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Abstract— This report presents an outline of Bayesian
methods and in particular particle filtering in positioning
applications. In the introductory part the general problem
of time-variant state-space estimation is reviewed. Bayesian
estimation is presented as one of the approaches to tackle
this problem and particle filters are introduced as a
numerical tool for the calculation of the Bayesian esti-
mator. Throughout this report suitability of the presented
methods is discussed with regard to position applications.

I. INTRODUCTION

Particle filters provide a powerful numerical tool for
non-linear and non-Gaussian state estimation problems.
It is known that for a linear system model, combined
with zero-mean Gaussian errors in the observation model
the Kalman Filter presents an optimal solution in the
MMSE sense [1].

Position determination in localization and tracking
applications is inherently a nonlinear problem due to
nonlinear mapping of the observed (measured) quantities
(e.g. estimated distances d or differential distances δd)
to the system state (which is in the simplest case the
unknown position p). In radiolocation, measurement
imperfections originate from two sources. Properties
of the propagation channel (signal fading, bias) put
a physical limit on the estimation accuracy. Further
constraints are imposed through hardware limitations
(finite signal bandwidth, noise in the analogue frontend).
Combined effects of both error sources lead in practice
to non-Gaussian distributions of introduced measurement
inaccuracies.

Another important aspect which makes particle filter-
ing a suitable method for position estimation is the fact
that often multiple information sources (sensor-fusion)
can be combined in order to improve the accuracy.
Particularly in tracking applications, system states that
go beyond the position (like velocity or orientation) are
of interest. Bayesian estimators provide the mechanisms
for mathematical description of such state estimation
problems. For many problems no analytical solution

of the Bayes estimator can be found. The formalism
which numerically approximates the Bayesian estimator
is called particle filtering.

The rest of this report is structured as follows. In
Section II the mathematical formulation of the state esti-
mation problem is reviewed. Fundamentals of Bayesian
estimation are given in Section III. Particle filtering (PF)
as a method for actual calculation the Bayesian estimator
is described in Section IV. Finally two examples of PF
in positioning and tracking applications is provided in
Section V.

II. SYSTEM MODEL

Tracking of system states θ implies the notion of
time-variability. In the following we will assume a time-
variant time-discrete model. Two equations are required
to describe it. The dynamical model (Eq.1) describes the
(generally nonlinear) mapping of two consecutive system
states θk → θk+1 of the same dimension f : R

d → R
d.

wk is the noise term providing for uncertainties in the
dynamical model.

θk+1 = f(θk) + wk (1)

The measurement model (Eq.2) defines how internal
system states map to the observables z. Also h is a
nonlinear function. The dimension of z can be different
from the dimension of θ. Moreover the dimension of z

can be time varying hk : R
d → R

mk . This is particularly
important for sensor-fusion applications where not all
sensors can provide inputs all the time. An example
for this would be the combination of external inputs
(e.g. GPS) and some local positioning system. Under
certain circumstances GPS input will not be available
(e.g. indoor operation) so that the sate estimation relies
only on the available obervables. The noise vector v

represents uncertainties introduced in the measurement
process.

zk = hk(θk) + vk (2)



Let a time discrete data-record of observations be
z0:k = {z0, . . . , zk}. The goal of the estimation pro-
cedure is the inference of the unknown system states
from observed data z0:k → θ̂(k; z0:k). Applications like
object tracking require an online estimation of the current
system state. For this reason a definition of recursive pro-
cedure is desired, which derives the new state estimate
from the previous estimate and the current observation
(Eq.3). S in Eq. 3 denotes an auxiliary quantity which
might be necessary for the recursive calculation. Like in
all recursive procedures a reasonable initial estimate θ0

is required.

