bl .

(2) ξl = al and αl = al − ξ∗l +γ exp(al), αl ≥ 0.

(3) ξl = bl and βl = −bl + ξ∗l −γ exp(bl), βl ≥ 0.

In the above equations, W (·) is the real branch of the Lambert W function [37].

Proof. (1) implies ¬(2). Assume that (1) is true. Then al − ξ∗l + γ exp(al) < 0. Hence, (2)
cannot be satisfied by any αl ≥ 0.

(1) implies ¬(3). Similarly as above, bl −ξ∗l +γ exp(bl) > 0. Hence, (3) cannot be satisfied by
any βl ≥ 0.

(2) implies ¬(1). Contrapositive of ((1) implies ¬(2)).

(3) implies ¬(1). Contrapositive of ((1) implies ¬(3)).

(2) implies ¬(3). Assume that (2) is true, i.e. ξl = al and αl = al−ξ∗l +γ exp(al), αl ≥ 0. Thus,
al −ξ∗l +γ exp(al) ≥ 0 and, therefore, bl −ξ∗l +γ exp(bl) > 0. Thus, (3) must not be true
for any βl ≥ 0.

(3) implies ¬(2). Analog.

Lemma 7 ensures that for every γ , there is a unique solution ξ satisfying the station-
arity condition, the complementary slackness conditions of the box-constraints, and the
box-constraints. We denote this solution as ξ(γ). Note that for some fixed γ , ξ(γ) does not
necessarily satisfy the complementary slackness condition γ(

∑
l exp(ξl(γ))−z) = 0. Further-

more, note that if some parameter has identical upper and lower bounds, i.e. al = bl , then
this parameter can be fixed to al .

Lemma 8. The auxiliary function f (γ) =
∑
l exp(ξl(γ)) is continuous and monotonically de-

creasing in γ .

Proof. Fix some l. We show that exp(ξl(γ)) is continuous and monotonically decreasing
in γ . Consequently, also the auxiliary function f (γ) is continuous and monotonically de-
creasing in γ because it is a sum of functions with these properties.

Regarding continuity: Consider the cases in Lemma 7. In case (1), ξl(γ) is continuous
and monotone in γ because these properties are inherited from the Lambert W function.
In cases (2) and (3), ξl(γ) = al if γ is larger than some constant γ ′ and ξl(γ) = bl if γ is
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smaller than some constant γ ′′ , respectively. Hence, it suffices to verify that exp(ξl(γ)) is
continuous at γ ′ and γ ′′ , which is clearly the case.

Regarding monotonicity: In case (1) in Lemma 7, ξl(γ) = ξ∗l −W (γ exp(ξ∗l )). The Lambert
W function is monotonically increasing in [0,∞). Consequently, ξl(γ) is monotonically
decreasing in γ , and thus also exp(ξl(γ)).

Theorem 9 (Correctness of Algorithm 7). Algorithm 7 returns an optimal solution for the
projection (5.131).

Proof. If ξ∗ is feasible for the projection, this solution is returned. Thus, assume that ξ∗ is
not feasible.

If ξ∗ projected onto only the box-constraints is feasible, then this solution is returned.
Otherwise, the constrained

∑
l exp(ξl) ≤ zmust be active at an optimal solution. We assume

this in the following.
Because of Lemma 8, the auxiliary function g(γ) =

∑
l exp(ξl(γ)) − z is continuous and

monotone. By construction ξ(0) = ξ(γmin) corresponds to the projection onto the box-
constraints only. Therefore, by assumption, g(γmin) > 0. The algorithm finds an upper
bound on γ , namely γmax, such that g(γmax) ≤ 0. Consequently, using any root finding
algorithm of choice, we can find γ+ such that g(γ+) = 0. Exploiting γ+, the vector ξ(γ+)
satisfies the stationary conditions, the complementary slackness conditions, and all con-
straints. Thus, using γ+, we can compute the optimal projection.

5.B Projection Onto Fixed-Point Parameters

The algorithm described in this section is used as part of the rounding heuristics in the BB
algorithm described in Section 5.4.1.

