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Introduction @2

» Statistical Modeling Aspects

e Characterization of real-world signals in terms of signal models:
—> Theoretical description; Learning ability.

e Choices for types of signal models:
—> Deterministic models; Stochastic models (Poisson, HMM, ...).

e Why use HMMs ?
—> Answer the question: "If | have a set of output symbols, what was the
sequence of states & transitions that resulted in those output symbols ?"

e HMM is a powerful modern statistical technique. Why ?

¢ Identification & manipulation of conditional independence assumptions.
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Introduction @2

» Graphical Modeling Aspects

e Using of GRAPH to represent independent structure of probability models.

e Relationships between conditional independence in probability model &
structural properties of graph.

e HMMs as DAGSs:
- Inference (forward-backward algorithm)
- MAP (Viterbi algorithm)
—> Graphical modeling provides an automatic method. How ?
- Inference (Jensen, Lauritzen & Oleson’s algorithm)
- MAP (Dawid’s algorithm)

e Kalman Filter as DAGSs.
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Discrete Markov Processes
From Markov Chain to HMM
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o Markov model where observation
e Probabilistic description: IS a probabilistic function of state.

e HMM: underlying stochastic pro-
cess (that is hidden) can only be
observed through another set of

e —> CQObservable Markov Model stochastic processes that produce
since output is set of states. the sequence of observations.

P(Qt+1 — Sj ‘7Qt — Si)Qt—l — Sk) )
=P(g+1 =55, = 5).
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Discrete Markov Processes
Elements of an HMM

e N: number of states in the model. (Individual states as S = 51, 52, ..., SN.
State at time ¢ as ¢;.)

e M: number of distinct observation symbols per state. (Individual symbols as
V=V,Va,...,Va.)
o A = a;;: state transition probability distribution
a;j = P11 =5 |q¢=>5), 1<i,j<N.

e B =b;(k): observation symbol probability distribution in state j
bj(k) =P(Vyatt|g=S;), 1< j<N,1< k<M.

e 7 = ;. Initial state distribution
m=q =25, 1< i<N.
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Discrete Markov Processes
Generating observation sequence by HMM

1) Choose an initial state g, = §, according to the initial
state distribution x.

2) Sett=1.

3) Choose O, = v; according to the symbol probability
distribution in state S, i.e., b/(k).

4) Transitto a new state g,,, = S, according to the state
transition probability distribution for state 5, i.e., a;.

5) Sett =t + 1; return to step 3)if t < T; otherwise ter-
minate the procedure.
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Problems & Solutions for HMM
Three basic problems of HMMs

Problems Interpretation

e Problem 1: Given O = 0,0,..07, anda ® Evaluation/ Scoring.

model A = (A, B, ), compute P(O | A) ? —> Forward-Backward.
Find the optimal state se-
guence / Decoding.

e Problem 2: Given O = 0105...07, and °®
a model A\ = (A, B,7), choose state se-

quence Q = qiq2...qr Which best explain —> Viterbl.
O ?

e Problem 3: Adjust model parameters A = e Reevaluation / Learning.
(A, B, ) to maximize P(O | A\) ? —> Baum-Welch (EM).

(Connection to Inference and MAP problems in Graphical Model ?)

.—p.8/29
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Problems & Solutions for HMM

Assumptions in the theory of HMMs

e Markov assumption: "The next state is dependent only upon the current

e Stationarity assumption: "The state transition probabilities are independent
of the actual time at which the transitions takes place"

P(qi,+1 =955 | @, = Si) = P(qto+1 = S5 | @t = S5)

e Statistical independence assumption: "The current observation is
statistically independent of the previous observations"

