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Abstract— Equalization is a very essential topic in data
communication. Due to the communication channel, which
can be wireline or wireless and furthermore time variant,
the transmitted data symbols are distorted linearly over the
channel. However, to overcome the effects of the channel,
one can employ an equalizer which is adapted during the
transmission of a training sequence. If transmission of
training is not possible or not available, other ways have
to be found to improve system performance.
If the communication signals belong to a finite alphabet,
signal properties are exploited to find an equalizer without
transmission of training data. Generally, a cost function
is defined which is iteratively minimized and an optimal
solution is found. Other methods which try to estimate
Higher Order Statistics of the signals and according to
these estimates an inverse is computed. This paper shows
a short overview about blind equalization strategies and
tries to sketch a few basic ideas when designing algorithms
for blind equalization.

I. I NTRODUCTION

Equalization is a widely studied topic throughout
all areas of communications, and signal processing. To
achieve data reconstruction from distorted and/or noisy
signal sources deconvolution has to be performed [1], [2]
. Over the years many algorithms fordata aidedequal-
ization have been proposed. These can be categorized in
three different classes according to the criterion which
is used to optimize the coefficients of the equalizer, i.e.,

• Zero-Forcing (ZF) Equalizer
• Minimum Mean Square Error (MMSE) Equalizer
• Minimum Bit Error Rate (MBER) Equalizer.
Conversely, equalization of distorted signals is also

possible without the a priori knowledge of either the
channel or training data. The adaptive equalizer is gen-
erally able to adapt to a well behaving channel inverse
when restrictions on the statistical properties of the used
signals are given. This is usually the case when we talk
about communication signals since most communication
systems employ signal constellations to transmit binary
data [3], [4]. The equalizer has to adapt without any
support from some system identification or parameter

estimation, the process is often calledself recovering
equalization. The more generally termBlind Equal-
ization was specified and embossed byBenevisteand
Gursat in [5].

Generally, a communication channel can be repre-
sented by a filter as depicted in Fig. 1. The transmitted
data symbols{s[k]} belong to a finite alphabetA, which
can be defined asA = {+1. − 1}, {1 + j, 1 − j,−1 +
1,−1 − j}, . . . typically visualized in a constellation
diagram. The receiver has no information about the prop-
agation channelh(t) which is in our further discussions
assumed to be linear and time invariant. However, in
wireless communications the mobile radio propagation
channel will have time variant behavior [1], [6] but is
still linear. The output signal of the channelx(t) may be
additionally disturbed by noisew(t) which is assumed
to be i.i.d. Gaussian.
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Fig. 1. Communication scenario

Considering the model for the communication chan-
nel, the objectives for the equalizerG(z, θ) are easily for-
mulated. The combined channel and equalizer response
in discrete-time domain should be just a scaled and
delayed version of an ideal delta pulse, i.e.,

h[k] = aδ[k − ∆]. (1)

This is often referred to as thedistortion-lesschannel.
Assuming the channel is known, analytic expressions for
ZF and MMSE equalizers are easily given as [1]

Gzf (z, θ) =
z−∆

H(z)
(2)

and

Gmmse(z, θ) =
H∗(z)z−∆

H(z)H∗(z−1) + Sw(f)
, (3)



where H(z) represents thez-transform of the channel
impulse response andSw(f) is the Power Spectral Den-
sity (PSD) of the noise process, respectively.

II. B LIND EQUALIZATION

Since there is no training for parameter estimation
available in blind equalization the used algorithms have
to exploit signal properties. One specific property of
linear systems is that the output PSD relates to the input
PSD by

Sx(ω) = Ss(ω)|H(ejω)|2 + Sw(ω), (4)

whereSs(ω) is the PSD of the source symbolss[k]. It
is seen in (4) that a second order statistics measure as
the PSD contains just magnitude information about the
frequency response of the channel. Phase information
is not available in this case and higher order mo-
ments/cumulants or spectra have to be considered when
phase equalization has to be performed. One possible
example is the to use Higher Order Statistics (HOS) to
obtain thetrispectrumof the output as

Tx(ω1, ω2, ω3) =Ts(ω1, ω2, ω3)H(ejω1)H(ejω2)

× H(ejω3)H(e−j(ω1+ω2+ω3))

+ Tw(ω1, ω2, ω3)

(5)

where for i.i.d. input signalss[k] and Gaussian noise
w[k] the trispectra are constant, i.e.,

Ts(ω1, ω2, ω3) = γs, Tw(ω1, ω2, ω3) = 0 (6)

and the phase can be obtained as

∠Tx(ω1, ω2, ω3) = ∠H(ejω1) + ∠H(ejω2) + ∠H(ejω3)

− ∠H(e−j(ω1+ω2+ω3)) + ∠γs.
(7)

As mentioned already, second order statistics (SOS)
only provide magnitude information of the channel and
all SOS methods are insufficient for blind equalization
of a mixed phase channel containing zeros inside and
outside the unit circle. Furthermore, it is not possible to
identify a mixed phase channel from it’s outputs if the
input is i.i.d. Gaussian since only second order statistics
are available [7]. Although the exact inverse of a non-
minimum phase channel is unstable, a truncated anti-
causal expansion can be delayed by∆ to allow causal
FIR approximation of a ZF equalizer. As a further fact,
ZF equalizers cannot be implemented for channelsH(z)
with zeros on the unit circle. Any FIR approximation will
have unbounded approximation error.

