Equalizer Design for Multi-Path Channels

Martin Wolkerstorfer

Alexander Leopold

martiwol@gmail.com

alexander.leopold@student.tugraz.at

Signal Processing and Speech Communication Laboratory

17th May 2006

Outline

- Paper title:
 "On the Distribution of Zeros of Mobile Channels with Application to GSM/EDGE"
- Presentation Outline:
 - Multi-path channels (MPCs): intuitive characterization
 - Equalizers (EQs): Application, types of interest
 - Multi-path channels: statistical mode
 - Power Delay Profiles (PDPs): introduction, GSM/EDGE application examples

Outline

- Paper title:
 "On the Distribution of Zeros of Mobile Channels with Application to GSM/EDGE"
- Presentation Outline:
 - Multi-path channels (MPCs): intuitive characterization
 - Equalizers (EQs): Application, types of interest
 - Multi-path channels: statistical model
 - Power Delay Profiles (PDPs): introduction, GSM/EDGE application examples

MPCs - Intuitive Characterization

MPCs - Intuitive Characterization

MPCs through rose-colored glasses

 Mobile channel can be seen as combination of several propagation paths with individual delay.

- Line of sight (LOS): one bin in channel impulse response h[n]
- LOS + one delayed path: two bins in channel impulse response
- LOS + ...

MPCs - Intuitive Characterization

• Consider $\{h[n]\} = e^{-n}; n = 1:5$

- Two effects / points of view when considering transmitted symbols:
 - 1 ISI overlapping of impulse responses
 - Zeros in complex plane

From Multipath Channels to Equalizers

- Equalizer removes ISI / places poles at zeros of h[n]
- Result: "clean" h[n] only one bin / no zeros
- ∃ various approaches
- Paper focuses on some selected ones ...

From Multipath Channels to Equalizers

- Equalizer removes ISI / places poles at zeros of h[n]
- Result: "clean" h[n] only one bin / no zeros
- ∃ various approaches
- Paper focuses on some selected ones ...

Which EQ to choose?

Equalizer Part...

Propagation Phenomena

Channel Physics

Small-Scale Fading Without Dominant Component Small-Scale Fading With a Dominant Component Distribution of Zeros

Propagation Phenomena

Fading

- Reflection, transmission, dispersion, scattering ⇒ waves with different phase shifts arrive at reciever ⇒
- Destructive interference which leads to "Small-scale fading" (up to 10λ), as opposed to
- "Large-scale fading" (e.g. shadowing by hills)

Fading (cont'd)

Phasor and Amplitude of recieved field when Rx moves:

Channel Physics Small-Scale Fading Wit

Small-Scale Fading Without Dominant Component Small-Scale Fading With a Dominant Component Distribution of Zeros

More realistic interpretation of h[n] Relation between h[n] and h(t)

- Overall time-variant impulse response $h_m[n]$ is sampled version of $h_{\tau}(t)$
- ∞ multipath components in $h_{\tau}(t_i)$ contribute to one tap in $h_m[n]$

Small-Scale Fading Without Dominant Component $h_{\tau}(t)$, $h_m[n]$ as Random Processes

- $h_{\tau}(t)$, $h_m[n]$ modeled as random process
- h_τ(t) are assumed to be identically, independently distributed ⇒
- via central limit theorem:
 h_m[n] distribution is circular symmetric zero-mean
 Gaussian distribution
- Amplitude $|h_m[n]|$ is Rayleigh-distributed
- Phase $arg(h_m[n])$ is uniformly distributed

Small-Scale Fading Without Dominant Component $h_{\tau}(t)$, $h_m[n]$ as Random Processes

- $h_{\tau}(t)$, $h_m[n]$ modeled as random process
- h_τ(t) are assumed to be identically, independently distributed ⇒
- via central limit theorem:
 h_m[n] distribution is circular symmetric zero-mean
 Gaussian distribution
- Amplitude |h_m[n]| is Rayleigh-distributed
- Phase arg(h_m[n]) is uniformly distributed

Amplitude- and Phase-Distribution of E resp. $h_m[n]$ $f_{xy}(Re(E), Im(E)), pdf(|E|), pdf(arg(E))$

Small-Scale Fading With a Dominant Component What if one component gets dominant?

