

Exact Inference

Marián Képesi Signal Processing and Speech Communication Lab.

9. May. 2005

• Outline:

- Notation conventions
- · Belief networks
- Secondary structures
- · Integration of evidence
- · Optimization opportunities
- · Conclusions

· Notation conventions

- · Variables ... (A, B, C)
- values .. (*a*, *b*, *c*)
 - \cdot *a* is an instantination of *A*
- Sets of variables: .. (A, B, C)
 - their instantinations (a, b, c)
 - · \mathbf{x} is an instattination of \mathbf{X}
- · Probability distributions

$$\sum_{\mathbf{x}} P(\mathbf{x}) = 1$$

·Conditional probabilities

$$\sum_{\mathbf{x}} P(\mathbf{x} \mid \mathbf{y}) = 1$$

· Notation conventions

- Potentials ... defined over a set of variables X,
 - a function that maps each instantiation \mathbf{x} into a nonnegative real number
 - 1. Operation on potentials: Marginalization

The marginalization of $\phi_{\mathbf{Y}}$ into **X** is a potential $\phi_{\mathbf{X}}$, where each $\phi_{\mathbf{X}}(\mathbf{x})$ is computed as follows:

- 1. Identify the instantiations y_1, y_2, \ldots that are consistent with x.
- **2.** Assign to $\phi_{\mathbf{X}}(\mathbf{x})$ the sum $\phi_{\mathbf{Y}}(\mathbf{y_1}) + \phi_{\mathbf{Y}}(\mathbf{y_2}) + \dots$

This marginalization is denoted as follows:

$$\phi_{\mathbf{X}} = \sum_{\mathbf{Y} \setminus \mathbf{X}} \phi_{\mathbf{Y}}.$$

Belief networks

2. Operation on potentials: Multiplication

 $\phi_{\mathbf{Z}} = \phi_{\mathbf{X}} \phi_{\mathbf{Y}}$

Example: U= {*A*, *B*, .., *G*, *H*} each having values {on, off}

Example of probabilistic inference: Compute the probability that A = on, given the knowledge that C = on and E = off.

Belief networks

Example of a directed acyclic graph (DAG).

Probability Propagation in Trees of Clusters (PPTC)

(Lauritzen, Spiegelhatlter - 1988, Jensen-1990)

PPTC is a method for performing probabilistic inference on a belief network.

In general, probabilistic inference on a belief network is the process of computing $P(V = v | \mathbf{E} = \mathbf{e})$, or simply $P(v | \mathbf{e})$, where v is a value of a variable V and \mathbf{e} is an assignment of values to a set of variables \mathbf{E} in the belief network.

Example of a secondary struct.

Experts typically use belief networks to encode their domain, but PPTC performs probabilistic inference on a secondary structure

Secondary structure contains a graphical and a numerical component **Graphical:**

- Each node in "Tau" is a **cluster.**
- Each edge in "Tau" is labeled with the intersection of the adjacent clusters; these labels are called separator sets, or **sepsets**.

Numerical:

-described using the notion of a **belief potential**. A belief potential is a function that maps each instantiation of a set of variables into a real number

Secondary structure

Each cluster X is associated with a belief potential fi_x, Each sepset S is associated with a belief potential fi_s.

- !! Belief potentials are not arbitrarily specified; they must satisfy the following constraints:
- a) fi_s is consistent:

$$\sum_{\mathbf{X} \setminus \mathbf{S}} \phi_{\mathbf{X}} = \phi_{\mathbf{S}} \qquad \longrightarrow \qquad \phi_{AD} = \sum_{B} \phi_{ABD}$$

b)The belief potentials encode the joint distribution $P(\mathbf{U})$ of the belief network

$$P(\mathbf{U}) = \frac{\prod_{i} \phi_{\mathbf{X}_{i}}}{\prod_{j} \phi_{\mathbf{S}_{j}}}, \qquad \blacktriangleright \qquad P(\mathbf{U}) = \frac{\phi_{ABD} \phi_{ACE} \phi_{ADE} \phi_{CEG} \phi_{DEF} \phi_{EGH}}{\phi_{AD} \phi_{AE} \phi_{CE} \phi_{DE} \phi_{EG}}$$