O =0:02..07; Q=q1q2--9T
PO | Q,\) =T;_P(Oy | g, \)
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Problems & Solutions for HMM
Solution to Problem 1: Straightforward method (1/3)

e Accounting for every possible state sequence Q = q1gs...q:

e Probability of a state sequence ( is:
P(Q | A) = 7q,aq,4:02q3---Qgr_1qr-
e Probability of the observation sequence O given state Q.
P(O | Q,)\) = I P(O¢ | g1, A) = g, (01)bg, (02)...bgy. (Or).
e Probability of O: summing joint probability P(O,Q | \) over Q:
PO[A)= X P(O,Q[A)= X PO|QANP(Q]|A).

all Q all Q
PO|N)= X qubql(Ol)aqlqzqu(02)---aqT_1quqT(OT)~
all Q)

e Complexity O(2T'N') —> computationally intractable.
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Problems & Solutions for HMM
Solution to Problem 1: F-B algorithm (2/3)

e Consider forward variable o (%):

(i) = P(O103...0¢,q; = S; | \).

(probability of the partial observation sequence O & state S; at time t).
e Solving for o, (7) inductively:

1) Initialization:

aqli) = m;b{0y), 1=i=N.

2) Induction:
N
cteyql)j) = xl ﬂt|”:'3.i,]b;lonﬂ. 1=st=sT-1
1=j=N.
3) Termination:
N ! b41
PO|N = -21 i), a,lid y 4400

Signal Processing & Speech Communicati .~ p.11/29



GRAZ UNIVERSITY OF TECHNOLOGY

Problems & Solutions for HMM
Solution to Problem 1: F-B algorithm (3/3)

e Requires complexity O(N?T) —> reduce computational load significantly.
e The Forward algorithm is based on trellis structure.

e With N states (/V nodes at each time slot), all possible state sequences are
formed without regarding to how long the observation sequence.

7

STATE
T

| L |
1 2 3

LV VY
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (1/3)

e There are several possible optimality criteria: difficulty to select.
e One possible criterion: choose the states ¢; which are individually most likely.

e Probability of being in state S; at time ¢ given O, X:
v(1) = P(g = S; | O, A).
e Find the individually most likely state ¢; at time t:

q = argmaz|y(i)] 1< t<T
1< i<N

e The solution determines the most likely state at every instant without
regarding to the probability of occurrence of sequence of states.
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (2/3)

e Optimality criterion: find the single best state sequence @ given O.

e Need to determine:

515(7') — max P[Ql)QQ? e gt = Si7017027 "'7Ot ‘ )\]
q1,92,---,4t—1

(The best score along a single path, at time ¢, which accounts for the first ¢
observations & ends in state S;)

e By induction, we get for time ¢ + 1:

Or+1(7) = [max 0:(2)ai;]b; (Or41)

e The state sequence is gotten by tracking the argument v, (j).

e Difference is the Maximization instead of Summing procedure (Forward)
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (3/3)

1} Initialization: 5:(8) = max(5, 00 - o, 6:(2) - Gmm B1() - o) - B
bdi) = ;b(Oy), 1=<i=<N o e .
Wali) = 0.
E L L] ® L
2) Recursion: b
§(j) = max [6,_4()a)biO), 2=ts=T . . .
1sisN
_1 < j < N Sequence; |-|.3# ;;.?‘ n.?‘
¥ilj) = argmax [§,.4(/)a,], 2stsT e
T=i=N time
T=j=s N & . _— g i48) — 00019

3) Termination:

. E " - v - By () = 00200

P* = max [6447)] = : /z : : maximum
1sisN ’

- & ® §(™) = 00052

g7 = argmax [8;(1)).

1 N
== Sequence: f =38 =W Fy = T

4) Path (state sequence) backtracking:

qr = Yralq@led, t=T=1,T—=12,: 1 e

e Idea: find the most likely path for each intermediate state.

o At each time t, only the most likely path leading to each state S; survives.

. — p.15/29

Signal Processing & Speech Comm



GRAZ UNIVERSITY OF TECHNOLOGY

Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (1/3)

e Locally optimize X to best describe O —> iterative procedure Baum-Welch.

e Consider backward variable G (7):
Bi(1) = P(Ot410¢42...07 | ¢ = Si, A).