Rounding of the intermediate solutions according to the proposed heuristics ensures
that the components of the resulting vector â (or b̂, respectively) satisfies the desired preci-
sion, i.e. âij |h, b̂

i
j |h ∈ −B

bi
bf

. However, due to this rounding, the sub-normalization constraints

may become violated. Thus, the vector â (or b̂) must be projected onto the feasible set, i.e.
we must solve

minimize
a

1
2
‖â− a‖22 (5.134)

s.t.
|val(Xi )|∑
j=1

exp(aij |h) ≤ 1 + ξ(|val(Xi)|,bi ,bf ) ∀i,h,

aij |h ∈ −B
bi
bf

∀i, j,h.

Solving this projection exactly is difficult, thus we use Algorithm 8 to perform an approx-
imate projection. The intuition of this algorithm is as follows: considering the parameters
aih corresponding to the CPT indexed by i,h, reduce the entries of the coordinates that

make the largest possible advance towards the feasible set while ensuring that aij |h ∈ −B
bi
bf

.

Clearly, the output of the algorithm is feasible for (5.104).

5.C Bayesian Networks with Generatively Optimized Re-
duced-Precision Parameters

In the main text of this chapter, we considered only BNs with discriminatively optimized
parameters. However, also BNs with generatively optimized ML parameters can be of in-
terest. The theoretical analysis of the effect of rounding given in Section 5.4.2 clearly also
applies in this case.

In this section, we derive algorithms for computing likelihood-maximizing reduced-
precision parameters. Similarly to the discriminative case, they are based on the BB algo-
rithm.
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Algorithm 8 Algorithm for approximate projection

Require: Vector â to project with âij |h ∈ −B
bi
bf

; number of integer bits bi and fractional bits

bf

Ensure: aij |h ∈ −B
bi
bf

; feasibility of (5.134), i.e.
∑
j exp(M) ≤ 1 + ξ(|val(Xi)|,bi ,bf ), where

M = −2bi + 2−bf
q← 2−bf . quantization interval
a← â
for all i,h do

while
∑
j exp(aij |h) ≤ 1 + ξ(|val(Xi)|,bi ,bf ) do . repeat until feasible

j ′← argmaxj a
i
j |h . find largest component

aij ′ |h← aij ′ |h − q . reduce component by q
end while

end for
return a

5.C.1 Generative Objective

We use the same notation as for the discriminative case, cf. Section 5.4.
In principle, generative parameters can be computed by first learning BN parameters

using full-precision floating-point computations and subsequent rounding to the desired
number format. However, these parameters will in general not be (sub-)normalized and
we aim at a more principled approach.

Our approach is inspired, by learning the most generative reduced-precision parameters.
The exact meaning will become clear immediately. Classical ML parameter learning for
BNs can be stated as

maximize
w

N∑
n=1

φ(c(n),x(n))Tw (5.135)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) = 1 ∀i,h.

Note that we can immediately relax the constraints to

|val(Xi )|∑
j=1

exp(wij |h) ≤ 1 ∀i,h, (5.136)

without changing the optimal solution as long as
∑N
n=1φ(c(n),x(n))ih , 0, where φ(c(n),x(n))ih

is the subset of entries of φ(c(n),x(n)) corresponding to node i given parent state h.
We now adopt (5.135) for learning reduced-precision fixed-point parameters. We apply

the above relaxation and restrict the parameters in w to the set −Bbibf . Then, maximum

likelihood learning translates to

maximize
w

N∑
n=1

φ(c(n),x(n))Tw (5.137)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) ≤ 1 ∀i,h

wi
j |h ∈ −B

bi
bf

∀i, j,h.

The above problem is nonlinear and hard to solve.
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To solve problem (5.137), we resort to a BB algorithm. Note that (5.137) decomposes
according to structure G of the BN, i.e. instead of solving the problem directly, one can
solve the (smaller) subproblems

maximize
wi

h

N∑
n=1

φ(c(n),x(n))i,Th wi
h (5.138)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) ≤ 1

wij |h ∈ −B
bi
bf

∀j

for all possible i and h, where wi
h is the subset of entries of w corresponding to node i

given parent state h. Consequently, the reduced-precision parameters can be learned for
every CPT separately. Note, that in general the solution to the above problem will not be
properly normalized, i.e.

∑
j exp(wij |h) < 1.

To this end, note that for low bit-widths the solutions of (5.138) can at a first look
be counter-intuitive. For example, consider a RV C with no parents and two states. As-
sume that

∑N
n=1φ(c(n)) = [100,10]. Then, the corresponding ML parameters are wML =

[−0.0953,−2.3979]. We want to determine parameters that can be represented using two
bits (and no fractional bits). By rounding down the ML parameters to the closest integer
values, we obtain wRD = [−1,−3], with exp(−1) + exp(−3) = 0.4177. In contrast, when solv-
ing (5.138), we obtain w = [−1,−1], with exp(−1) + exp(−1) = 0.7358. While w is better
normalized, both states of the variable are equally likely.

