Introduction

Review

= Matched filter n’,

- Iimplements a minimum-distance receiver which is the optimal
criterion for additive white Gaussian noise

s Reflected Transfer Function H *(@/Zz¥)
s Folded Spectrum
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= Minimum-phase spectral factorization:
S(2) = y°’M (M * (1] 2¥)

y° ... geometric mean of S(e'°) ™~ x x
S(z) ... rational, real/nonnegativ <>“ : <> ' <>

on the unit circle
M (Z) - m O n I C, |0 Ose Iy Fig. 2-13. Spectral factorization of a transfer function 5(z), which is non-negative real on the unit circle.
The zero at z = 1 has multiplicity two (in general its multiplicity could be any even integer). These two

minimum-phase

zeros on the unit circle are split between M(z) and M*(1/z¥.
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Introduction

Whitened Matched Filter (WMF), Slicer

I[—t) 1 Zp
— JPH(f) o—

x WMF provides sufficient (@) (= 4T
statistics for the minimum
distance receiver r(t) )g Yk 1 2
T H*{f) S Py .I,EJM'#{E_JEHJ"T} -
t=kT

(b)
m transforms white noise into white noise

l.e. noise power spectrum after MF: N,S,(2)
after precursor equalizer: N,/ y?
= output is causal and monic and minimum-phase

s Slicer. quantizes the input to the nearest alphabet
symbol (e.g. by applying decision thresholds)
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Linear Equalizer

Equalizer

Linear Equalizer (LE)

ng LINEAR

EQUALIZER SLICER
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= power spectrum of the slicer error:

S, =SHC-1"+s)c[

= MSE: EUek\ZJ:esZ:(Se}

A

m Zero — forcing (ZF) Criterion (a):
o forces the ISI component of the
slicer error to zero
s Mean Square Error (MSE) Criterion (b):

o minimize the MSE — i.e. ISI and noise together
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Linear Equalizer

Equalizer

LE-ZF with WMF front end

White Gaussian noise assumed
LE-ZF:  C=M" e

Ny DOWN | r(t) L - Zj Xp
S 3y e I K I :
Su(z) 5.(2) —> con- ——» H¥(f) o) ¢ e B e L 5
U VERTER - : | VM) |
' _ MATCHEDFILTER =~ °°  ~ NOISEWHITENER
ap .é » X LFS
1
Sp(2)
(b) )
LINEAR EQUALIZER

1/ M * is strictly max.-phase
l.e. if M has zeros -> WMF has poles outside the unit circle

Continuous-time MF problematic if h(t) is causal with unbounded
support

for a general channel model:

1 1 , 5

H R, e (S,
problems with non-minimum-phase channels (noise at slicer input)
problems when zeros/poles approach the unit circle

Equalizer Design for Multipath Channels



Linear Equalizer

Equalizer

power spectrum of the channel output: S =S,[H| +S,
task: minimize S5 =S|C-SS*'H* “+555?

a n-r

leads to: C=SS'H*

MATCHED FILTER EQUALIZER SLICER
S _(2) -
Tk —3 H¥(1/2%) —» . > :F —>» @
( ) S,(2)H(2)H*(1/2%)+ S, (2) i

assume a channel with poles => anticausal IIR matched filter

MSE: ,
EI\Z/IMSE—LE = Sn /(‘H‘ +SnSz;1)

%K_J
Se,LE—ZF A

for S - 0 the LE-MSE approaches the LE-ZF
problems with channel-poles (except atz=0/z=c)

Equalizer Design for Multipath Channels



Decision Feedback Equalizer

Equalizer

Decision Feedback Equalizer (DFE)

{€— CHANNEL MODEL —»'€— LINEAR EQUALIZER —
ng
v

v ——» M)

M(z)-1 1=

£ > @

Miz)-1

POSTCURSOR
EQUALIZER

m postcursor equalizer eliminates ISI introduced by past
samples

= slicer removes noise (-> noise reduction) and has bounded
output (-> stability!)