(probability of the partial observation sequence from ¢ 4 1 to the end).

e Solving for 5,(i) inductively:

1) Initialization:

gli) = 1, 1=si=N.
2) Induction;

N
Bili) = L a,b(O,. ) By, +j),
t+1

t=F=T1=2 1 =] 5N, Bytiy By ti)
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Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (2/3

e To describe procedure for reestimation, define variable &,;(7, j), the probability
of being In state .S; at time ¢ & state S; at time ¢ + 1:

£(2,7) = P(qe = Si, qe+1 = S5 | O, ).

> Rewrite &(3, §) in form of F-B vari- > The sequence of operations to
ables: compute joint event & (7, j):

ALY ﬂﬂb’{ﬂr-q- 1 Bis 1“’
P(O[N)

ﬂf{i} iqbl,{ﬂ;.. |] .B;q 1[,'1

Ediy ) =

I

qubjtﬂl +1)

N N
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Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (3/3)

7; = expected frequency (number of times) in state S; at time (t = 1) = v,(/)

_ expected number of transitions from state 5, to state 5,
a.. = —
b expected number of transitions from state §;

T-.'l
2 i, f)
T=1
X ¥, (i)
t=1

expected number of times in state j and observing symbol v,
expected number of times in state §

b(k) =

T
'§:1 ¥el))

s 0= wy

T
f=1

e Model X is more likely than model . (P(O | A) > P(O | \)).
e Maximizing Q(\, \) = XoP(Q | O,N)log|P(O,Q | A] —> increase likelihood.

e Equivalence to EM algorithm: E (estimation) step is calculation of Q(\, \), M
(modification) step is the maximization over .
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Connections to Graphical Model
HMMs as DAGs

e Goal: Inference (F-B alg.) & MAP (Viterbi alg.) for HMMs are special cases of
more general Inference algorithms for GMs.

e HMM is a probability model & has a direct representation as a simple GM.

0y O, On_y Oxn
Hj H> Hy.1 Hy

e —> These problems can be solved by standard algorithms of GM :

» Inference alg. for DAGs: JLO’s alg. (developed by Jensen, Lauritzen, Oleson
(1990)).

» MAP alg. for DAGs: Dawid’s alg. (developed by Dawid (1992)).
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Connections to Graphical Model
Review Exact Inference

The JLO and Dawid algorithms operate as a two-step process:

1. Construction step: The directed graph is moralized, triangulated, then a
junction tree is formed.

2. Propagation step: Junction tree is used in a local message-passing
manner to propagate the effects of observed evidence.

—> Resulted junction tree for HMM (final clique (Hxy_1, Hy) is the root clique):

.~ p.20/29

Signal Processing & Speech Comm



GRAZ UNIVERSITY OF TECHNOLOGY

Connections to Graphical Model
Relationship between F-B & JLO (1/3)

e Notation: subscript indicate used variables to derive potential functions.

e Consider the portion of the junction tree, flow from (O;, H;) to (H;_1, H;)

e Collect phase: Local message la. Updated potential on H;:
passing in junction tree 16,(hi) = p(hi, 07)
1b. Update factor from H; into clique

@
/ (Hi—1, H;):
cliques l separators p(hi, 0;)

\ @ H, — | )\Oi(hi) — p(hz) :p(Oi |h%)
\ / 1c. Itis absorbed into (H;_1, H;) :

o Y _
% = @ : g@ fO (hi—1,hi) = p(hi—1,hi)Ao, (ki) =
p(hz 1y ) ( ‘ )

.- p.21/29
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Connections to Graphical Model
Relationship between F-B & JLO (2/3)