A key step in PPTC is the construction of a secondary structure that satisfies the above constraints

...then for each **cluster** holds: $fi_x = P(X)$ therefore we can compute the probab. distr. of any variable:

$$P(V) = \sum_{\mathbf{X} \setminus \{\mathbf{V}\}} \phi_{\mathbf{X}}$$

secondary structure in the **literature**: *join tree, junction tree, tree of belief universes, cluster tree, and clique tree.*

we use the term **join tree** to refer to the graphical component, and the term **join tree potential** to refer generically to a cluster or sepset belief potential. We will also use the term join tree to refer to the entire secondary structure.

We begin with the DAG of a belief network, and apply a series of graphical transformations:

- 1. Construct an undirected graph, called a moral graph, from the DAG.
- 2. Selectively add arcs to the moral graph to form a triangulated graph.
- 3. From the triangulated graph, identify select subsets of nodes, called **cliques**.
- 4. Build a join tree, starting with the cliques as clusters: connect the clusters to form an undirected tree satisfying the join tree property, inserting the appropriate sepsets.

Steps 2 and 4 are nondeterministic; consequently, many different join trees can be built from the same DAG.

Moral Graph:

12

Triangulated Graph:

Eliminated Vertex	Induced Cluster	Edges Added			
Н	EGH	none			
G	CEG	none			
F	DEF	none			
С	ACE	(A,E)			
В	ABD	(A,D)			
D	ADE	none			
E	AE	none			
А	А	none			

Triangulated Graph

Elimination Ordering

The criterion for selecting nodes to remove is now stated as follows: Choose the node that causes the least number of edges to be added in Step 2b, breaking ties by choosing the node that induces the cluster with the smallest weight.⁷

Identifying cliques:

A clique in an undirected graph G is a **subgraph of** G that is complete and maximal. **Complete** means that every pair of distinct nodes is connected by an edge. **Maximal** means that the clique is not properly contained in a larger, complete subgraph.

It can be done during the triangulation phase by saving **each induced cluster that is not a subset** of any previously saved cluster.

Revisiting our example:, cliques of the triangulated graph: EGH, CEG, DEF, ACE, ABD, and ADE..

Building an **optimal tree**:

- 0. one single clique = one tree., n trees.
- 1. create candidate sepsets (n-1)
- 2. select them based on the criterion below..
- 3. Insert the sepset S_{XY} between the cliques X and Y only if X and Y are on different trees in the forest.

For the resulting clique tree *to satisfy the join tree property*, we must choose the candidate **sepset with the largest mass**.

When two or more sepsets of equal mass can be chosen, we can *optimize the inference time* on the resulting join tree by breaking the tie as follows: choose the candidate **sepset with the smallest cost**.

Building an **optimal tree**:

- The mass of a sepset S_{xy} is the number of variables it contains, or the number of variables in $X \cap Y$.
- The **cost** of a sepset S_{XY} is the weight of X plus the weight of Y, where *weight* is defined as follows:
 - The weight of a variable V is the number of values of V.
 - The **weight** of a set of variables \mathbf{X} is the product of the weights of the variables in \mathbf{X} .

If an empty candidate sepset is created, the search is terminated.

We provide procedures for computing the join tree's numerical component, so that it satisfies the conditions

17

Note:computing P(V) corresponds to probabilistic inference in the context of no evidence.
We address later the more general problem of computing P(V | e), in the context of evidence e.

