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Outline

Review:

— Graphical models (DGM, UGM)

— Learning issues (approaches, observations etc.)
Parameter learning:

— Frequentist approach (Likelihood function, MLE)
— Bayesian approach (Bayes rule, MAP)

— Detalled example: Gaussian density estimation
Structure learning:

— Search-and-score approach

Conclusion



Review: Graphical Models (GM)

GM = Probability theory + Graph theory

Tool for dealing with uncertainty and complexity
Notion of modularity
Representation of a GM:
— AgraphisaparrG = (V, FE)
e Setofnodes V = {Xq,..., Xy}
e Set of edges £ = {(Xi,Xj);i = j}
Lack of edges: Conditional independence!

« Factorisation of the joint probability distribution
* Fewer parameters -> learning easier



Review: Directed Graphical Model

= Bayesian network, belief network
L~ uses Bayes rule for inference
« DAG: Directed acyclic graph (causal dependencies)
Parent-child relationsship: p(z;|xx;)
Directed local Markov property

Joint probability distribution:

N

p(CIZ]_, I 7£UN> — H p(mz‘Xﬂ'Z>
1=1

Factored representation




Review: Undirected Graphical Model

= Markov random field, Markov networks
e Global and local Markov property

XA Xp Xc
 Joint probability distribution:

p(z) =% [[ vx.(zc)
CeC



Parameter Vs. Structure Learning

« Parameter Learning: x5
_ _ P(X4 =0|X5>=0) 01
= parameter estimation 0
_ T] T4
« Discrete: CPD = table o1 1 .

— For a binary variable 5 °
0;; = P(X; = 1| Xxr, = j)

e Continuous: CPD = variable
— For a Gaussian,,, 0

0 = (u,02) !
 Structure Learning: T 3
: 1 1
= model selection 0 : 0 :

e Inferring graph G 1 1




Full Vs. Partial Observations

 Fully observed variables (=complete data):
— Data is obtainable on all variables in the network

e Partially observed variables (=incomplete data):
— Missing data
— Hidden variables
— General assumption: Missing at random

— Learning is harder (no close form solution for the
likelihood)




Frequentists Vs. Bayesians 1/2

e The Freguentists:

— Probability is an ,objective” quantity

— A parameter 6 is an unknown but fixed quantity
( p(x]0)is a family of distributions indexed by 6 )

— Consider various estimators for ¢ and
choose the ,best” one (low bias, low variance)

— Likelihood: Consider p(x|6) as a function of g
for fixed = (inverts relationship between them)

— Advantage:
 Mathematically / computationally simple




Frequentists Vs. Bayesians 2/2

e The Bayesians:

— Probability is a Person's degree of belief and
therefore ,subjective”

— A parameter ¢ Is a random variable with a prior
distribution (treat model p(x|8) as CPD)

— Update the degree of belief for 9 using Bayes rule
(inverts relationship between data and parameter)
— Data is a quantity to be conditioned on

— Advantage:

e Works well when amount of data less than number
of parameters

e Can be used for model selection




Learning Issues

 What will we focus on?

Frequentist @
Approach Model —

(_Bayesian )/ K UGM

Fully
Observed

Parameter

Variables Task

Partially O
Observedj Structure




Overview: Learning Approaches

Known
structure

Unknown
structure

Comblete Parameter .
Dapta estimation: Optimization
ML. MAP over structures
P?ramett_rlc Optimization
optimization:
Incomplete P _ over structures
data EM, gradient and parameters:

descent, stochastic
sampling methods

Structural EM
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Where are we?

— Frequentist approach (Likelihood function, MLE)
— Bayesian approach (Bayes rule, MAP)
— Detalled example: Gaussian density estimation
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Learning Parameters From Data 1/2

e Given: - Structure G known and fixed (DAG)

- Data set
- Learn the conditional probability

e Goal:

distribution of each node

Structure

_|_

Dataset

C

ROk | |P>

R O |, (N |0

R IFLP[ODN
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—>

Parameters
p(A)
p(B|A)
p(C)
p(D|A, B)
p(D|A)
p(E|D)
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Learning Parameters From Data 2/2

e Maximum likelihood estimation:
— Parameter values are fixed but unknown

— Estimate these values by maximizing the
probability of obtaining the samples observed

e Bavyesian estimation:

— Parameters are random variables having some
known prior distribution

— Observing new samples converts the prior to a
posterior density
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Frequentist Approach 1/5

Given:
— Data set of M observations D = {x(1), ..., x(D1

Assumptions:

— Observations are independently and identically
distributed according to the JPD (i.l.d. samples)

Aim:

— Use the data set D to estimate the unknown
parameter vector 0
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Frequentist Approach 2/5

Define the likelihood function:
L(6; D) = p(D|#) = p(x(D, ... x(}))g)
Due to 1.1.d. assumption M .
£(6;D) = [ p(x|6)
j=1
Maximum likelihood estimation:

— Choose the parameter vector 8 that maximizes
the likelihood function

0,/ = arg maxg L(6; D)
— most likely to have generated the data D
Trick: Maximize the log-likelihood instead

M
((0;D) =1logL(0;D) = > log p(x(j)\e)
j=1
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Frequentist Approach 3/5

Detailed example:
e Given: - Network structure

- Choice of representation for the parameters
-Data set D = {x(1), ..., x(3)

}
« The log-likelinood function @ @

M

1(9; D) = 3 log p(x\|6) @

j=1
« Factorization due to graph structure
M . . . . .
1(0; D) = Y logp(z10)p(2510)p(25 |2}, 25, 0)
1

]:
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Frequentist Approach 4/5

e Assume: Parameter independence

M
1(6;D) = > logp(z$161) + Zlogp(a:(”wz)

j=1
Ll D) G

_I_ Z |09p($3‘7 |£13]_‘7 ,$2‘7 793)
i=1

3
= > 1(6;D)
ok 5

* g, are the parameters associated with node ; @

 Reduced to learning three sparate small DAGs
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Frequentist Approach §5/5

e Generalizing for any Bayes net

1(6;D) = Z Z 0g p(ztx), 0,)

N
3 16;:D)

« The likelihood decomposes according to the
structure of the graph

* Independent estimation problems:
Maximize each likelihood function separately
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Bayesian Approach 1/2

e Assumptions:

1) @is a quantity whose variation can be described
by a prior probability distribution p(0)

2) Samples in the data set D = {x(1),... x(*)}
are drawn independently from the density p(x|0)
whose form Is assumed to be known but 6
IS not know exactly
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Bayesian Approach 2/2

Given D, the prior distribution can be updated to
form the posterior distribution using Bayes rule

p(D[6)p(0)
p(D)
Link between Frequentist and Bayesian view

p(8|D) =

Posterior « Likelihood x prior

Maximum a-posterior (MAP) estimate:
arg maxg p(6|D)
arg maxg p(z|0)p(0)
MAP = MLE if the prior is uniform

Onrrap
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Gaussian Density Estimation 1/7

Univariate Gaussian distribution

p($|0) — (271‘0‘12)1/2 exXp {_%ﬂ(x o M)Q}

Parameter vector: 0 = (u, 02)

Given:

— Multiple observations x = {z1,...,zn}
which are IID (assumption no necessary)

Aim:

— Estimate 08 based on the observations of X
using a Frequentist and Bayesian approach
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Gaussian Density Estimation 2/7

FREQUENTIST APPROACH:

e Graphical model:
© O 0O
X1 X5 X nr

e .The Frequentists":
— No conditioning on the data
— Use maximum likelihood estimation
e JP written as the product of local probabillites

N 1 1
px10) = 11 5173 exp { —5 5 (@i — )%}

=1

2
1 1
T @re2)V2" { 27 }




Gaussian Density Estimation 3/7

« The log-likelihood function
1(0;x) = log p(x|0)
« Maximization with respect to the parameters i and o2

olnl:;x) __ and 91(@:x) __
o 0 do2 O

e For a Gaussian distribution:

— The MLE of the mean = sample mean
N
UAT, = % >y
i=1
— The MLE of the variance sample variance

. 2
UML_N E(wz aarr)
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Gaussian Density Estimation 4/7

BAYESIAN APPROACH:
e .The Bayesians®:

— Data is conditionally

Independent given the parameters

— Choose a prior distribution
e Assume:

— Variance o2 is a known constant
 Goal:

— Find the mean p to form the posterior p(x/x)
 Modeling decision:

— What prior should we take for?
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Gaussian Density Estimation 5/7

