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Gaussian Processes: Motivation

We wish to do (Bayesian) inference for predicting the value of some un-
known functionf on a test pointx∗, given noisy measurements (training data)
{xi, yi}Ni=1

Neural network Assume a neural network model with some parameters
(weights)w, set weights (train the network) to minimize the mean squared
error on the training set

Gaussian processesAssume a prior distribution over the space of functions
that possibly may have generated the training data. Compute the posterior
distribution of functionsp (f | {xi, yi}) given the training data. Use the most
likely function to make predictions

Gaussian processes are probably the simplest way of specifying a (non-trivial)
prior over function space
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Basics (1)

Stochastic process is a collection of random variables{F (x)|x ∈ X} indexed
by a setX

Signal processing:X is a time variable

Here:X = RD (locations in aD-dimensional space)

Stochastic processes are characterized by the joint distributions of finite subsets
{F (x1), . . . , F (xN)}
Gaussian process (GP): Any finite subset ofF -variables has a joint multivari-
ate Gaussian distribution. GP is specified by its mean functionµ(x) (which
we assume to be zero) and its covariance functionk(x,x′)

k(x,x′) = E [F (x)F (x′)]
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Basics (2)

For any set of locationsx1, . . . ,xN the associated random variables (func-
tional values)F (x1), . . . , F (xN) are Gaussian distributed with meanµ = 0
and covariance matrixK

(F (x1), . . . , F (xN)) ∼ N(0, K)

Kij = k(xi,xj)

k(·, ·) is thecovariance function (kernel function) of the GP.

Typical choice in machine learning:k(·, ·) on data fromRD uses a parameter-
ized formulation

k(x,x′) = exp

(
θ0 −

D∑
d=1

θd(xd − x′d)2

)
“squared exponential kernel”
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Gaussian Processes: Samples

5 samples of a GP with squared exponential kernel
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Gaussian Processes: Samples

Prediction with Gaussian processes: 5 samples of the GP posterior when two
training points are given
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Gaussian Processes: Samples

5 samples of a GP with Ornstein-Uhlenbeck kernel

k(x,x′) = exp (−|x− x′|)
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Bayesian Regression with GPs (1)

We have observed samples from some unknown functionf on locations
x1, . . . ,xN , corrupted by Gaussian noise with varianceσ2:

yi = f (xi) + εi, i = 1, . . . , N

εi ∼ N(0, σ2) Gaussian noise
(f (x1), . . . , f (xN)) ∼ N(0, K) Gaussian process prior, Kij = k(xi,xj)

(y1, . . . , yN) ∼ N(0, K + σ2I)

We wish to predict at test pointx∗. From the GP property, we also know that

(y1, . . . , yN , f(x∗)) ∼ N(0, K∗)

Everything is Gaussian: Conditional mean (prediction) is

p
(
f (x∗)|y1, . . . , yN , θ

)
=
p
(
y1, . . . , yN , f(x∗)|θ

)
p
(
y1, . . . , yN |θ

)
E(f (x∗)|D) =

N∑
i=1

αik(x∗,xi)

with (K + σ21)α = y
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Evidence maximization

We have so far assumed that the covariance function is given. GPR allows us to
infer the most likely parameters of the kernel function from the training data.

Key quantity is theevidence: (marginal) log likelihood of the training data
under the GP model with kernel hyperparametersθ:

log p(y|x1, . . . ,xN ,θ) =

− 1

2
log det(K + σ21)− 1

2
y>(K + σ21)−1y − N

2
log 2π (1)

Integrate out Assume prior distributions on the hyperparametersθ and inte-
grate out with Monte Carlo method

Maximization Maximize log p(y|x1, . . . ,xN ,θ) with respect toθ (e.g. us-
ing conjugate gradient method)

GP with evidence maximization does implicit input pruning: Smallθd in the
kernel function indicate irrelevant inputs

k(x,x′) = exp

(
θ0 −

D∑
d=1

θd(xd − x′d)2

)
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Samples of a GP With Anisotropic Kernel

Gaussian process with weightθ2 = 25θ1:
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Bayesian Regression with GPs (2)