5.C.2 Likelihood Maximizing Reduced-Precision Parameters

For efficiently finding global minimizers of (5.138), we propose to use a BB algorithm [11]
and a greedy heuristic for solving intermediate optimization problems.

Branch and Bound Algorithm.

The optimal reduced-precision BN parameters in the sense of (5.138) have to be searched
in a discrete solution space, i.e. wi

j,h ∈ −B
bi
bf

. For optimization, a BB algorithm is used.

Refer to Section 5.4 for a detailed description of the BB algorithm. For our considerations,
it is only important to note that the algorithm has to solve a large number of optimization
problems with similar form as (5.138), where the constraints wij |h ∈ −B

bi
bf

are replaced by

lower and upper bounds on wij |h according to the search tree — details are provided below.

Greedy Algorithm.

To enhance the efficiency of the BB algorithm, we provide a greedy method to solve prob-
lems of the form

maximize
wi

h

ai,Th wi
h (5.139)

s.t.
|val(Xi )|∑
j=1

exp(wij |h) ≤ 1

lj ≤ wij |h ≤ uj ∀j.

These problems are solved by the BB algorithm for every leaf node in the search tree. In
detail: Problem (5.139) is solved for some variable Xi assuming parent state h, i.e. the
corresponding frequency counts are aih =

∑N
n=1φ(c(n),x(n))ih. According to the search tree,
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the lower bounds and upper bounds are lih and uih, respectively. To solve the problem, we
propose to use Algorithm 9. Thus, the BB algorithm invokes Algorithm 9 with parameters
(aih, l

i
h,u

i
h,1), where the last element of the tuple corresponds to the normalization con-

stant A. This constant is initially set to 1 as we are interested in parameters that are as
normalized as possible.

Algorithm 9 determines the active constraints of an optimal solution of (5.139) in a
greedy manner and thereby solves the optimization problem. In more detail: First, the
algorithm checks whether setting all entries to the corresponding upper bounds is feasi-
ble — if this is the case, then this maximizes the objective in (5.139). Otherwise, the ML
solution and its clipped variant wB are computed. Then we distinguish three cases: (1)
If the clipped version is super-normalized and there exist some entries that are smaller
than their lower bounds, we set these entries to their lower bounds (the idea is that the
bounds must be satisfied in any case; hence we set variables that are unimportant in terms
of the objective to their lower bounds; in this way we have the largest possible freedom
in selecting the values of the remaining variables without violating the normalization con-
straints). (2) Otherwise, if there exist entries in the ML solution that are larger than the
corresponding upper bounds, we perform the same steps as above (with lower and upper
bounds exchanged). (3) Otherwise, the ML solution is feasible and corresponds to the op-
timal solution. Finally, the algorithm performs the same operation for all variables whose
values have not been determined already but with reduced normalization A.

Despite its greedy nature, the algorithm optimally solves (5.139), as ensured by the
following theorem.

Theorem 10 (Optimality of Greedy ML). If the input (a, l,u,A) to Algorithm 9 corresponds to
a feasible optimization problem according to (5.139) and if aj > 0 for all j, then the algorithm
solves (5.139) optimally.

The proof of optimality is rather lengthy and technical; it is provided in Appendix 5.D.

5.C.3 Remarks on the Greedy Algorithm

We do not present any experimental results; they are not competitive (refer to the end
of Section 5.C.1 for an explanation). Nevertheless, the greedy algorithm for solving box-
constrained ML learning clearly has a wider range of applications than learning reduced-
precision parameters. For example, this type of learning is of interest in cases in which
a domain expert can specify probability ranges for certain events, e.g. the probability of
having fever given that a person suffers from cough. To the best of our knowledge, the
proposed algorithm is advantageous over other algorithms for the same purpose present in
the literature:

• Tong and Ji [31] considered parameter learning for BNs with qualitative constraints,
e.g. range constraints and relationship constraints. The range constraints case corre-
sponds to ML parameter learning under box-constraints. For learning, they propose
an algorithm for finding the active range constraints. However, this algorithm es-
sentially tests all possible pairs of active constraints (although they provide a suffi-
cient condition to prune impossible constraints). Nevertheless, for CPTs with large
number of states and many feasible combinations of the constraint, this algorithm
becomes infeasible (without pruning constraints, and given constraints for every pos-
sible state, there are 2L constraints combinations for a CPT with L states).