- Rayleigh distribution \rightarrow Gaussian distribution with μ > 0
- Rice Distribution

A...amplitude of dominant component

Underlying Mathematics

From [PA]: marginal density of zeros

$$f_r(r) \triangleq r \cdot \int_0^{2\pi} f_z(r \cdot \cos(\varphi) + j \cdot r \cdot \sin(\varphi)) \cdot d\varphi$$
 (1)

• Expected number of zeros in the disc $|z| = r \le R$

$$n(R) = \int_{0}^{R} f_r(r) \cdot dr$$
 (2)

• Expected number of zeros inside $\rho \le |z| \le 1/\rho, 0 < \rho < 1$

$$d(\rho) = n(1/\rho) - n(\rho) \tag{3}$$

• Of special interest for EQ design: $\rho = 0.9$ - region 0.9 < |z| < 1.11

Uncorrelated Impulse Response coefficients

Marginal density

$$f_r(r) = \frac{2}{r} \left(\frac{\sum\limits_{n=0}^{L-1} n^2 \sigma_h^2 [L-1-n] r^{2n}}{\sum\limits_{n=0}^{L-1} \sigma_h^2 [L-1-n] r^{2n}} - \left(\frac{\sum\limits_{n=0}^{L-1} n^2 \sigma_h^2 [L-1-n] r^{2n}}{\sum\limits_{n=0}^{L-1} \sigma_h^2 [L-1-n] r^{2n}} \right)^2 \right)$$
(4)

• \Rightarrow Expected number of zeros inside the disc $|z| \le R$

$$n(R) = \frac{\sum_{n=0}^{L-1} n \cdot \sigma_h^2 [L-1-n] \cdot R^{2 \cdot n}}{\sum_{n=0}^{L-1} \sigma_h^2 [L-1-n] \cdot R^{2 \cdot n}}$$
(5)

Distribution Based on Mathematical Model

Channel impulse response with exponential decay of tap variances. Impulse Response Coefficient Variance O.14 O.12 O.10 O.08 O.08 O.08 O.09 O.

3.5

2.5

1.5

0.5

PDP Introduction

- Also known as "Delay Power Spectral Density".
- Simple measure to characterize channel impulse responses.
- European Telecommunications Standards Institute (ETSI) recommends PDPs for selected environments in GSM/EDGE (Global System for Mobile Communications / Enhanced Data rates for GSM Evolution ¹)

Recommended Propagation Models

Rural Area - RA

Hilly Terrain - HT

Typical Urban - TU

Equalizer Test - EQ

Measured PDP

Example

Figure: Measured power delay profile. Source: *Institute for Telecommunication Sciences, Boulder, Colorado*

GSM/EDGE Equalizer Design

• $f_r(r)$, n(R), $d(\rho)$ have to be calculated by numerical integration.

Rural Area

- Esentially flat channel (\sim "one tap only").
- Zeros of h(t) mainly influenced by transmit- and receiver input filter.
- $h_T(t)$: GMSK pulse, as standardized for EDGE.
- $h_R(t)$: Reciever designer's choice. In the paper: squared-root raised cosine (SRC) with $\alpha = 0.3$.

GSM/EDGE Equalizer Design

• $f_r(r)$, n(R), $d(\rho)$ have to be calculated by numerical integration.

Rural Area

- Esentially flat channel (\sim "one tap only").
- Zeros of h(t) mainly influenced by transmit- and receiver input filter.
- $h_T(t)$: GMSK pulse, as standardized for EDGE.
- $h_R(t)$: Reciever designer's choice. In the paper: squared-root raised cosine (SRC) with $\alpha = 0.3$.

