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Outline
• Review: 

– Graphical models (DGM, UGM)
– Learning issues (approaches, observations etc.)

• Parameter learning:
– Frequentist approach (Likelihood function, MLE)
– Bayesian approach (Bayes rule, MAP)
– Detailed example: Gaussian density estimation

• Structure learning:
– Search-and-score approach

• Conclusion



3

Review: Graphical Models (GM)

• Tool for dealing with uncertainty and complexity
• Notion of modularity 
• Representation of a GM:

– A graph is a pair
• Set of nodes     
• Set of edges

• Lack of edges: Conditional independence!
• Factorisation of the joint probability distribution
• Fewer parameters -> learning easier

GM = Probability theory + Graph theory
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Review: Directed Graphical Model
= Bayesian network, belief network

uses Bayes rule for inference
• DAG: Directed acyclic graph (causal dependencies)
• Parent-child relationsship:
• Directed local Markov property

• Joint probability distribution:

Factored representation
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Review: Undirected Graphical Model
= Markov random field, Markov networks
• Global and local Markov property

• Joint probability distribution:



6

Parameter Vs. Structure Learning
• Parameter Learning:

= parameter estimation
• Discrete: CPD = table

– For a binary variable

• Continuous: CPD = variable
– For a Gaussian

• Structure Learning:
= model selection

• Inferring graph G
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Full Vs. Partial Observations
• Fully observed variables (=complete data):

– Data is obtainable on all variables in the network

• Partially observed variables (=incomplete data):
– Missing data 
– Hidden variables
– General assumption: Missing at random
– Learning is harder (no close form solution for the 

likelihood)
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Frequentists Vs. Bayesians 1/2
• The Frequentists:

– Probability is an „objective“ quantity 
– A parameter    is an unknown but fixed quantity 

(            is a family of distributions indexed by    )
– Consider various estimators for    and 

choose the „best“ one (low bias, low variance)
– Likelihood: Consider             as a function of 

for fixed     (inverts relationship between them)
– Advantage: 

• Mathematically / computationally simple
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Frequentists Vs. Bayesians 2/2
• The Bayesians:

– Probability is a Person‘s degree of belief and 
therefore „subjective“

– A parameter    is a random variable with a prior 
distribution (treat model            as CPD)

– Update the degree of belief for    using Bayes rule
(inverts relationship between data and parameter)

– Data is a quantity to be conditioned on
– Advantage: 

• Works well when amount of data less than number 
of parameters

• Can be used for model selection
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Learning Issues
• What will we focus on?

ModelApproach

LEARNING

Variables Task

Frequentist

Bayesian

DGM

UGM

Fully 
Observed

Partially 
Observed

Parameter

Structure
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Overview: Learning Approaches

Known 
structure 

Unknown 
structure

Complete 
Data

Parameter 
estimation:

ML, MAP

Optimization 
over structures

Incomplete 
data

Parametric 
optimization:
EM, gradient 

descent, stochastic 
sampling methods

Optimization 
over structures 
and parameters:

Structural EM
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Where are we?
• Review: 

– Graphical models (DGM, UGM)
– Learning issues (approaches, observations etc.)

• Parameter learning:
– Frequentist approach (Likelihood function, MLE)
– Bayesian approach (Bayes rule, MAP)
– Detailed example: Gaussian density estimation

• Structure learning:
– Search-and-score approach

• Conclusion
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Learning Parameters From Data 1/2
• Given: - Structure G known and fixed (DAG)

- Data set
• Goal: - Learn the conditional probability 

distribution of each node 
Structure                         Dataset                   Parameters

A B C D E
1 2 2 0 1
1 1 0 2 1
0 0 1 1 1
1 1 1 1 2
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Learning Parameters From Data 2/2
• Maximum likelihood estimation:

– Parameter values are fixed but unknown 
– Estimate these values by maximizing the 

probability of obtaining the samples observed

• Bayesian estimation:
– Parameters are random variables having some 

known prior distribution
– Observing new samples converts the prior to a 

posterior density
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Frequentist Approach 1/5
• Given:

– Data set of M observations 
• Assumptions: 

– Observations are independently and identically
distributed according to the JPD (i.i.d. samples) 

• Aim:
– Use the data set     to estimate the unknown 

parameter vector 
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Frequentist Approach 2/5
• Define the likelihood function:

• Due to i.i.d. assumption

• Maximum likelihood estimation:
– Choose the parameter vector    that maximizes

the likelihood function

– most likely to have generated the data 
• Trick: Maximize the log-likelihood instead
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Frequentist Approach 3/5
Detailed example:
• Given: - Network structure

- Choice of representation for the parameters
- Data set

• The log-likelihood function

• Factorization due to graph structure 
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Frequentist Approach 4/5
• Assume: Parameter independence

• are the parameters associated with node 
• Reduced to learning three sparate small DAGs
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Frequentist Approach 5/5
• Generalizing for any Bayes net

