Advanced Signal Processing 2 SE

Parameter and Structure Learning in Graphical Models

02.05.2005

Stefan Tertinek turtle@sbox.tugraz.at

Outline

- Review:
 - Graphical models (DGM, UGM)
 - Learning issues (approaches, observations etc.)
- Parameter learning:
 - Frequentist approach (Likelihood function, MLE)
 - Bayesian approach (Bayes rule, MAP)
 - Detailed example: Gaussian density estimation
- Structure learning:
 - Search-and-score approach
- Conclusion

Review: Graphical Models (GM)

GM = Probability theory + Graph theory

- Tool for dealing with uncertainty and complexity
- Notion of modularity
- Representation of a GM:
 - A graph is a pair G = (V, E)
 - Set of nodes $V = \{X_1, \ldots, X_N\}$
 - Set of edges $E = \{(X_i, X_j); i \neq j\}$
- Lack of edges: Conditional independence!
 - Factorisation of the joint probability distribution
 - Fewer parameters -> learning easier

Review: Directed Graphical Model

- = <u>Bayesian</u> network, belief network └─► uses Bayes rule for inference
- DAG: Directed acyclic graph (causal dependencies)
- Parent-child relationsship: $p(x_i | \mathbf{x}_{\pi_i})$
- Directed local Markov property

Review: Undirected Graphical Model

- = Markov random field, Markov networks
- Global and local Markov property

• Joint probability distribution:

$$p(x) = \frac{1}{Z} \prod_{C \in \mathbf{C}} \psi_{X_C}(x_C)$$

Parameter Vs. Structure Learning

Full Vs. Partial Observations

- **Fully observed variables** (=complete data):
 - Data is obtainable on all variables in the network
- **Partially observed variables** (=incomplete data):
 - Missing data
 - Hidden variables
 - General assumption: *Missing at random*
 - Learning is harder (no close form solution for the likelihood)

Frequentists Vs. Bayesians 1/2

<u>The Frequentists:</u>

- Probability is an "objective" quantity
- A parameter θ is an unknown but fixed quantity ($p(\mathbf{x}|\theta)$ is a family of distributions indexed by θ)
- Consider various estimators for θ and choose the "best" one (low bias, low variance)
- *Likelihood:* Consider $p(\mathbf{x}|\theta)$ as a function of θ for fixed x (inverts relationship between them)
- Advantage:
 - Mathematically / computationally simple

Frequentists Vs. Bayesians 2/2

• The Bayesians:

- Probability is a Person's degree of belief and therefore "subjective"
- A parameter θ is a random variable with a prior distribution (treat model $p(\mathbf{x}|\theta)$ as CPD)
- Update the degree of belief for θ using Bayes rule (inverts relationship between data and parameter)
- Data is a quantity to be conditioned on
- Advantage:
 - Works well when amount of data less than number of parameters
 - Can be used for model selection

Learning Issues

Overview: Learning Approaches

	Known structure	Unknown structure
Complete Data	Parameter estimation: ML, MAP	Optimization over structures
Incomplete data	Parametric optimization: <i>EM, gradient</i> descent, stochastic sampling methods	Optimization over structures and parameters: Structural EM

Where are we?

- Review:
 - Graphical models (DGM, UGM)
 - Learning issues (approaches, observations etc.)
- Parameter learning:
 - Frequentist approach (Likelihood function, MLE)
 - Bayesian approach (Bayes rule, MAP)
 - Detailed example: Gaussian density estimation
- Structure learning:
 - Search-and-score approach
- Conclusion

Learning Parameters From Data 1/2

- Given: Structure G known and fixed (DAG)
 - Data set
- <u>Goal:</u> Learn the conditional probability distribution of each node

Learning Parameters From Data 2/2

- Maximum likelihood estimation:
 - Parameter values are fixed but unknown
 - Estimate these values by maximizing the probability of obtaining the samples observed
- Bayesian estimation:
 - Parameters are random variables having some known prior distribution
 - Observing new samples converts the prior to a posterior density