θ̂k = F (θ̂k−1, zk,Sk−1) (3)

Having presented the problem, the question arises
which classes of algorithms are well suited for its
solution. An extensive overview of different solution
approaches is given in [2]. The options range from mod-
ification of off-line algorithms (recursive least squares
(RLS) to model reference techniques (adaptive filtering)
and gradient-based methods. Kalman Filter, Extended
Kalman Filter and many modified versions of them are
popular approaches, yield however suboptimal solutions
for a general class of nonlinear/non-Gaussian problems.
A popular method to cope with this is application of
Bayesian inference methods.

III. BAYESIAN ESTIMATION

Coventionally the unknown state space vector θ is
assumed to be unknown, but deterministic quantity. The
Bayesian approach departs from such an assumption and
assumes it to be a random variable (RV). Consequently
the parameter to be estimated is described using a
multinomial probability density function (pdf) p(θ).

In this way a probabilistic framework for parameter
estimation is established. It is characterized by two
properties which are not available compared to deter-
ministic approach. Firstly, by describing θ as a RV it
is implied that the estimated parameter(s) include some
uncertainties. Secondly, as it will be shown later, the
formalism allows for the introduction of prior knowledge
through appropriate selection of the initial parameter
distribution p0(θ).

The formalism of the Bayesian estimator is based on
the basis statistical concept of conditional probabilities.
Therefore a review of the Bayes Rule is appropriate
before continuing the discussion on the estimator itself.

A. Bayes rule

Firstly published by Thomas Bayes in Essay Towards
Solving a Problem in the Doctrine of Chances (1764)
the Bayes rule introduced the concept of the mutual
dependence of conditional probabilities of two events.

Assume a set of n disjoint discrete events {Ei}
n
i=1.

Further a probability P (Ei)
n
i=1 is assigned to each of

these events. If the events are not independent (e.g.
drawing of numbered balls from a pot), then a specific
random realisation (lets say of event Ej) alters the
probabilities of all other subsequent events. This notion
is formalized in the concept of conditional probabilities.
If event Ej has occured, then the probability of the
event Ek is denoted as the probability of Ek given
Ej . Mathematically this is noted as P (Ek|Ej). A joint
probability that both events occure, denoted P (Ej , Ek)
can be calculated as P (Ej , Ek) = P (Ej |Ek)P (Ek) or
alternatively as P (Ej , Ek) = P (Ek|Ej)P (Ej). Given
that the left hand side of the last two expressions is equal
we can rewrite this as Eq. 4

P (Ej |Ek) =
P (Ek|Ej)P (Ej)

P (Ek)

P (Ek|Ej) =
P (Ej |Ek)P (Ek)

P (Ej)
(4)

The term in the denominator of 4 is a scaling term
and can be calculated as P (Ej) =

∑
P (Ej |Ei)P (Ei).

The same considerations also apply to continuous case
where discrete events are replaced by pdfs. Given two
RV X and Y the Bayes rule applies as in Eq. 5. Instead
of the sum an integral is calculated in the normalizing
factor.

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)∫
p(x|y)p(y)dy

(5)

Equation 5 already carries the notion of the most
important concepts for the Bayesian estimator.

The second term in the nominator p(y) is called the
prior distribution. As the name suggests it models some a
priori knowledge or assumption about the distribution of
the parameter. The first term of the denominator is called
likelihood. The updated pdf p(y|x) is called posterior.

B. Bayesian estimator

The essence of the Bayesian estimator is given already
in Eq.5. Formulating it for for online estimation of a time
varying system (Sec.II) results in a recursive procedure
which requires two steps.



The first step, prediction, provides for a prior estimate
of the parameter distribution. Before the first iteration,
the prior is not calculated but provided as an initializing
pdf p0(θ). After that the prior (also called predictive
pdf) is calculated by employing the assumed dynamical
model of the system (1). Using again the notation θk

for unknown system states at the time instant k and
the corresponding observations zk the calculation of the
prior distribution is given in Eq.6

p(θk+1|z0:k) =

∫
p(θk+1|θk)p(θk|z0:k)dθk (6)

The next step, called update, calculates the posterior
pdf using the above described Bayes rule. For complete-
ness the equation is given (again) in 7.

p(θk|z0:k) =
p(zk|θk)p(θk|z0:k−1)

p(zk|z0:k−1)
(7)

The question remains how a parameter estimate θ̂

is derived from the posterior density. One possibility
includes the calculation of the average of the calculated
distribution (Eq.8). This is the maximum likelihood
output of the estimator. It is also possible to provide
a maximum-a-posteriori (MAP) value of θ̂, which is
essentially the peak of the calculated distribution (Eq.9).