• Niculescu et al. [17] considered learning of BNs with various types of constraints,
e.g. parameter sharing constraints, constrained Dirichlet priors, and upper bounds on
sums of parameters. This last type of constraints include ML parameter learning un-
der box-constraints, where only upper bounds are given, as a special case. Thus, their
considerations are more general in the sense that they consider sums of parameters,
but less general in the sense that they cannot consider lower bounds. We are confi-
dent, that our algorithm can easily be generalized to also incorporate constraints on
sums of parameters.
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Algorithm 9 MLconstr(a, l, u, A): Solve problem (5.139)

Require: (a, l,u,A), where a are frequency counts, l lower bounds, u upper bounds, and A
is a normalization constant

Ensure: Input problem is feasible; w solves (5.139)
1: V ← {1,2, . . . , length(a)} . V is a set of vector indices of a
2: if

∑
j∈V exp(uj ) ≤ A then . Is setting w to u is feasible?

3: w← u
4: return w
5: end if
6: wML← log

(
A a∑

j′ aj′

)
. Compute ML solution (element-wise)

7: w←wML . Initialize w to ML solution
8: wB←min(max(wML, l),u) . wB is clipped version of w
9: if

∑
j∈V exp(wBj ) > A and ∃j : wML

j < lj then . wB is super-normalized

10: C ← {j : wML
j < lj }

11: wC← lC
12: else if ∃j : wML

j > uj then . wB is sub-normalized

13: C ← {j : wML
j > uj }

14: wC← uC
15: else
16: return w
17: end if
18: V c←V \ {C} . Entries in w that are not set yet
19: A← A−

∑
j∈C exp(wj )

20: if V c , ∅ then . Are we done?
21: wV c ←MLconstr(aV c , lV c ,uV c ,A) . Recursive call for unset variables
22: end if
23: return w
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5.D Proof of Correctness of Greedy Maximum Likelihood
Learning

For convenience, we restate the optimization problem of interest for a single CPT, i.e.

maximize
w

aTw (5.140)

s.t.
∑
j

exp(wj ) ≤ 1

lj ≤ wj ≤ uj ∀j.

The Lagrangian of this problem is given as

L(w,α,β,γ) = aTw +
∑
j

αj
(
wj − lj

)
+
∑
j

βj
(
uj −wj

)
+γ

1−
∑
j

exp(wj )

 , (5.141)

where αj ≥ 0 is the Lagrangian multiplier of lj ≤ wj , where βj ≥ 0 is the Lagrangian multi-
plier of wj ≤ uj , and where γ ≥ 0 is the Lagrangian multiplier of

∑
j exp(wj ) ≤ 1.

For reference, we also state the ML parameter learning problem, i.e.

maximize
w

aTw (5.142)

s.t.
∑
j

exp(wj ) ≤ 1.

The corresponding Lagrangian is

LML(w,γML) = aTw +γML

1−
∑
j

exp(wj )

 , (5.143)

where γML ≥ 0 is the Lagrangian multiplier of
∑
j exp(wj ) ≤ 1. Note that whenever a , 0,

the stationarity condition of (5.143) implies that

γML =
1∑

j exp(wj )

∑
j

aj . (5.144)

Furthermore, for a , 0, the optimal solution wML of (5.142) satisfies
∑
j exp(wML

j ) = 1.
We can now state the proof of correctness of the greedy algorithm:

Proof of Theorem 10. The proof is by induction over the number of elements n of a. The base
case, where a consists of only a single element is clearly solved optimally by the algorithm.
In the inductive step (n−1)→ n, we assume that a has n ≥ 2 elements and that we can solve
problems where a has size less than or equal to (n − 1) optimally. Denote by wML and wB

the quantities according to lines 6 and 8 of the algorithm, respectively. We distinguish the
three cases corresponding to lines 9, 12 and 15 of the algorithm, respectively:

• Line 9. Assume
∑
j exp(wBj ) > A and that there exists some wML

j < lj , i.e. the condition

in line 9 is satisfied. Set C = {j : wML
j < lj }. To show that the algorithm is optimal, we

have to prove that any optimal solution w∗ of (5.140) satisfies w∗j = lj for all j ∈ C. We
show this by contradiction. Therefore, let w∗ be an optimal solution of (5.140) and
assume that there exists a k ∈ C that satisfies w∗k > lk . The contradiction is obtained by
deriving the statements γ < γML and γ > γML.