Frequentist Approach 1/5

- Given:
 - Data set of M observations $\mathbf{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\}$
- Assumptions:
 - Observations are *independently* and *identically* distributed according to the JPD (i.i.d. samples)
- Aim:
 - Use the data set D to estimate the unknown parameter vector θ

Frequentist Approach 2/5

Define the likelihood function:

$$L(\boldsymbol{\theta}; \mathbf{D}) = p(\mathbf{D}|\boldsymbol{\theta}) = p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}|\boldsymbol{\theta})$$

• Due to i.i.d. assumption

$$L(\boldsymbol{\theta}; \mathbf{D}) = \prod_{j=1}^{M} p(\mathbf{x}^{(j)} | \boldsymbol{\theta})$$

- Maximum likelihood estimation:
 - Choose the parameter vector θ that maximizes the likelihood function

 $\hat{\boldsymbol{\theta}}_{ML} = \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathbf{D})$

- most likely to have generated the data D

• Trick: Maximize the log-likelihood instead $l(\theta; \mathbf{D}) = \log L(\theta; \mathbf{D}) = \sum_{j=1}^{M} \log p(\mathbf{x}^{(j)}|\theta)$

Frequentist Approach 3/5

Detailed example:

- Given: Network structure
 - Choice of representation for the parameters
 - Data set $\mathbf{D} = \left\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)} \right\}$
- The log-likelihood function

$$l(\boldsymbol{\theta}; \mathbf{D}) = \sum_{j=1}^{M} \log p(\mathbf{x}^{(j)} | \boldsymbol{\theta})$$

• Factorization due to graph structure

$$l(\theta; \mathbf{D}) = \sum_{j=1}^{M} \log p(x_1^{(j)} | \theta) p(x_2^{(j)} | \theta) p(x_3^{(j)} | x_1^{(j)}, x_2^{(j)}, \theta)$$

Frequentist Approach 4/5

• Assume: Parameter independence

$$l(\theta; \mathbf{D}) = \sum_{j=1}^{M} \log p(x_{1}^{(j)} | \theta_{1}) + \sum_{j=1}^{M} \log p(x_{2}^{(j)} | \theta_{2}) + \sum_{j=1}^{M} \log p(x_{3}^{(j)} | x_{1}^{(j)}, x_{2}^{(j)}, \theta_{3}) \qquad \begin{array}{c} \theta_{1} & \theta_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{1} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{1} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{1} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_{2} \\ & \varphi_{1} & \varphi_{2} \\ & \varphi_{2} & \varphi_$$

- $\boldsymbol{\theta}_i$ are the parameters associated with node i
- Reduced to learning three sparate small DAGs

X3

Frequentist Approach 5/5

• Generalizing for any Bayes net

$$l(\boldsymbol{\theta}; \mathbf{D}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \log p(x_i^{(j)} | \mathbf{x}_{\pi_i}^{(j)}, \boldsymbol{\theta}_i)$$
$$= \sum_{i=1}^{N} l(\boldsymbol{\theta}_i; \mathbf{D})$$

- The likelihood *decomposes* according to the structure of the graph
- Independent estimation problems:
 Maximize each likelihood function separately

Bayesian Approach 1/2

- Assumptions:
 - 1) θ is a quantity whose variation can be described by a prior probability distribution $p(\theta)$
 - 2) Samples in the data set $\mathbf{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\}\$ are drawn independently from the density $p(\mathbf{x}|\boldsymbol{\theta})$ whose form is assumed to be known but $\boldsymbol{\theta}$ is not know exactly

Bayesian Approach 2/2

• Given D, the prior distribution can be updated to form the posterior distribution using **Bayes rule**

$$p(\theta|\mathbf{D}) = \frac{p(\mathbf{D}|\theta)p(\theta)}{p(\mathbf{D})}$$

• Link between Frequentist and Bayesian view

Posterior \propto Likelihood x prior

- Maximum a-posterior (MAP) estimate: $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|\mathbf{D})$ $= \arg \max_{\theta} p(x|\theta)p(\theta)$
- MAP = MLE if the prior is *uniform*