θ̂k,ML = E(p(θk|z0:k)) (8)

θ̂k,MAP = argmax(p(θk|z0:k)) (9)

For the case of symmetrical distributions θ̂k,ML =
θ̂k,MAP . The variance of the posterior distribution is
also of interest, as it suggests the confidence level of the
current estimate.

Figure 1 shows a scheme of the iterative concept
of the Bayesian estimator. The concept is simple but
has a significant drawback. Analytical solutions of 6
and 7 are known for few special cases. Most notably
this is the linear system model combined with Gaussian
distributions, for which the Kalman Filter is the exact
solution. In all other cases, numerical approximations
need to be calculated. The tool which provides this
possibility is the particle filter.

IV. PARTICLE FILTERING

A. Approximating distribution functions

In order to obtain a numerical representation of a
probability density functions of interest, the concept of
weighted particles is introduced. Particles xi in this

Fig. 1. Flow diagram of the iterative Bayes estimator

context are samples from the state space. A weight is
assigned to every particle such that a set of M pairs
{wi,xi} approximates a desired posterior pdf as given
in Eq. 10, where δ denotes the Dirac impulse. The
associated weights need to be normalized such that they
fulfil

∑M
i=1 wi = 1.

p(θk|z0:k) ≈

M∑
i=1

w
(k)
i δ(x − x

(k)
i ) (10)

B. Sequential importance sampling (SIS)

The task of discrete state estimation in Bayesian
context is to recursively update the estimated posterior
pdf. This is also what is calculated in the particle filter
namely a recursive transition from {wk−1

i ,xk−1
i } at time

instant k−1 to {wk
i ,xk

i } at the next time instant k, under
consideration of newly obtained measurements (Eq.11).
The algorithm for the operator S is called sequential
importance sampling (SIS).

{wk
i ,xk

i } = S({wk−1
i ,xk−1

i }, zk) (11)

The function from which the particle values are drawn
is called importance function and will be denoted as
π(θ). If any apriori knowledge about the distribution of
system state is available or can be reasonably assumed,
the importance function is selected such to reassemble
this knowledge. If no prior information is available π(θ)
is selected as a uniform distribution in the supported
space of the system. At each iteration a set of M samples
are drawn from π(θ)1. This step is followed by a weight
update. A more detailed discussion on the selection of
the importance function can be found in [4].

The concept of importance sampling implies that the
importance function at time k can be seen as the previous

1This makes the particle filter a sequential Monte Carlo method
(SMC) a name often used to refer to the PF itself.



importance function at k−1 augmented by the new state
derived from the new set of observations (Eq.12).

π(θ0:k|z0:k) = π(θk|θ0:k−1, z0:k)π(θ0:k−1|z0:k−1)
(12)

If this assumption holds, it can be derived [4] that the
weights at each iteration are updated as given in Eq. 13.

wk = wk−1
p(zk|θk)p(θk|θk−1)

π(θk|θ0:k−1, zk)
(13)

C. Degeneracy and resampling

The SIS algorithm as described above tends to assign
negligible weights to most of the particles after just a
couple of iterations. Thus a significant computational
effort is spent on recalculating weights for particles,
which effectively contribute little to the knowledge of
the posterior density. This is refered to as a degeneracy
problem. A brute force approach to deal with this would
be drawing an extremely large number of particles from
π(θ).