I. Initialization:

1. For each cluster and sepset **X**, set each $\phi_{\mathbf{X}}(\mathbf{x})$ to 1:

 $\phi_{\mathbf{X}} \longleftarrow 1.$

2. For each variable V, perform the following: Assign to V a cluster X that contains $\mathbf{F}_{\mathbf{V}}$;¹¹ call X the **parent cluster of** $\mathbf{F}_{\mathbf{V}}$. Multiply $\phi_{\mathbf{X}}$ by $P(V \mid \mathbf{\Pi}_V)$:

$$\phi_{\mathbf{X}} \longleftarrow \phi_{\mathbf{X}} P(V \mid \mathbf{\Pi}_V).$$

init. satisfies the joint distrib.:

$$\frac{\prod_{i=1}^{N} \phi_{\mathbf{X}_{i}}}{\prod_{j=1}^{N-1} \phi_{\mathbf{S}_{j}}} = \frac{\prod_{k=1}^{Q} P(V_{k} \mid \mathbf{C}_{V_{k}})}{1} = P(\mathbf{U})$$

19

I. Initialization:

.. of cluster ACE and stepset CE:

	a	P(cla) off
P(C A) =	on	.7	.3
	off	.2	.8
	20	P(d b)
D/DID)	a	on	off
P(D B) =	on	.9	.1
	off	.5	.5
		Р(e c)
	a	on	off
P(E C) =	on	.3	.7
	off	.6	.4

			(¢ _A	CE	Î]					φ	CE
а	С	e	II	nit	tial	1 1	Val	ues	3		С	e	Initial
on	on	on	1	x	.7	×	.3	-	.21			~~	Values
on	on	off	1	×	.7	×	.7	-	.49	22	<u></u>	0.0	194
on	off	on	1	×	.3	×	.6	-	.18	1	on	OII	1
on	off	off	1	x	.3	×	.4	=	.12	9	on	off	51 1997
					0	25	- 1		00	13	off	on	1
OII	QU	on	1	×	• 4	×	. 3	-	.00	9	off	off	1
off	on	off	1	×	.2	×	.7		.14				
off	off	on	1	x	.8	×	.6	=	.48				
off	off	off	1	x	.8	×	.4	=	.32			е	tc.

II. Global propagation:

After initializing the join tree potentials we perform **global propagation** in order to make them *locally consistent* (slide 10).

Global propagation consists of a series of **local manipulations**, called **message passes**, that occur between a cluster **X** and a neighboring cluster **Y**.

Global propagation causes each cluster to pass a message **to each of its neighbors**; these message passes are **ordered** so that each message pass will preserve the consistency introduced by previous message passes. When global propagation is completed, each cluster-sepset pair is *consistent*, and the join tree is *locally consistent*. (pp.9)

II. Global propagation:

Single message pass:

Consider two adjacent clusters X and Y with sepset R:

1. Projection. Assign a new table to **R**, saving the old table: $\phi_{\mathbf{R}}^{old} \leftarrow \phi_{\mathbf{R}}.$ $\phi_{\mathbf{R}} \leftarrow \sum_{\mathbf{X} \setminus \mathbf{R}} \phi_{\mathbf{X}}.$ (1)

2. Absorption. Assign a new table to **Y**, using both the old and the new tables of **R**:

$$\phi_{\mathbf{Y}} \leftarrow \phi_{\mathbf{Y}} \frac{\phi_{\mathbf{R}}}{\phi_{\mathbf{R}}^{old}}.$$
 (2)

II. Global propagation - Multiple message pass

- choosing an arbitrary cluster \mathbf{X}

20

- performing 2(n-1) message passes

! a cluster passes a message to a neighbor only after it has received messages from all of its other neighbors, assuring local consistency.

III. Marginalization

once we have a consistent join tree, we can compute all P(V):

- 1. Identify a cluster X that contains V
- 2. marginalize fi_x

P(V) =

X

$$\sum_{\{\mathbf{V}\}} \phi_{\mathbf{X}}.$$

$$P(\mathbf{A}) = \sum_{\mathbf{V}} \phi_{\mathbf{X}}$$

			а	b	į.	d	¢	ABD(a)	od)	-10		
			on	on	2	on		.225		-00		
			on	on	Ĕ	off		.025				
			on	of	f	on		.125				
	ϕ_{AB}	3D =	on	of	f	off		.125				
			off	on	ŝ	on		.180				
			off	on	i.	off		.020				
			off	of	f	on		.150				
			off	of	f	off		.150				
		а						P(a)			
$P(A) = \sum \phi_{a}$		on	. 2	25	+	.025	+	.125	+	.125	=	.500
BD BD	D	off	.1	80	+	.020	t	.150	+	.150	=	.500
		d	1					P(d)			
$P(D) = \sum \phi_{AB}$	D =	on	.2	25	+	.125	+	.180	+	.150	ě =	.680