Gaussian Density Estimation 1/7

Univariate Gaussian distribution

$$p(x|\theta) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

- Parameter vector: $\theta = (\mu, \sigma^2)$
- Given:
 - Multiple observations $\mathbf{x} = \{x_1, \dots, x_N\}$ which are IID (assumption no necessary)
- Aim:
 - Estimate θ based on the observations of X using a Frequentist and Bayesian approach

Gaussian Density Estimation 2/7

FREQUENTIST APPROACH:

• Graphical model:

- "The Frequentists":
 - No conditioning on the data
 - Use maximum likelihood estimation
- JP written as the product of local probabilites

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x_i - \mu)^2\right\}$$
$$= \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)^2\right\}$$

Gaussian Density Estimation 3/7

- The log-likelihood function $l(\theta; \mathbf{x}) = \log p(\mathbf{x}|\theta)$
- Maximization with respect to the parameters μ and σ^2 $\partial l(\theta; \mathbf{x})$ and $\partial l(\theta; \mathbf{x})$

$$\frac{\partial l(\boldsymbol{\theta};\mathbf{x})}{\partial \mu} = 0$$
 and $\frac{\partial l(\boldsymbol{\theta};\mathbf{x})}{\partial \sigma^2} = 0$

- For a Gaussian distribution:
 - The MLE of the mean = sample mean

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

– The MLE of the variance = sample variance

$$\hat{\sigma}_{ML}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}_{ML})^2$$

Gaussian Density Estimation 4/7

BAYESIAN APPROACH:

- "The Bayesians":
 - Data is conditionally
 - independent given the parameters
 - Choose a prior distribution
- Assume:
 - Variance σ^2 is a known constant
- Goal:

– Find the mean μ to form the posterior $p(\mu|\mathbf{x})$

• Modeling decision:

– What prior should we take for μ ?

Gaussian Density Estimation 5/7

• Take the prior distribution to be Gaussian

$$p(\mu) = \frac{1}{(2\pi\sigma_0^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right\}$$

- Hierarchical Bayesian Modeling
- Hyperparameter. Fixed mean μ_0 and variance σ_0^2 for $p(\mu)$
- Graphical model:

• Data is assumed to be *conditionally independent* given the parameters

Gaussian Density Estimation 6/7

Multiply the prior with the likelihood to obtain the posterior

$$p(\mu|\mathbf{x}) = \frac{1}{(2\pi\tilde{\sigma}^2)^{1/2}} \exp\left\{-\frac{1}{2\tilde{\sigma}^2}(\mu - \tilde{\mu})^2\right\}$$

where

$$\tilde{\mu} = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \ \bar{x} + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \ \mu_0$$

and

$$\tilde{\sigma}^2 = \left(\frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}\right)^{-1}$$

- The posterior PD is Gaussian with $\left(\tilde{\mu}, \tilde{\sigma}^2\right)$
 - Linear combination of sample mean and prior mean
 - Inverse of data variance and prior variance add

Gaussian Density Estimation 7/7

- Interpretation of the result:
 - $\tilde{\mu}$ is our best guess after observing ${\bf x}$
 - $\tilde{\sigma}^2$ is the uncertainty about this guess
 - $\tilde{\mu}$ always lies between \bar{x} and μ_0
 - If $\sigma_0^2 = 0$, then $\tilde{\mu} = \mu_0$ and $\tilde{\sigma^2} = \sigma^2/N$ (no prior knowledge can change our opinion)
 - If $\sigma_0^2 >> \sigma^2$, then $\tilde{\mu} \approx \bar{x}$ (we are very uncertain about our prior guess)
 - With $N \to \infty$ we get $\tilde{\mu} = \bar{x} = \hat{\mu}_{ML}$ (For set large data the two approaches provide the same result)

Where are we?