• The likelihood decomposes according to the 
structure of the graph 

• Independent estimation problems:
Maximize each likelihood function separately 
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Bayesian Approach 1/2
• Assumptions:

1) is a quantity whose variation can be described 
by a prior probability distribution 

2) Samples in the data set 
are drawn independently from the density 
whose form is assumed to be known but 
is not know exactly
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Bayesian Approach 2/2
• Given    , the prior distribution can be updated to 

form the posterior distribution using Bayes rule

• Link between Frequentist and Bayesian view

Posterior     Likelihood x prior

• Maximum a-posterior (MAP) estimate:

• MAP = MLE if the prior is uniform
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Gaussian Density Estimation 1/7
• Univariate Gaussian distribution

• Parameter vector: 
• Given: 

– Multiple observations 
which are IID (assumption no necessary)

• Aim: 
– Estimate     based on the observations of 

using a Frequentist and Bayesian approach
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Gaussian Density Estimation 2/7
FREQUENTIST APPROACH:
• Graphical model:

• „The Frequentists“:
– No conditioning on the data
– Use maximum likelihood estimation

• JP written as the product of local probabilites
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Gaussian Density Estimation 3/7
• The log-likelihood function

• Maximization with respect to the parameters    and
and

• For a Gaussian distribution:
– The MLE of the mean = sample mean 

– The MLE of the variance = sample variance



25

Gaussian Density Estimation 4/7
BAYESIAN APPROACH:
• „The Bayesians“:

– Data is conditionally 
independent given the parameters

– Choose a prior distribution
• Assume: 

– Variance      is a known constant
• Goal: 

– Find the mean    to form the posterior
• Modeling decision:  

– What prior should we take for   ?
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Gaussian Density Estimation 5/7
• Take the prior distribution to be Gaussian

• Hierarchical Bayesian Modeling
• Hyperparameter: Fixed mean    and variance     for   
• Graphical model:

• Data is assumed to be conditionally independent 
given the parameters
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Gaussian Density Estimation 6/7
• Multiply the prior with the likelihood to obtain the 

posterior

where

and

• The posterior PD is Gaussian with 
– Linear combination of sample mean and prior mean
– Inverse of data variance and prior variance add 
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Gaussian Density Estimation 7/7
• Interpretation of the result:

– is our best guess after observing   
– is the uncertainty about this guess
– always lies between    and 

• If             , then              and 
(no prior knowledge can change our opinion)

• If , then
(we are very uncertain about our prior guess)

• With                we get 
(For set large data the two approaches 
provide the same result)
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Where are we?
• Review: 

– Graphical models (DGM, UGM)
– Learning issues (approaches, observations etc.)

• Parameter learning:
– Frequentist approach (Likelihood function, MLE)
– Bayesian approach (Bayes rule, MAP)
– Detailed example: Gaussian density estimation

• Structure learning:
– Search-and-score approach

• Conclusion



30

Learning Structure From Data
• Given: - Possible prior knowledge about the 

network structure G
- Data set D

• Goal: - Learn the full network structure G 
(parameter learning often as sub-problem)

A B C D E
1 2 2 0 1
1 1 0 2 1
0 0 1 1 1
1 1 1 1 2
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First Approach 
• How could we learn a structure?

Naive approach:
– Enumterate all possible network structures
– Choose the one which maximizes some criteria
Problem:
– Enumeration becomes feasible for an increasing 

number of nodes
E.g. 10 nodes leads to               structures

• Unless we have prior (expert) knowledge to 
eliminiate some possible structures, use

statistically efficient search strageties
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Equivalent Probability Models
• Given: GM with 3 nodes (binary random variables)
• Number of possible structures: 25

• Structure      :
Structure      :
Using Bayes rule: 

Equivalent probability models
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Search-And-Score Approach 1/2
• Idea: 

– Define a score function for measuring model 
quality (e.g. penalized likelihood)

– Use search algorithm to find a (local) maximum
of the score 

• Scoring function: 
– Statistically motivated
– Assigns a score          to the graph 

• Goal: 
– Find the structure with the best score ,

given the data set 
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Search-And-Score Approach 2/2
• Frequentist way:

– Maximize the likelihood of the data

• Bayesian score:
– is proportional to the posterior probability of 

a network structure given the data 

where

• Use search methods to find the optimal structure 
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Where are we?
• Review: 

– Graphical models (DGM, UGM)
– Learning issues (approaches, observations etc.)

• Parameter learning:
– Frequentist approach (Likelihood function, MLE)
– Bayesian approach (Bayes rule, MAP)
– Detailed example: Gaussian density estimation

• Structure learning:
– Search-and-score approach

• Conclusion



36

Conclusion
• Parameter learning:

– Frequentist approach:
• Use Maximum likelihood estimate

– Bayesian approach:
• Use Maximum a-posteriori estimate

– Approaches are equivalent for large data sizes

• Structure learning:
– Search-and-score approach: 

• Optimize according to some scoring function
• Use search methods to find the optimal structure
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