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• Notation conventions

• Variables .. (A, B, C)
• values .. (a, b, c)

• a is an instantination of A

• Sets of variables: .. (A, B, C)
• their instantinations (a, b, c)
• x is an instattination of X

• Probability distributions

• Conditional probabilities



• Notation conventions

● Potentials .. defined over a set of variables X, 
- a function that maps each instantiation x into a nonnegative real number

1. Operation on potentials:  Marginalization



Belief networks

● 2. Operation on potentials: Multiplication

Example: U= {A, B, .., G, H}
each having values {on, off}

Example of probabilistic inference: 
Compute the probability that A =  on, 
given the knowledge that C =  on and E = off.



Belief networks

Example of a directed acyclic graph (DAG).



PPTC

Probability Propagation in Trees of Clusters (PPTC)

(Lauritzen, Spiegelhatlter - 1988, Jensen-1990)

PPTC is a method for performing probabilistic inference 
on a belief network. 

 In general, probabilistic inference on a belief network is the 
process of computing P(V =  v |  E =  e), or simply P(v |  e), 

where v is a value of a variable V and e is an assignment of values 
to a set of variables E in the belief network. 



Secondary Structures

Example of a secondary struct.



Experts typically use belief networks to encode their domain, but
PPTC performs probabilistic inference on a secondary structure

Secondary structure contains a graphical and a numerical component
Graphical:
- Each node in “Tau” is a cluster.
- Each edge in “Tau” is labeled with the intersection of the adjacent 

clusters; these labels are called separator sets, or sepsets.

Numerical:
-described using the notion of a belief potential. A belief potential 

is a function that maps each instantiation of a set of variables into 
a real number

Secondary Structures



Secondary structure
Each cluster X is associated with a belief potential  fi_x,
Each sepset S  is associated with a belief potential  fi_s.

!! Belief potentials are not arbitrarily specified; they must satisfy the 
following constraints:

a) fi_s is consistent:

b)The belief potentials encode the joint distribution P(U) of the 
belief network

A key step in PPTC is the construction of a secondary structure that 
satisfies the above constraints
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Secondary structure

...then for each cluster holds: fi_x = P (X)
therefore we can compute the probab. distr. of any variable:

secondary structure in the literature:
join tree, junction tree, tree of belief universes, cluster tree, and clique tree.

we use the term join tree to refer to the graphical component, and 
the term join tree potential to refer generically to a cluster or 
sepset belief potential. We will also use the term join tree to refer 
to the entire secondary structure.



Building join trees

We begin with the DAG of a belief network, and apply a series of 
graphical transformations:



Building join trees

Moral Graph:

.



Building join trees

Triangulated Graph:

.
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Building join trees

Identifying cliques:

A clique in an undirected graph G is a subgraph of G that is com- 
plete and maximal. Complete means that every pair of distinct 
nodes is connected by an edge. Maximal means that the clique is 
not properly contained in a larger, complete subgraph.

It can be done during the triangulation phase by saving each 
induced cluster that is not a subset of any previously saved 
cluster. 

Revisiting our example:, 
cliques of the triangulated graph: EGH, CEG, DEF, ACE, ABD, and 

ADE..

.



Building join trees
Building an optimal tree:

0. one single clique  =  one tree., n trees.
1. create candidate sepsets (n-1)
2. select them based on the criterion below..
3. Insert the sepset S

XY
 between the cliques X and Y 

only if X and Y are on different trees in the forest.

For the resulting clique tree to satisfy the join tree property, we must 
choose the candidate sepset with the largest mass.   

When two or more sepsets of equal mass can be chosen, we can 
optimize the inference time on the resulting join tree by breaking the 
tie as follows: choose the candidate sepset with the smallest cost.

.



Building join trees

Building an optimal tree:

If an empty candidate sepset is created, the search is terminated.



Principles of inference

Note:computing P(V) corresponds to 
probabilistic inference in the 
context of no evidence. 

We address later the more general 
problem of computing P(V |e), in 
the context of evidence e.

We provide procedures for computing the join tree's numerical 
component, so that it satisfies the conditions
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Principles of inference

I. Initialization:

init. satisfies the joint distrib.:



Principles of inference

I. Initialization:

..of cluster ACE and stepset CE:

.
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Principles of inference

II. Global propagation:
After initializing the join tree potentials we perform global prop- 

agation in order to make them locally consistent (slide 10). 

Global propagation consists of a series of local manipulations, 
called message passes, that occur between a cluster X and a 
neighboring cluster Y.

Global propagation causes each cluster to pass a message to each of 
its neighbors; these message passes are ordered so that each 
message pass will preserve the consistency introduced by previous 
message passes. When global propagation is completed, each 
cluster-sepset pair is consistent, and the join tree is locally 
consistent. (pp.9)
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Principles of inference

II. Global propagation:

Single message pass: 

Consider two adjacent clusters X and Y with sepset R:

.
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Principles of inference
II. Global propagation - Multiple message pass
- choosing an arbitrary cluster X
- performing 2(n-1) message passes

.

! a cluster passes a message to a neighbor only after it has received 
messages from all of its other neighbors, assuring local consistency.
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Principles of inference

III. Marginalization
once we have a consistent join tree, we can compute all P(V ):

1. Identify a cluster X 
 that contains V

2. marginalize fi_x

.



Handling evidence
Observation – the simplest notion of evidence:

An observation is a statement of the form V =  v. Collections of 
observations may be denoted by E =  e, 
where e is the instantiation of the set of variables E. 

Observations are also referred to as hard evidence.
To encode observation for PPTC we define Likelyhood of V:

 .. when there are no observations, the likelihood of each variable 
consists of all 1's. 

.



Handling evidence

We use likelihoods to encode the observations C =  on and E = off  
(C and E are variables from the join tree):

.



Handling evidence

1. Initialization with observation: 1 extra step:

.



Handling evidence
2. Observation Entry:

Note: the likelihoods encode no observations. 
We incorporate each observation V = v by encoding the observation 

as a likelihood, and then incorporating this likelihood into the join 
tree, as follows:

Now instead of computing P(X) and P(V ), 
we compute P(X; e) and P(V; e), respectively.

.



Handling evidence

3. Normalizations:
After the join tree is made consistent through global propagation, 

we have, for each cluster (or sepset) X,  fi_x =  P(X; e).

Marginalizing a cluster potential  fi_x into a variable V:

 .. by normilizing this:

.



Handling evidence

Handling dynamic observations:

after computing P(V |  e1), 
we wish to compute P(V j e2)..

we can directly modify the join tree 
potentials in response to changes 
in the set of observations.

.



Fine

Thank you!
.



Identifying cliques:

.