- Review:
 - Graphical models (DGM, UGM)
 - Learning issues (approaches, observations etc.)
- Parameter learning:
 - Frequentist approach (Likelihood function, MLE)
 - Bayesian approach (Bayes rule, MAP)
 - Detailed example: Gaussian density estimation
- Structure learning:
 - Search-and-score approach
- Conclusion

Learning Structure From Data

- Given: Possible prior knowledge about the network structure G
 - Data set D

A B

0

2

0

Goal: - Learn the full network structure G (parameter learning often as sub-problem)

p(A)p(B|A)C D Ε p(C)2 p(D|A,B)2 ()p(D|A)p(E|D)30

First Approach

- How could we learn a structure?
 Naive approach:
 - Enumterate all possible network structures
 - Choose the one which maximizes some criteria
 Problem:
 - Enumeration becomes feasible for an increasing number of nodes

E.g. 10 nodes leads to $O(10^{18})$ structures

 Unless we have prior (expert) knowledge to eliminiate some possible structures, use statistically efficient search strageties

Equivalent Probability Models

- Given: GM with 3 nodes (binary random variables)
- Number of possible structures: 25

• <u>Structure</u> S_C : $p_C(x_1, x_2, x_3) = p(x_1)p(x_2|x_1)p(x_3|x_2)$ <u>Structure</u> S_D : $p_D(x_1, x_2, x_3) = p(x_1|x_2)p(x_2|x_3)p(x_3)$ Using Bayes rule: $p_C(x_1, x_2, x_3) = p_D(x_1, x_2, x_3)$ \Longrightarrow Equivalent probability models

Search-And-Score Approach 1/2

- Idea:
 - Define a score function for measuring model quality (e.g. penalized likelihood)
 - Use search algorithm to find a (local) maximum of the score
- Scoring function:
 - Statistically motivated
 - Assigns a score S(G) to the graph G
- Goal:
 - Find the structure with the best score S(G|D) given the data set D

Search-And-Score Approach 2/2

• Frequentist way:

- Maximize the likelihood of the data

$$S(G) = p(\mathbf{D}|G, \hat{\boldsymbol{\theta}}_{ML}) = \prod_{i=1}^{N} p(x_i | \mathbf{x}_{\pi_i}, G, \hat{\boldsymbol{\theta}}_{ML})$$

- <u>Bayesian score:</u>
 - S(G) is proportional to the posterior probability of a network structure given the data D

$$S(G) = p(G|\mathbf{D}) = \frac{p(\mathbf{D}|G)p(G)}{p(\mathbf{D})}$$

where

$$p(\mathbf{D}|G) = \int p(\mathbf{D}|G, \boldsymbol{\theta}) p(\boldsymbol{\theta}|G) d\boldsymbol{\theta}$$

• Use search methods to find the optimal structure

Where are we?

- Review:
 - Graphical models (DGM, UGM)
 - Learning issues (approaches, observations etc.)
- Parameter learning:
 - Frequentist approach (Likelihood function, MLE)
 - Bayesian approach (Bayes rule, MAP)
 - Detailed example: Gaussian density estimation
- Structure learning:
 - Search-and-score approach
- Conclusion

Conclusion

- Parameter learning:
 - Frequentist approach:
 - Use Maximum likelihood estimate
 - Bayesian approach:
 - Use Maximum a-posteriori estimate
 - Approaches are equivalent for large data sizes
- Structure learning:
 - Search-and-score approach:
 - Optimize according to some scoring function
 - Use search methods to find the optimal structure

References

- Heckerman, D. (1995). <u>A tutorial on learning with Bayesian</u> <u>networks.</u> Technical Report MSR-TR-95-06, Microsoft Research.
- Buntine, W. (1996) <u>A Guide to the Literature on Learning</u> <u>Probabilistic Networks From Data</u>. IEEE transactions On Knowledge and Data Engineering
- P.J. Krause (1998), <u>Learning Probabilistic Networks</u>, Knowledge Engineering Review 13, 321-351.
- Selim Aksoy, Lecture slides, CS 551Pattern Recognition <u>http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/index.html</u>