γ < γML. Because of the complementary slackness conditions αk(w∗k − lk) = 0, the La-
grangian multiplier αk must be zero. Hence, the stationarity condition from
(5.141) for variable k reads as

−ak + βk +γ exp(w∗k) = 0, (5.145)
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with βk ≥ 0 and γ ≥ 0. Similarly, the stationarity condition of (5.143) of variable
k of the ML problem reads as

−ak +γML exp(wML
k ) = 0, (5.146)

where γML ≥ 0. Setting (5.145) equal to (5.146), we obtain

βk +γ exp(w∗k) = γML exp(wML
k ). (5.147)

As βk ≥ 0, w∗k > w
ML
k and since γML > 0 (cf. Equation (5.144)),

γ < γML. (5.148)

γ > γML. We start with a claim:
Claim: As w∗k > lk > w

ML
k , there exists some w∗m that satisfies w∗m < wML

m and
w∗m < um.

Proof. Assume that w∗k > lk > w
ML
k and that all w∗i satisfy w∗i ≥ w

ML
i or w∗i ≥ ui .

Set A = {l : w∗l ≥ ul or wML
l ≥ ul} and B = {l : l < A}. Then, as w∗ satisfies the

constraints of (5.140),∑
i

exp(w∗i ) =
∑
i∈A

exp(ui) +
∑
i∈B

exp(w∗i ) (5.149)

=
∑

i∈(A\{k})
exp(ui) +

∑
i∈(B\{k})

exp(w∗i ) + exp(w∗k) (5.150)

>
∑

i∈(A\{k})
exp(ui) +

∑
i∈(B\{k})

exp(w∗i ) + exp(lk) (5.151)

≥
∑
i

exp(wBi ) (5.152)

> A, (5.153)

where the strict inequality is because of w∗k > lk . This violates the normalization
constraint.

According to the above claim, there is some m such that w∗m satisfies w∗m < um.
Therefore, the Lagrangian multiplier βm of an optimal solution must satisfy βm =
0. Thus, we obtain — similarly as above — from the stationarity conditions
of (5.141) and (5.143), the equation

−am −αm +γ exp(w∗m) = −am +γML exp(wML
m ), (5.154)

where αm ≥ 0 is the Lagrangian multiplier of the constraint lm ≤ wm. Conse-
quently,

γ exp(w∗m) ≥ γML exp(wML
m ). (5.155)

As w∗m < w
ML
m (cf. claim above) and because of γML > 0, we obtain

γ > γML. (5.156)

Thus (5.148) contradicts (5.156). Therefore, any optimal solution of the constrained
problem must satisfy that w∗j = lj for all j ∈ C. The algorithm fixes these variables to
their lower bounds in line 11 and solves the remaining subproblem in line 21. This
subproblem has strictly less than n variables and can therefore be solved optimally
according to the induction hypothesis. Note that the subproblem is clearly feasible.
Consequently, this branch of the algorithm is optimal.
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• Line 12. Assume there exists some wML
j > uj and that

∑
j exp(wBj ) ≤ A or that all

wML
j ≥ lj , i.e. we consider the condition in line 12 is satisfied. Set C = {j : wML

j > uj }.
We have to prove that in this case any optimal solution w∗ of (5.140) satisfies ∀j ∈
C : w∗j = uj . We prove this by contraction, i.e. assume that some k ∈ C satisfies w∗k < uk .

Note that the conditions ∀j : wML
j ≥ lj and ∃k : wML

k > uk imply∑
j

exp(wBj ) <
∑
j

exp(wML
j ) (5.157)

= A. (5.158)

Consequently, it suffices to prove the statement for the conditions ∃j : wML
j > uj and∑

j exp(wBj ) ≤ A. Again we derive a contradiction by deducing the statements γ < γML

and γ > γML.

γ > γML. Because of the assumption w∗k < uk , the complementary slackness condition
βk(uk −w∗k) = 0 implies βk = 0. Equating the stationarity conditions for variable
k of (5.141) and (5.143) yields

−ak −αk +γ exp(w∗k) = −ak +γML exp(wML
k ). (5.159)

Consequently, because w∗k < w
ML
k and αk ≥ 0, γ > γML.