Cookbook: How to do Gaussian process regression with training data D =
{x1, . . . ,xN , y1, . . . , yN}
1. Assume a parameterized model for the covariance functionkθ(·, ·) with pa-

rametersθ

2. Choose parametersθ to maximize evidence: Choose the model that best
explains the training data

3. Compute kernel matrixK, withKij = kθ(xi,xj)

4. Solve linear system(K + σ21)α = y

5. Predict valuey∗ for a test pointx∗ from
∑N

i=1 αikθ(x
∗,xi) (mean of the GP

posterior)

6. Obtain error bars fory∗ from the variance of the GP posterior
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Relations to Other Methods

Regression with Gaussian Processes is closely related to

Kriging Best linear unbiased estimator (minimum variance), originally devel-
oped for spatial data in geostatistics

Infinite Neural Networks A 2-layer neural network with increasing number
of hidden units converges to a Gaussian process predictor with a certain type
of covariance function

Regularization Choice of kernel corresponds to a regularization operator
(smoothness prior)
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Gaussian Processes versus RVM

Noisy sinc problem with regions of missing data

Thin plate spline kernel function (as in Tipping’s toy example)

True function and GP prediction with error bars:
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Gaussian Processes versus RVM

True function and RVM prediction with error bars:

RVM is grossly over-optimistic about the variance!
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On the Choice of Kernel Function (1)

Widely used kernel function: Squared exponential (aka Gaussian, aka RBF
kernel)

k(x,x′) = exp

(
θ0 −

D∑
d=1

θd(xd − x′d)2

)
= exp

(
θ0 − ‖x− x′‖2

)
Criticism:

Unreasonable smoothness assumption

Variance of predictions tends to be underestimated

Alternatives:Matern kernel

k(x,x′) = Mν(z) =
2 (
√
νz)

ν

Γ(ν)
Kν(2

√
νz)

with z = ‖x − x′‖. Γ(ν) is the Gamma function andKν(r) is the modified
Bessel function of the second kind of degreeν.
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On the Choice of Kernel Function (2)

Matern kernel

k(x,x′) = Mν(z) =
2 (
√
νz)

ν

Γ(ν)
Kν(2

√
νz)

With ν →∞, the Matern kernel converges to the squared exponential kernel

ν allows a continuous parameterization of thefractal dimension of the un-
derlying process from smooth (ν →∞) to rough

Often, there is no basis for knowing the degree of smoothness of some pro-
cessa priori. The Matern kernel allows toinfer the smoothness from the
data through the evidence procedure.

Disadvantage: Computationally more intensive (Bessel and Gamma func-
tions), numerically sensitive
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GP with Matern Kernel: Samples (1)

ν = 5:
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GP with Matern Kernel: Samples (2)

ν = 0.05:
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GP with Matern Kernel: Samples (3)

Normal scale Zoom in

Sample paths become increasingly rough whenν → 0

Random structure visible at all scales
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Application areas (1)

Regression and classification problems

Modelling of dynamic systems

Neural responses (finding the most likely stimulus to a pool of spiking neu-
rons)

Learning kernel functions (Platt, MSR: Kernels for music playlists)

Advantages:

Tractable exact Bayesian inference: Many of the distributions of interest are
again Gaussian

Kernel functions allow working on arbitrary data types (as long as you can
define a kernel on them)
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Application Areas (2): Dynamic Systems

Derivative of a Gaussian process is again a Gaussian process:

cov

(
f (x),

∂f (x′)

∂xi

)
=

∂

∂xi
cov(f (x), f(x′))

Derivative observations can be incorporated into a GP model in a straight-
forward way, leading to reduced predictive variance

Application: Build an accurate model of complex probability distributions
from few samples, for increasing speed of Monte Carlo simulations (Ras-
mussen, Bayesian Statistics vol. 7)
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Application Areas (3)

Regression problems on non-vectorial data

Gaussian processes only require knowledge of kernel evaluationsk(x,x′)

We can work with any type of data we can formulate a kernel for (similar to
Support Vector Machines)

Application: Gaussian processes for generating music playlists from discrete
features (Platt, NIPS*2001)
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Conclusions

Gaussian processes are an elegant and easy-to-use way for doing nonlinear
regression

GPs have shown excellent performance on many regression and classifica-
tion task

General feature of kernel systems: handling of arbitrary data types (as long
as you can define a kernel = covariance function for them)

Active areas of research:

Kernel design, in particular for applications with non-vectorial data