Take the prior distribution to be Gaussian

P) = Gomoyira ©P { —5h (= 10)2}

Hierarchical Bayesian Modeling
Hyperparameter: Fixed meangoand variance o forp(u)

Graphical model: @

oG -

X4 X5 XN
Data is assumed to be conditionally independent

given the parameters N



Gaussian Density Estimation 6/7

e Multiply the prior with the likelihood to obtain the

posterior . . ,
p(ulx) = (2752)1/2 exp {_W(M — i) }

where
~ _ Noj =4 o2
H= NO'(%—I-O'Q ! NUS—I—JQ KO
and
~2 _ (N | 1 -1
O =271 ;2
0

e The posterior PD is Gaussian with (ﬁ, 52)
— Linear combination of sample mean and prior mean
— Inverse of data variance and prior variance add



Gaussian Density Estimation 7/7

* Interpretation of the result:
— [ IS our best guess after observing X
— 52 is the uncertainty about this guess
— [ always lies between x and pug
*If o2 =0, then i = po and o2 = o2/N
(no prior knowledge can change our opinion)
o |f 08 >> o2, then i ~
(we are very uncertain about our prior guess)
e With N — oo weget o =2x = iy
(For set large data the two approaches
provide the same result)
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Where are we?

Review:

— Graphical models (DGM, UGM)

— Learning issues (approaches, observations etc.)
Parameter learning:

— Frequentist approach (Likelihood function, MLE)
— Bayesian approach (Bayes rule, MAP)

— Detalled example: Gaussian density estimation
Structure learning:

— Search-and-score approach

Conclusion
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Learning Structure From Data

e Given: - Possible prior knowledge about the
network structure G

- Data set D
 Goal: - Learn the full network structure G
(parameter learning often as sub-problem)

(4 @ p(A) (4 &

AlB|C|D E p(B|A)

112]2|0[1 O |:> p(C) B ©
1/1/0|2|1 @ p(D|A, B)
o|o|1[1|1 _I' p(D]A) _I_ &
1(1|1]1|2 p(E|D)
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First Approach

 How could we learn a structure?
Nalve approach:
— Enumterate all possible network structures
— Choose the one which maximizes some criteria
Problem:

— Enumeration becomes feasible for an increasing
number of nodes

E.g. 10 nodes leads to O(1018) structures

* Unless we have prior (expert) knowledge to
eliminiate some possible structures, use

statistically efficient search strageties
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Equivalent Probability Models

o Given: GM with 3 nodes (binary random variables)
 Number of possible structures: 25

S @ SB@ @
® ® @ ®
e Sy

e Structure |Sc: pe(x1,72,23) = p(x1)p(x2|T1)p(T3]22)
Structure Sp: Pp(x1, x2,23) = p(x1|r2)p(T2|23)P(23)
Using Bayes rule: po(x1,29,23) = pp(x1, 29, 23)
—) Equivalent probability models

32



Search-And-Score Approach 1/2

e |dea:

— Define a score function for measuring model
guality (e.g. penalized likelihood)

— Use search algorithm to find a (local) maximum
of the score
e Scoring function:
— Statistically motivated
— Assigns a score S(G) to the graph G
o Goal:
— Find the structure with the best score S(G|D)
given the data set D
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Search-And-Score Approach 2/2

e Frequentist way:
— Maximize the likelihood of the data

N
S(G) = p(D|G,0u1.) = |] p(zi|xx;, G, Onr1)
i—1

 Bayesian score:
— S(G)1s proportional to the posterior probability of
a network structure given the data D

__ _ p(D|G)p(G)
S(G) = p(G|D) = (D)

where
p(D|G) = [p(DI|G,0)p(0|G)do

o Use search methods to find the optimal structure
34



Where are we?

Review:

— Graphical models (DGM, UGM)

— Learning issues (approaches, observations etc.)
Parameter learning:

— Frequentist approach (Likelihood function, MLE)
— Bayesian approach (Bayes rule, MAP)

— Detalled example: Gaussian density estimation
Structure learning:

— Search-and-score approach

Conclusion
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Conclusion

e Parameter learning:
— Frequentist approach:
e Use Maximum likelihood estimate
— Bayesian approach:
« Use Maximum a-posteriori estimate
— Approaches are equivalent for large data sizes

e Structure learning:

— Search-and-score approach:
e Optimize according to some scoring function
e Use search methods to find the optimal structure
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