γ < γML. Again, we start with a claim:
Claim: Because of wML

k > uk > w
∗
k , there is some m such that w∗m > wML

m and
w∗m > lm.

Proof. We prove this by contradiction. Thus, assume that ∀i : w∗i ≤ w
ML
i or w∗i ≤

li . Define A = {l : w∗l ≤ ll or wML
l ≤ ll} and B = {l : l <A}. Then,∑

i

exp(w∗i ) =
∑
i∈A

exp(li) +
∑
i∈B

exp(w∗i ) (5.160)

=
∑

i∈A\{k}
exp(li) +

∑
i∈B\{k}

exp(w∗i ) + exp(w∗k) (5.161)

≤
∑

i∈A\{k}
exp(wBi ) +

∑
i∈B\{k}

exp(wBi ) + exp(w∗k) (5.162)

<
∑
i

exp(wBi ) (5.163)

≤ A. (5.164)

But then it is trivial to improve upon w∗ by increasing w∗k (which is feasible).
Thus, this contradicts optimality of w∗.

From the claim and the stationarity conditions for variable m, we immediately
get

−am + βm +γ exp(w∗m) = −am +γML exp(wML
m ). (5.165)

Consequently, γ < γML.

We derived a contradiction above, thus our assumption that there is some k ∈ C that
satisfies w∗k < uk , must be incorrect. Therefore, any optimal solution of the constraint
problem must satisfy that w∗j = uj for all j ∈ C. The algorithm fixes these variables to
their upper bounds in line 14 and solves the remaining subproblem in line 21. This
subproblem has strictly less than n variables and can therefore be solved optimally
according to the induction hypothesis. Note that the subproblem is clearly feasible.
Consequently, this branch of the algorithm is optimal.
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• Line 15. The only remaining case deals with the conditions∑
k

exp(wBk ) ≤ A or ∀k : wML
k ≥ lk

 and ∀k : wML
k ≤ uk . (5.166)

We consider the following two cases:

– Assume
∑
k exp(wBk ) ≤ A and ∀k : wML

k ≤ uk . Furthermore, assume ∃j : wML
j < lj

and set A = {l : wML
l < ll}, B = {l : l <A}. Then,

A =
∑
j

exp(wML
j ) (5.167)

=
∑
j∈A

exp(wML
j ) +

∑
j∈B

exp(wML
j ) (5.168)

<
∑
j∈A

exp(lj ) +
∑
j∈B

exp(wML
j ) (5.169)

≤
∑
j

exp(wBj ) (5.170)

≤ A. (5.171)

This is a contradiction, thus ∀k : wML
k ≥ lk must hold. Consequently, it suffices to

consider the case described below.

– If ∀k : wML
k ≥ lk and ∀k : wML

k ≤ uk are satisfied, then the ML solution is feasible
for the constrained problem (5.140) and thus solves it optimally.

As all branches of the algorithm are optimal, the whole algorithm is optimal.
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6 Conclusion and Future Work

In this thesis, we studied properties of maximum margin Bayesian networks (MM BNs),
i.e. Bayesian network classifiers (BNCs) with parameters optimized for a large probabilis-
tic margin. These MM BNs are inspired by support vector machines (SVMs) that aim to
separate samples from different classes by a large margin in some feature space. Our in-
vestigations focused on three main topics, namely asymptotic consistency, hybrid learning,
and reduced-precision analysis.

With respect to asymptotic consistency, we analyzed two definitions of MM BNs avail-
able in the literature. We found that both definitions are in general not asymptotically
consistent. This result fits into results for general multiclass loss functions. We provided
some specialized results that also take the true data distribution into account and that can
ensure consistency, even if the used loss is not uniformly consistent. The identified defi-
ciency of MM BNs is not eminent in the binary-class case. In experiments we demonstrated
that MM BNs are nevertheless able to compensate for model-mismatch, i.e. when the true
data distribution and the distributions representable by the learned models do not match.
Furthermore, we proposed several approaches that potentially resolve the identified defi-
ciencies.