= risk of error propagation
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Equalizer Decision Feedback Equalizer

m correlated slicer error samples -> linear prediction

error filter E(z) (causal, monic) reduces noise variance
and results in a white DFE slicer-error

—» H(z)C(z)-1 o PREDICTION

ERROR FILTER PRECURSQOR

"k EQUALIZER
e ’ a, Tk
k | E(z) ——> ©k 2 H(z) *’éﬁC(z)E(z)

L)J Cl(z)

F “
NOISE ‘-J
E(z)-1
POSTCURSOR
EQUALIZER

s LE slicer error; S, = &5 M M_* where &5 =(S.),,
S V.M M *

(a) (b)

i HH* ) ‘Hg‘ [IHminHmamein* Hmax*
* *
E = Hm";\'/}' max precursor equalizer: CE = L Hina M
n 0 max
C=H" ggF—DFE = <Sn /‘H ‘2> allpass_filter
G
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Equalizer Decision Feedback Equalizer

DFE-ZF (cont‘d)
s DFE-ZF relies on a minimum-phase equivalent channel (this
minimizes the noise at the slicer input) -> WMF

o because:

- the DFE's decision relies on the first sample of the
Impulse and ignores the signal energy embedded in

the ISI terms

- the MLSD uses all the energy in the equivalent

channel impulse response
o therefore: DFE relies on the spectral factorization!
. . 2
= decision rule:

X, =argmin
xtX

n
Yk _Zm)A(k—i —X
=

= correlates to a VA working on a trellis with only one state
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Equalizer Decision Feedback Equalizer

DFE - MSE

C is again chosen to minimize S, as in the LE-MSE

channel output: S =S,HH*+S =)/ M M, *

error before LP:  §,=S|C-S.S'H* +5,5,5™

o ->same C as forthe LE-MSE: C=S S'H*

again we look for a filter E that whitens the slicer error:
g = =% _ Vol MM MM " _

e aSn Y MM * = Eymmse-DFE [MeM;
_ 1r _ Mrr r r
- - *
Me MaMn CE:ﬁDH* |'Ia*|:|}\/|r:1
optimal precursor equalizer: y; M,

o itincludes: matched filter (cp. LE-MSE), noise-whitening filter (cp.
DFE-ZF)

MSE:  hee-ore = (S /(H[ +S,81)
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Equalizer

Maximum Likelihood Sequence Estimation

Maximum likelihood sequence estimation is the optimal
minimum probability of error detector on I1SI channels

Maximum likelihood (i.e. Minimum distance) rule:
X(2) = argmin|y(2) - M (2)x(2)|’

x(2)OX] z]

¥(2) - (M(2) -Dx(2) - X(2)

ISl

where X[Z] :{x0+xlz+...+xN_12N‘1|xk DX}

=argmin
x(z)UX] z]

number of states is exponentlal with alphabet size and
channel length K, i.e. \X\

Viterbi Algorithm searches a state sequence through the trellis
that minimizes this distance
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Equalizer
Reduced-State Sequence Estimation

from MLSE to RSSE

= in MLSE: state defined as p, =[x _,,X ,,....Xx ]
s RSSE ... ,Reduced State Sequence Estimation®

Q

Q

each subset-state in RSSE consists of the union of serveral ML
states

for X,_define a 2-dim. set partitioning Q(k)
where the signal set is partitioned into J, subsets (1< J, < M)
conditions: J, >J,>...=2J,
Q(k) is a further partition of the subsets of Q(k +1)
a (K) ... index of the subset of a symbol
subset state of a sequence at time n:

K L, :[an—l(l)’a‘n—Z (2)!°"’an—K(K)]
H J, states in the subset trellis

J, transitions per state (parallel transitions when J, <M )
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Equalizer

Reduced-State Sequence Estimation

RSSE (cont‘d)
= certain paths will merge earlier than in the ML trellis

-> set partitioning should be such that these paths can be reliably
distinguished at the point of merging

m for every Q(k), maximize the min.
Intrasubset Euclidean distance

l
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Subsec trellises (a) K = 1, 0, = 4, (MK = 2,0, =4, J; = 2.

Fig. 2. Ungerhoeck partition tree for the rectangular 16-QAM signal set
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Equalizer
Reduced-State Sequence Estimation

RSSE (cont‘d)

= when J, <M, then for each subset transition the VA can
first select the symbols with the minimum branch metric

= branch metrics: |y, —(p, (), )= x|

= p,(t,) representsthe K most recent symbols stored in
the path history associated with the state t

= In contrast to MLSE, performance of RSSE is affected by
phase response

for g =1 for all k, RSSE degenerates into ZF-DFE
m special case: ] {M 1<k <K'

“ 11 K'sksK
... ydelayed decision feedback sequence estimator (DDFSE)
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Equalizer

Delayed-Decision Feedback Sequence Estimation

hybrid of MLSE and ZF-DFE (with each as special cases)