Generally we can distinguish between two different
approaches when designing algorithms for blind equal-
ization problems. First of all there is a huge class of
Stochastic Gradient Descent (SGD) Algorithms which
are suitable for equalizing communication channels
blindly. The main idea behind the algorithms is that a
cost function is minimized iteratively w.r.t. a parameter
vector θ which represents the equalizer coefficients.
Secondly, there are algorithms which try to exploit higher
order statistical properties as we have seen before. These
statistical informations are computed over a block of
collected data and equalizers are computed according to
equations (4), (5), and (7). Please note that generally
all ways to find an equalizerG(z, θ) can be done in
either time or frequency domain, thus we want to specify
the parameter vectorθ = [θ0 θ1 . . . θm]T and its
correspondingz-transform as

G(z, θ) =
m

∑

i=0

θiz
−i (8)

Our objective to find a parameter setθ(k) at iteration
step k such that the overall impulse response of the
channel and the equalizer are a scaled and delayed
versions of the Dirac delta pulse (cf. (1)). Furthermore,
our discussion is restricted to real signals. However,
please note that an extension to complex signals is
straight forward. For that reason we restrict our alphabet
A to symbols which meet

{±(M − 1)d, ±(m − 3)d, . . . , ±3d, ±d}, M even,
(9)

i.e., aM -level Pulse Amplitude Modulation (M -PAM).
For the iterative approach we define a cost function
which shall be a measure of the Inter-Symbol Interfer-
ence (ISI). Thus, themean cost functionis given by

J(θ) = E{Ψ(y[k])}, (10)

whereΨ(·) is a scalar function of the equalizer output,
which is preferably even to distinguish between± levels.
Generally we have to say that not necessarily a min.
MSE equalizer is found anymore by optimizing the given
cost function in (10). Merely the designed equalizer is a
minimum ISI equalizer since we penalize ISI and try to
optimize the coefficients to minimize ISI.

A stochastic gradient algorithm for an arbitrary cost
function is given as

θ(k + 1) = θ(k) − µ
∂

∂θ(k)
Ψ(y[k])

= θ(k) − µΨ′
(

θ(k)T
x[k]

)

x[k].

(11)



Thus we want to define the derivative of theerror
functionΨ as

ψ(x) = Ψ′(x) =
∂

∂x
Ψ(x), (12)

which yields as a generalblind update rule for LMS-type
algorithms

θ(k + 1) = θ(k) − µψ
(

θ(k)T
x[k]

)

x[k], (13)

whereµ is the stepsize of the algorithm.

III. POPULAR ALGORITHMS FORBLIND

EQUALIZATION

In the following we want to consider several popular
algorithms for blind equalization. Most of them are based
on a SGD search but each of them has a different
cost/error function which usually improves the alorithm
performance.

A. Sato Algorithm

Sato was the first to develop an algorithm for self
recovering blind equalization in 1975 [8]. He consid-
ered a scenario for Binary Phase Shift Keyed (BPSK)
modulated signals, i.e.s[k] = ±1. The error function is
then given as

ψ(y[k]) = y[k] − R1sgn(y[k]) (14)

whereR1 is defined as

R1 =
E{|s[k]|2}

E{|s[k]|}
. (15)

Thus considering an LMS-type adaptive algorithm, the
parameter vector is updated as

θ(k + 1) = θ(k) − ψ(y[k])x[k]

= θ(k) − [y[k] − R1sgn(y[k])]x[k],
(16)

wherex[k] represents the vector of input signalsx at
iteration stepk.

B. BGR Algorithms

The class of algorithms defined by Beneviste, Goursat,
and Ruget (BGR) in [9] are similar to Satos algorithm.
However, they allow for more complicated constella-
tions, i.e. higher order modulation. Generally they are
defined by a class of error functions given as

ψ(y[k]) = ψ̃(y[k]) − Rbsgn(y[k]) (17)

where according to the modulation orderb the constant
Rb is defined as

Rb =
E{ψ̃(s[k])s[k]}

E{|s[k]|}
. (18)

The function ψ̃(·) is desired to be an odd and twice
differentiable function given by

ψ̃”(x) ≥ 0,∀x ≥ 0 (19)

The class of cost functions defined in (17) is much
more gerneral than the one specified in Satos algorithm.
However, for the special case of̃ψ(x) = x the BGR
algorithm is equivalent to Satos algorithm.

