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Overview

m Gaussian processes basics

m Gaussian processes for Bayesian regression (GPR)
m The evidence procedure in GPR

m Choice of kernel functions

m Application areas

oFirst ePrev ePage 2 eNext elLast ®Go Back eFull Screen oClose eQuit



Gaussian Processes: Motivation

We wish to do (Bayesian) inference for predicting the value of some un
known functionf on a test pointc*, given noisy measurements (training data)

N
{wiayi}izl
Neural network Assume a neural network model with some parameters

(weights)w, set weights (train the network) to minimize the mean squarec
error on the training set

Gaussian processeédssume a prior distribution over the space of functions
that possibly may have generated the training data. Compute the posteri
distribution of function ( f| {;, ¥;}) given the training data. Use the most
likely function to make predictions

Gaussian processes are probably the simplest way of specifying a (non-trivic
prior over function space
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Basics (1)

Stochastic process is a collection of random variablé&r)|x € X } indexed
by a setX

m Signal processingX is a time variable

m Here: X = R” (locations in aD-dimensional space)

Stochastic processes are characterized by the joint distributions of finite subs

{F(xy),...,F(xy)}

Gaussian process (GP): Any finite subset off’-variables has a joint multivari-
ate Gaussian distribution. GP is specified by its mean fungti@sn) (which
we assume to be zero) and its covariance functian, ')

k(w, @) = E[F(x) F(z)

oFirst ePrev ePage 4 eNext elLast ®#Go Back eFull Screen oClose eQuit



Basics (2)

For any set of locationg, ..., xy the associated random variables (func-
tional values)F'(x;), . . ., F'(xy) are Gaussian distributed with megn= 0
and covariance matrix’

(F(xy),...,F(xy)) ~ N0, K)
k(-,-) is thecovariance function (kernel function) of the GP.

Typical choice in machine learning-, -) on data fromR” uses a parameter-
ized formulation

k(x,x') = exp (90 — Z O(xq — x;)2>

d=1

“squared exponential kernel”
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Gaussian Processes: Samples

5 samples of a GP with squared exponential kernel
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Gaussian Processes: Samples

Prediction with Gaussian processes: 5 samples of the GP posterior when t\
training points are given
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Gaussian Processes: Samples

5 samples of a GP with Ornstein-Uhlenbeck kernel

k(x,x') =exp (—|x — 2|




Bayesian Regression with GPs (1)

We have observed samples from some unknown funcfioan locations
xi,..., Ty, corrupted by Gaussian noise with variance

yZ:f(w@)—l—ez, Zzl,,N
e, ~ N(0,0°) Gaussian noise
(f(x1),..., f(®xn)) ~ N(0, K) Gaussian process prior, K;; = k(x;, ;)
(Y1, ..., yn) ~ N(0, K + o°1)

We wish to predict at test poiat*. From the GP property, we also know that

(W1, yn, f(x7) ~ N(0, K¥)

Everything is Gaussian: Conditional mean (prediction) is

p(Yis- - yn, f(x)]0)
p(yla s 7yN‘8)

E(f(x")|D) = Z aik(x”, x;)

with (K + o°l)a =y
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Evidence maximization

We have so far assumed that the covariance function is given. GPR allows us
infer the most likely parameters of the kernel function from the training data.

Key quantity is theevidence: (marginal) log likelihood of the training data
under the GP model with kernel hyperparametkrs
logp(y|xy, ..., xN,0) =
1 2 L. 21)\-1 N
— §logdet(K+a 1) — 5Y (K+0°1) 'y — Elog27r (1)
Integrate out Assume prior distributions on the hyperparameté@nd inte-
grate out with Monte Carlo method

Maximization Maximizelog p(y|x, ..., xx, @) with respect tdf (e.g. us-
ing conjugate gradient method)

GP with evidence maximization does implicit input pruning: Snfalln the
kernel function indicate irrelevant inputs

D
k(x,x') = exp (90 — Z O4(xq — xg)2>
d=1
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Samples of a GP With Anisotropic Kernel

Gaussian process with weight = 250;:

oFirst ePrev ePage 11 eNext eLast ®Go Back e®Full Screen eoClose oQuit



Bayesian Regression with GPs (2)

Cookbook: How to do Gaussian process regression with training data D =
{$1, et wN: yb e 7yN}

1.