VA on a truncated channel impulse response  and using
ZF-DFE on each branch of the trellis to remove ISI

branch metric calculation:

u
- mek—i -
i=1

“
state—contribution

delayed— deC|S|on contrlbution

2

mek_. - X,

| =u+1

IS

channel transfer function: M(z)=M ,(2) +z**M"* (Z)_,g(z)

further: :& , n:deg{ﬁ (Z)} ’ m:deg{y(z)}

¥(2)

¥(2)
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Equalizer

Delayed-Decision Feedback Sequence Estimation

DDFSE (cont‘d)

2

s branch metric: . .
Y _Z M X =Wy
i=0

_ 18|+)2k—,u—1—| _Z%Wk U110 (m > O)
= where W =970 ) =
Z m Xk—,u—l—l (m = O)
L 1=0

m therefore each branch metric calculation requires:
o current state X = (Kers X1 Xy
o previous n decisions Ko Kepon)
0 previous m estimates {wk—y—Z""’Wk—u—m—l}
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Equalizer

Delayed-Decision Feedback Sequence Estimation

DDFSE (cont‘d)

m example:
= FIR channel: M(z) =1-15z"+ 0527
m received sequence: Y(2)=21-29z"

s state of the DDFSE trellis (u=1): X, =x,
s decision feedback contribution: w,_, =05X%,_,

= branch and path metrics for the 5 s womn e
VA MLSE: : " -

= and for the DDFSE:

k=0 k=1

(=[-1D . :

branch metric [path metric]
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Impulse Response Truncation

Prefiltering

impulse response truncation

= M ... length of impulse response c
n e=[e(),e@.....ep)|" ... FIR pre-equalizer with length p

= convolution yields: ¢, =cCe=[c,(0),c,@®,....c.(m+ p-D]" =F (&
= task: minimize the power of all c,(k) for k>N,

1 k=0

s c.(K)={* 0<ksN,
p k>N, |
= R =F(LNg+Limep-q]) NI

. ] F,,,,H[SI;'ICI
... reduced convolution matrix

Fe=d+d
d=[100,...0]"

total impulse response ¢,=¢ e

| d deSt|nat|0n VeCtOt’ remaining ISI/ICI
= 5=/5(0),0Q),....0(m+p-N,)] J o
... error vector
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Impulse Response Truncation

Prefiltering

impulse response truncation (cont‘d)

= MMSE technique leads to
e=(F. (F")*F' @

= under AWGN:

) Y pe =1/ INR

— T -1 T
e=(F, [F" +y2,0)"F' @

m power delay spectrum: 0
2 no noise, ideal channel -
knowledge

o based on more than 5000 = _wl
random channels ol

o exponential power delay profile g}

o power delay spread A7 =250ns -

—20T

—30

() mdB
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Allpass Prefilter

Prefiltering

Allpass prefilter computation

s closed form computation necessary (short estimation
training sequences)

*

5 H,(2)H, (U 29) =H(2)H * (U 2*)

A(2) = —Hl_rlnizi)z)

= one possibility: calculating H_ (z) (spectral factorization,
root finding, prediction-error filter,...)

m A(2) Is non-stable
o ->noncausal, stable -> truncation -> causal FIR with delay
o time-reversal -> A(1/z) -> time-reversal of the output

0 A= H..(2)/H(z) ->reduced-state equalization in negative time
direction (backward decoding)
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Allpass Prefilter

Prefiltering

Allpass prefilter computation (cont‘d)

= another possibility: apply the FIR feedforward filter of a
MMSE-DFE (not robust to a mismatch of design
parameters in certain cases — virtual noise variance,
delay, filter length etc. )

m prefilter computation based on Linear Prediction

m H_(2) H*QUZ) 1

min — — — * D

HE) o z) “P7ARARE =R B
= approx. by FIR filter (noise whitening filter):

1
F -~
2(2) C H:nin (l/ Z*)
% .1

= equivalently: F(2) =G* 1/ Z') , G(A)=C 2

m choice: G(z)=1-P(2) ... prediction-error filter of order 4,
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Allpass Prefilter

Prefiltering

Allpass prefilter computation (cont‘d)

= optimum coefficients minimize the output power of the
error filter

s -> solution of the Yule-Walker equations: &, . p=¢,,
a @, ... correlation matrix
a @, ... correlation vector
o p ...coefficients of the prediction filter

= can be recursively solved using the Levinson-Durbin
Algorithm

m 1-P(2) and 1/H
= for infinite filter order (4, - ©): G(2) =1-P(2) =
s -> overall transfer function of the FIR prefilter:

(z) are causal and min. phaseC*

H min (Z)

F(2)=z"""% H* @1/ z) [@1-P* 1/ )
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