A better approach is to employ resampling. During
resampling particles with small weights are discarded
and particles with larger weights reproduced. All new
particles are assigned the same equal weight of wi =
1
M

. It is not necessary to resample the particles after
every iteration. An approximate measure [4] indicating
degeneracy is called the effective particle size (Eq. 14).
As small Neff indicates degeneracy of the particles the
resampling procedure is invoked when this value falls
below a user set threshold Neff < Nth.

Neff =
1∑M

i=1 w2
i

(14)

Fig. 2. Three steps of the particle filtering [3]

Figure 2 shows two iterations of a SIS algorithm with
resampling. Note that the ordinate represents time and
the abscissa represents the one-dimensional system state.
The size of a circle (particle) indicates the corresponding
weight. Beginning with a set of particles with equal
weights (lowest set of circles), the weights are updated
by calculating 13 (lower blue circles). The particles are
then resampled such that particles with low weights dis-
appear from the plot and strongly weighted particles are
reproduced proportionally to their weight. All resampled
particles are assigned the same weight an the procedure
is iterated.

Several modified versions of the basic particle filter
presented here exist. A review of these techniques is
summarized in [4]. An important class is the Rao-
Blackwellized Filter [5]. Given that a subset of states is
linear in the system model, the computational complexity
can be reduced by separately calculating the linear and
nonlinear states.

V. SELECTED EXAMPLES

This section provides an overview of selected works
on Bayesian methods in positioning. The main idea is
for the reader to obtain a feeling about tackling different
positioning problems using the same methodology. The
examples are selected such to provide an insight in a di-
versity of possible applications. The reader is encouraged
to refer to the cited references for a detailed analysis.

A. UWB indoor positioning

Due to inherent good time resolution of wideband
signals they are well suited for positioning applications.
A synchronized ultra-wideband (UWB) system provides
for an accurate time of arrival (TOA) measurements thus
making an accurate target location possible. However a
number of issues makes positioning in indoor scenarios a
difficult task. Obstruction and attenuation of the leading
edge due to no-line-of-sight (NLOS) propagation is one
of the main factors.

In [1] a Bayesian framework is derived to cope
with the effects of biased TOA estimates. Firstly the
fact is utilized that bias, unlike other error sources, is
spatially correlated among base units and depends on the
propagation environment and the mobility pattern. Due
to unpredictability of the propagation environment also
sudden changes in the detected bias can be expected. To
cope with this situation a prior is selected as a mixture
of a Gaussian and exponential distributions. Then the
problem is formulated in the state-space such that biases
for all ranging links are explicitly formulated as state



variables to be estimated. In order to relax the constraints
on the pulse detectability the strongest path in each
ranging link is measured. With correct bias estimation,
the peak, which is more stable then attenuated first path,
provides a valuable distance reference.

Note that this approach does not work for the static
case, as the modeled geometrical evolution of biases is
a key value to be estimated. A significant simplification
is introduced with the assumption of linear movement
model. This is a simple approach to a difficult problem
of predicting pedestrian indoor movements. A modified
version of the particle filter, called modified regularized
particle filter (MRPF) ( [4], [1]) is employed for tracking
the posterior densities. The authors report promising sim-
ulation results for realistic indoor channel assumptions,
pedestrian moving speeds and low position update rates.

B. Map-aided navigation

The most important aspect in this application is the
possibility of the particle filter to combine substantially
different input sources. In [5] a procedure for determin-
ing the position of an underwater vehicle is described.
Data from an inertial navigation system (INS), composed
of velocity and acceleration vectors are combined with
a measured depth at the given position. As underwater
terrain data-base is available it is possible to combine
the two information sources to derive a system model,
which has the unknown position coordinates as the state
variables.

A similar principle applies also in [6] where GPS
inputs are combined with radar distance measurements
and an accurate sea chart. Further applications of particle
filters in positioning include systems with bearing only
information [7].
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[2] L. Ljung, T. Söderström, Theory and Practice of Recursive
Identification - Part I, The MIT Press, Cambridge, MA, USA,
1983.
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