C. Stop-And-Go Algorithms

To avoid convergence to local minima in the cost
function which may result in poor performancePic-
chi and Prati invented the stop-and-go adaptation of
blind equalization algorithms [10]. Despite from the
fact that more complexity is introduced by some stop-
and-go methodology, the reliability of the adaptation
to a highly performant inverse is improved. The main
idea behind the whole algorithm is to use two different
algorithms and compute each cost function separately.
If both algorithms tend to have the correct sign for the
gradient descent direction the blind equalizer is adapted.
Otherwise the coefficients of the previous iteration are
used for further equalization.

Consider an example where we have two given error
functions denoted asψ1(y) and ψ2(y), respectively.
For this example the coefficients of an adaptive blind
equalizer would be updated according to (20).

D. Constant Modulus Algorithms

Constant Modulus Algorithms (CMA) were invented
independently by Godard [11] and Treichler [12] at the
beginning of the 80ies. The main idea behind the algo-
rithm is that all occurring signal which are not constant
modulus are penalized. Conversely to the previously
shown algorithms, CMA has the big advantage that
carrier recovery and equalization can be done indepen-
dently. Any occurring frequency offset∆f is just seen
from the algorithm as a phase rotation. The CMA cost
function is however insensitive to the phase and thus a
constant phase offset does not affect the performance
of the algorithm. Another advantage of CMA is that
an analog implementation might be possible and thus
application for analog modulation signals as FM or PM
is also feasible.

The CMA is obtained by integrating Sato’s error
function, i.e.,

Ψ1(y[k]) = 1/2(|y[k]| − R1)
2. (21)

Furthermore, the error function is generalized to

Ψq(y[k]) = 1/(2q)(|y[k]|q − Rq)
2, q = 1, 2, . . . (22)



θ(k + 1) =

{

θ(k) − µψ1(y[k])x[k], if sgn[ψ1(y[k])] = sgn[ψ2(y[k])]
θ(k), if sgn[ψ1(y[k])] 6= sgn[ψ2(y[k])]

(20)

Which results in an update equation for the SGD-type
Algorithm as

θ(k+1) = θ(k)−µ(|y[k]|q−Rq)|y[k]|q−2y[k]x[k] (23)

and for the special case ofq = 2 the algorithm is called
“Constant Modulus Algorithm”, i.e. the channel signal
has a constant modulus|s[k]|2 = R2.

E. Shalvi and Weinstein Algorithm

As one example for a Higher Order Statistics (HOS)
based algorithm we want to study the Algorithm pro-
posed byShalviandWeinsteinin 1990 [13]. The kurtosis
of the output of a linear system is given by

Ky = E{|y[k]|4}−2(E{|y[k]2|})2−|E{y[k]2}|2. (24)

The algorithm now minimizes the absolute value of the
kurtosis of the output, i.e.|Ky| w.r.t. a constant power
constraint, i.e.,

E{|y[k]2|} = E{|s[k]2|} (25)

It can be shown [13] that if we assume thats[k] is i.i.d.
the power constraint of the output can be rewritten as

E{|y[k]2|} = E{|s[k]2|}
∞

∑

i=−∞

|c[i]|2, (26)

wherec[i] = θ ∗h[k] the convolution of the channel and
the equalizer. For the kurtosis of the output we obtain

Ky = Ks

∑

i

|c[i]|4. (27)

Now the overall impulse responsec[i] should be just
a scaled and delayed version of a delta pulse. During
the derivation it turns out that if the required constant
power constraint in (25) is met, then|Ky| = |Ks| is only
possible when the combined impulse responsec[n] =
δ[n−∆], i.e., is the response of a distortion-less channel.
Thus the Shalvi-Weinstein equalizer tries to maximize
∑

i |c[i]|
4 w.r.t.

∑

i |c[i]|
2 = 1.

IV. SUMMARY

We have seen that blind equalization is not a trivial
task since no data is available to provide the update
algorithm with feedback on the estimation quality of
the channel impulse response or its inverse. However, if
we restrict the signals we transmit to a restricted range

(alphabet) it is possible to exploit signal statistics to
achieve self recovering equalization. Most frequently a
cost function is defined and is minimized by a SGD
algorithm. The other approach tries to exploit higher
order statistical measures and according to the computed
quantities an inverse is found. We have seen several
different algorithms (Sato, BGR, Stop-and-Go, CMA,
Shalvi-Weinstein) which work quite well in practice.
Generally it is very hard to analyze convergence behavior
of all these blind algorithms. Thus, research is still on-
going in defining new cost functions (error functions) or
HOS based approaches for various application scenarios.
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