Hilly Terrain

Figure: $f_z(z)$ and $f_r(r)$ for L = 7 [Schober01]

- $f_z(z)$ not rotational symmetric.
- Most zeros inside |z| < 1, some in area |z| ≥ 2, however ⇒
- DFE resp. DDFSE/RSSE performance increasable.
- Only 1 zero inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation of h[n] to L=3 possible.

Hilly Terrain

Figure: $f_z(z)$ and $f_r(r)$ for L = 7 [Schober01]

- f_z(z) not rotational symmetric.
- Most zeros inside |z| < 1, some in area |z| ≥ 2, however ⇒
- DFE resp. DDFSE/RSSE performance increasable.
- Only 1 zero inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation of h[n] to L=3 possible.

Hilly Terrain

Figure: $f_z(z)$ and $f_r(r)$ for L = 7 [Schober01]

- f_z(z) not rotational symmetric.
- Most zeros inside |z| < 1, some in area |z| ≥ 2, however ⇒
- DFE resp. DDFSE/RSSE performance increasable.
- Only 1 zero inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation of h[n] to L=3 possible.

Typical Urban

Figure: $f_z(z)$ and $f_r(r)$ for L = 3 [Schober01]

- $f_z(z)$ not rotational symmetric.
- 0.07 zeros inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation to L=2 possible.
- 1.1 zeros outside $|z| = 1 \Rightarrow$ prefilter \rightarrow minimum phase.

Typical Urban

Figure: $f_z(z)$ and $f_r(r)$ for L = 3 [Schober01]

- $f_z(z)$ not rotational symmetric.
- 0.07 zeros inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation to L = 2 possible.
- 1.1 zeros outside $|z| = 1 \Rightarrow$ prefilter \rightarrow minimum phase.

Typical Urban

Figure: $f_z(z)$ and $f_r(r)$ for L = 3 [Schober01]

- $f_z(z)$ not rotational symmetric.
- 0.07 zeros inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation to L=2 possible.
- 1.1 zeros outside $|z| = 1 \Rightarrow$ prefilter \rightarrow minimum phase.

Equalizer Test

Figure: $f_z(z)$ and $f_r(r)$ for L = 6 [Schober01]

- $f_z(z)$ not circ. symm.
- Correlated taps many zeros near unit circle.
- On average number of zeros inside and outside
 |z| = 1 equal ⇒ Prefilter.
- 1.2 zeros inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation of h[n] to L=3 possible.

Equalizer Test

Figure: $f_z(z)$ and $f_r(r)$ for L = 6 [Schober01]

- $f_z(z)$ not circ. symm.
- Correlated taps many zeros near unit circle.
- On average number of zeros inside and outside |z| = 1 equal ⇒ Prefilter.
- 1.2 zeros inside $0.9 \le |z| \le 1.11 \Rightarrow$ truncation of h[n] to L=3 possible.

Summary

- Overview on MPC impulse responses and distribution of zeros.
- Suitable equalizer concepts.
- Equalizer design for statistically described MPCs.

The End.

The End

Thank you for your attention!

References I

- Andreas F. Molisch Wireless Communications. IEEE Press 2005.
- John R. Barry, Edward A. Lee, David G. Messerschmitt Digital Communication, third edition. Springer 2004.
- A. Papoulis Probability, Random Variables and Stochastic Processes New York: McGraw-Hill, 1984

References II

- Robert Schober, Wolfgang H. Gerstacker
 On the Distribution of Zeros of Mobile Channels with
 Application to GSM/EDGE
 IEEE Journal on Selected Areas in Communications, Vol.
 19, No. 7, July 2001
- M. Vedat Eyuboğlu, Shahid U. H. Qureshi Reduced-State Sequence Estimation with Set Partitioning and Decision Feedback
- Shane M. Haas
 Linear Gaussian Channels and Delayed
 Decision-Feedback Sequence Estimation

References III

Wolfgang H. Gerstacker, Frank Obernosterer, Raimund Meyer, Johannes B.Huber On Prefilter Computation for Reduced-State Equalization

ETSI/GSM

GSM Recommendation 05.05 - Radio Transmission and Reception

European Telecommunications Standards Institute, October 1993