2a. Updated potential on H;_1: [, i_l(hi—l) = p(h;, gbf{,i_l)
2b. Update factor from H;_; into clique (H;_1, H;):

p(hia (/5*1‘ 7;—1)
Ap, . (hi—1) = ’
(I)l,z—l( 1) p(hz_l)

2c. Itis absorbed into (H;_1, H;) :
fo, ,(him1,hi) = [5,(hi1, hi)Ae, ;—y (hio1) = p(0] | hi)p(hs | hi—1)p(his @7 ;1)

3. New potential on H; for the flow from clique (H;—1, H;) to (H;, H;11):
o, ,(hi) = 53 &, ,(hi—1, hi) = p(o; | h) % phi | hi1)f, , , (hi-1)

’L 1

Comparing with: a1 (5) = b;(Op1)SY  ay(i)a;; (Forward alg.)

» Proceeding recursively to obtain result at the root clique.
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Connections to Graphical Model
Relationship between F-B & JLO (3/3)

e Distribution phase: Local e
message passing in junction .
tree ‘

§

e By the similar method, achieve equivalence between Backward & JLO.

e Get the update factor on separator H;:
Ao, 1w (i) = X p(hi | hiv1)p(oiy | hit1)Ag,,, \ (Rit1)

1+1,N hi—l

e Comparing with Backward alg. :
B:(5) = 5L 1aijbi(Or11)Bre1(4)

.- p.23/29
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Connections to Graphical Model
Relationship between Viterbi & Dawid

e Similarly, applying the collection phase, followed by distribution phase.
e Change: Marginalization operations are replaced by Maximization.

e —> Obtain the new potential on separator from (H;_1, H;) to (H;, H;11):
ﬁbl,i(hi) — I}?aX fcbl,i(hi_l? h’&) —

1—1

p(0; | hi) max [p(hi | hi—1)p(hi—1,h1i-2,67 ;1)

hi,i-1
e Comparing with ¢ in Viterbi alg. :
0t(j) = max b;(O¢)[0¢—1(7)a;]

1< j<N

e Proceeding recursively untill root clique, one can get the likelihood of
obervation given the most likely state sequence.
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Kalman Filter (LGMs)
Linear Dynamic System (LDS)

e State Space Model (SSM): hidden state variables are continuous.

[:::]

e LDS is the special case of SSM with the linear functions & the noise term are
Gaussian.

Ty = Axi_q + wy
yt = Axy + wy
wr ~ N(0,Q)
v ~ N(0, R)

. — p.25/29
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Kalman Filter (LGMs)

Kalman Filter Models (KFMs)

e KFM is also known as LDS, SSMs.

e The transition & observation functions are linear-Gaussian:
P(Xi =24 | Xy 1 =241,Up = u) ~ N(xy; Axy 1 + Bu + px, Q)

PYi=y|Xe=2,U=u) ~ N(y; Cxr + Du + py, R)

e Represent as linear functions:
Xy =Axi_ 1+ Bu+V;
where V; ~ N(u;, Q) is a Gaussian noise term.
Y, =CX; + DU; + W,

where W, ~ N(u,, R) is another Gaussian noise term assumed independent
of V;

.~ p.26/29
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Kalman Inference

e Kalman filter to perform exact online inference in LDS.
e Equivalence to the forward alg. for HMMs:

P(X: =1 |y1t) = ae(1) x
Py | Xe = )5 P(Xe =1 | Xem1 = J)P(X—1 = | y1-1).

e The Rauch-Tung-Strievel smoother to perform exact offline inference in LDS.

e Equivalence to the F-B alg. for HMMs:
P(Xy =i | yrr) = 7(i) oc ag(@) Be(2).
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Conclusions

e Structure of Hidden Markov Model.
e Three basic problems of HMM.

e Solutions: Forward-Backward, Viterbi, Baum-Welch
algorithms.

e Relationships between HMM & Graphical Models in term
of Inference problems: JLO & Dawid algorithms.

e Short introduction about Kalman fi lter.
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