Assume a parameterized model for the covariance funétjon-) with pa-
rameters)

. Choose paramete® to maximize evidence: Choose the model that best

explains the training data

. Compute kernel matrix{, with K;; = ky(x;, ;)
. Solve linear systeniA’ + 0°1)ax = y

. Predict valugy* for a test pointe* from >_" | a;ky(x*, ;) (mean of the GP

posterior)

. Obtain error bars fog* from the variance of the GP posterior
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Relations to Other Methods

Regression with Gaussian Processes is closely related to

Kriging Best linear unbiased estimator (minimum variance), originally devel-
oped for spatial data in geostatistics

Infinite Neural Networks A 2-layer neural network with increasing number
of hidden units converges to a Gaussian process predictor with a certain ty
of covariance function

Regularization Choice of kernel corresponds to a regularization operator
(smoothness prior)
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Gaussian Processes versus RVM

m Noisy sinc problem with regions of missing data
m Thin plate spline kernel function (as in Tipping’s toy example)

True function and GP prediction with error bars:

— True function
o Training data
I — Predicted function
F % | 3 std dev bar
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Gaussian Processes versus RVM

True function and RVM prediction with error bars:

— True function

1L e +  Training data
A O Relevance vectors
; —— Predicted function

O e I T e 3 std dev bar

RVM is grossly over-optimistic about the variance!
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On the Choice of Kernel Function (1)

Widely used kernel function: Squared exponential (aka Gaussian, aka RE
kernel)

D
k(x,x') = exp ((90 - Z O4(xq — a:;)2> =exp (0 — || — 2'||?)

d=1
Criticism:
m Unreasonable smoothness assumption
m Variance of predictions tends to be underestimated

Alternatives:Matern kernel

bz, 2') = M,(2) = (1!(; j) L(2\/v2)

with z = || — «'||. I'(v) is the Gamma function anfl’,(r) is the modified
Bessel function of the second kind of degree
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On the Choice of Kernel Function (2)

Matern kernel

k@, @) = M,(z) = %mm

m With v — oo, the Matern kernel converges to the squared exponential kerne

m v~ allows a continuous parameterization of fhectal dimension of the un-
derlying process from smoothy (— o0) to rough

m Often, there is no basis for knowing the degree of smoothness of some pr
cessa priori. The Matern kernel allows tmfer the smoothness from the
data through the evidence procedure.

m Disadvantage: Computationally more intensive (Bessel and Gamma fune
tions), numerically sensitive
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GP with Matern Kernel: Samples (1)
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GP with Matern Kernel: Samples (2)

v = 0.05:
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GP with Matern Kernel: Samples (3)
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m Sample paths become increasingly rough wher 0

m Random structure visible at all scales
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Application areas (1)

m Regression and classification problems
m Modelling of dynamic systems

m Neural responses (finding the most likely stimulus to a pool of spiking neu
rons)

m Learning kernel functions (Platt, MSR: Kernels for music playlists)
Advantages:

m Tractable exact Bayesian inference: Many of the distributions of interest ar
again Gaussian

m Kernel functions allow working on arbitrary data types (as long as you cat
define a kernel on them)
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Application Areas (2): Dynamic Systems

m Derivative of a Gaussian process is again a Gaussian process:

cov <f(x), ag(;jl)) = i cov(f(x), f(x'))

m Derivative observations can be incorporated into a GP model in a straigh
forward way, leading to reduced predictive variance

m Application: Build an accurate model of complex probability distributions
from few samples, for increasing speed of Monte Carlo simulations (Ras
mussen, Bayesian Statistics vol. 7)
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Application Areas (3)

Regression problems on non-vectorial data
m Gaussian processes only require knowledge of kernel evaludtianst’)

m We can work with any type of data we can formulate a kernel for (similar to
Support Vector Machines)

m Application: Gaussian processes for generating music playlists from discre
features (Platt, NIPS*2001)
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Conclusions

m Gaussian processes are an elegant and easy-to-use way for doing nonlin
regression

m GPs have shown excellent performance on many regression and classific
tion task

m General feature of kernel systems: handling of arbitrary data types (as lor
as you can define a kernel = covariance function for them)

Active areas of research:

m Kernel design, in particular for applications with non-vectorial data
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