In terms of hybrid learning, we extended MM BNs by incorporating a generative com-
ponent into the maximum margin (MM) objective. This component consists of normal-
ized frequency counts and is combined with the MM objective by a trade-off factor. In
this novel formulation, MM BNs can be either interpreted as a linear SVM with a special
regularizer or as a Bayesian network (BN) that optimizes both a generative and discrimina-
tive objective. The hybrid model interpretation allows one to naturally deal with missing
features scenarios, simply by marginalization of the missing features. Furthermore, semi-
supervised learning can be easily performed by considering unlabeled data in the gener-
ative component. Additionally, any probabilistic query is plausible in this model due to
the generative component. State-of-the-art performance of the novel MM BN formulation
is established in experiments and efficient algorithms for parameter learning in large scale
scenarios are presented.

Furthermore, we considered reduced-precision implementations of BNCs. We focused
on BNCs optimized for a large margin, either in terms of their structure or their pa-
rameters. In preliminary experiments, we investigated the classification performance of
BNCs with parameters rounded to some specified precision. These experiments reveal
that BNCs are well suited for reduced-precision implementations. We continued by de-
riving several types of classification performance bounds. These bounds can be used to
analyze worst-case performance due to parameter rounding. In experiments, these bounds
were evaluated and BNCs optimized for a large margin (both in terms of their parame-
ters and their structure) were compared to generatively optimized BNCs in terms of ro-
bustness to parameter quantization and in terms of absolute classification performance.
We found that MM BNs achieve higher classification rates even for low bit-widths, while
BNCs with generatively optimized parameters are more robust to parameter quantiza-
tion for low bit-widths meaning that less classifications change due to quantization. We
ended our reduced-precision considerations by proposing an alternative to determining
reduced-precision parameters for MM BNs by rounding. We slightly modified our formu-
lation of MM BNs and proposed algorithms for maximizing this modified criterion over the
search space of reduced-precision parameters. In several experiments, we demonstrated
that parameters learned in this way yield better classification performance than parame-
ters obtained by rounding. The proposed algorithm can therefore be used to determine
reduced-precision parameters for BNCs with good classification performance before using
these classifiers on a reduced-precision computing platform. Furthermore, we considered
learning of reduced-precision parameters using reduced-precision arithmetic only. For this
purpose, we proposed algorithms for learning generatively and discriminatively optimized
parameters and demonstrated their effectiveness.

Some of the algorithms presented in this thesis have a wider range of possible appli-
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cations than those they were used for. For example, the projection algorithms developed
in Chapters 4 and 5 can be used whenever a projection of parameters onto the set of sub-
normalized logarithmic probabilities over discrete variables is required. Such a projection
is for example needed when performing projected gradient-ascent/descent, where param-
eters need to be projected to ensure (sub)-normalization. The presented projection algo-
rithms are more efficient than general purpose projection algorithms.

Future Work

There are several intriguing research questions that could not be answered in the course of
this thesis. Some of them, but by far not all, are summarized in the following:

• Asymptotic consistency. The inconsistent formulation of MM BNs should be ana-
lyzed in more detail.

– We derived necessary conditions for the consistency in the case of fully con-
nected graphs; however, the question whether these conditions are sufficient is
unanswered.

– A class of underlying data distributions could be identified for which the used
loss function is consistent, i.e. instead of striving for universal consistency, con-
sistency for some classes of distributions could be considered.

– The origin of inconsistency in the case of model match should be analyzed in
more detail, e.g. for the case of BNCs with naive Bayes (NB) structure.

– The inconsistency could be resolved by using consistent loss functions.

• Generative MM BNs. The proposed formulation for generative MM BNs should be
studied in further experiments. Especially, the partial generative nature of these
models should be exploited:

– How well do these models perform on more general probabilistic queries, e.g.
computation of feature posteriors in case of missing features?

– How well can we use the proposed objective for models including latent vari-
ables? Can the derived theoretical results be extended to such models? (For
example: By introducing latent variables we will loose the convexity of the ob-
jective and cannot hope to have unique solutions, but we could still obtain nor-
malized solutions automatically — does this hold true?)

• Reduced-Precision Analysis.

– The obtained results could be extended to more general graph structures. Fur-
thermore, analysis of related models, e.g. sum-product networks (SPNs), could
be performed. SPNs represent the inference machine of probabilistic models
and directly represent inference as a sequence of summations and multiplica-
tions. Thus, they are amenable for being studied using similar tools to those
used in this thesis.

– Reduced-precision analysis could be conducted for approximate inference algo-
rithms like loopy belief propagation, with focus on classification performance.
This would extent investigations by Ihler et al. that consider message propa-
gation errors due to approximate messages (for example caused by rounding
errors). However, their focus is on convergence issues and does not cover effects
on the classification performance.
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