.025 + .125 + .020 + .150 = .320

off

Observation – the simplest notion of evidence:

An observation is a statement of the form V = v. Collections of observations may be denoted by $\mathbf{E} = \mathbf{e}$,

where e is the instantiation of the set of variables \mathbf{E} .

Observations are also referred to as hard evidence.

To encode observation for PPTC we define Likelyhood of V:

• If $V \in \mathbf{E}$ —that is, if V is observed—then assign each $\Lambda_V(v)$ as follows:

 $\Lambda_V(v) = \begin{cases} 1, & \text{when } v \text{ is the observed value of } V \\ 0, & \text{otherwise} \end{cases}$

• If $V \notin \mathbf{E}$ —that is, if the value of V is unknown—then assign $\Lambda_V(v) = 1$ for each value v.

.. when there are no observations, the likelihood of each variable consists of all 1's.

We use likelihoods to encode the observations C = on and E = off (*C* and *E* are variables from the join tree):

Variable	$\Lambda_V(v)$							
V	v = on	v = off						
A	1	1						
B	1	1						
C	1	0						
D	1	1						
E	0	1						
F	1	1						
G	1	1						
H	1	1						

1. Initialization with observation: 1 extra step:

1. For each cluster and sepset **X**, set each $\phi_{\mathbf{X}}(\mathbf{x})$ to 1:

$$\phi_{\mathbf{X}} \leftarrow 1.$$

2. For each variable V:

(a) Assign to V a cluster X that contains $\mathbf{F}_{\mathbf{V}}$; multiply $\phi_{\mathbf{X}}$ by $P(V \mid \mathbf{\Pi}_V)$:

 $\phi_{\mathbf{X}} \longleftarrow \phi_{\mathbf{X}} P(V \mid \mathbf{\Pi}_V).$

(b) Set each likelihood element $\Lambda_V(v)$ to 1:

$$\Lambda_V \longleftarrow 1.$$

2. Observation Entry:

Note: the likelihoods encode no observations.

We incorporate each observation V = v by encoding the observation as a likelihood, and then incorporating this likelihood into the join tree, as follows:

1. Encode the observation V = v as a likelihood Λ_V^{new} .

2. Identify a cluster **X** that contains V.¹³

3. Update $\phi_{\mathbf{X}}$ and Λ_V :

$$\phi_{\mathbf{X}} \longleftarrow \phi_{\mathbf{X}} \Lambda_{V}^{new}.$$
$$\Lambda_{V} \longleftarrow \Lambda_{V}^{new}.$$

Now instead of computing $P(\mathbf{X})$ and P(V), we compute $P(\mathbf{X}; \mathbf{e})$ and $P(V; \mathbf{e})$, respectively.

3. Normalizations:

After the join tree is made consistent through global propagation, we have, for each cluster (or sepset) X, $fi_x = P(X; e)$.

Marginalizing a cluster potential fi_x into a variable V:

$$P(V, \mathbf{e}) = \sum_{\mathbf{X} \setminus \{\mathbf{V}\}} \phi_{\mathbf{X}}.$$

.. by normilizing this:

$$P(V \mid \mathbf{e}) = \frac{P(V, \mathbf{e})}{P(\mathbf{e})} = \frac{P(V, \mathbf{e})}{\sum_{V} P(V, \mathbf{e})}.$$

Handling dynamic observations:

after computing $P(V | \mathbf{e1})$, we wish to compute $P(V \mathbf{j} \mathbf{e2})$..

we can directly **modify the join tree potentials** in response to changes in the set of observations.

Thank you!

Identifying cliques: