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Introduction

m Multirate Systems
m Systems that employ more than one sampling rate
m Result in more efficient processing of signals

m Sampling rates at various internal points can be kept as
small as possible

m Also results in “aliasing”, that can be cancelled
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Introduction

m Sampling rate alteration can be
performed by using “Decimators” and
“Expanders”.

m Multirate Systems have applications in
m Digital Audio Systems
s Subband Coding of Speech and Image Signals

m Adaptive Filters
m Digital Telephony
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Basic Multirate Operations

m The most basic operations in multirate
digital signal processing are
m Decimation
s Interpolation

m These operations can be performed by
the building blocks known as
m Decimator
s Expander
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M-fold Decimator

m [t takes an input sequence x(n) and
produces the output sequence

yp(n) = x(Mn)
where M is an integer

m Retains only those samples of x(n)
which occur at time equal to multiples
of M.

x(n) — ¥ M — Yp(0)
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M-fold Decimator

m For example, M = 2

11
¢ 1 o J
HH

‘o2
m Decimator is also called a downsampler,
subsampler or a compressor
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| -fold Expander

m This device takes an input x(n) and
produces an output sequence

ye(n) =|x(n/L), if nis integer-multiple of L
0 otherwise
Here L is an integer

x(n) —t L — Ye(0)
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| -fold Expander

m For example, L = 2

BRI
01\23\4

TT[TT---.

=== _0=— - 0= - - =0
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m Other names for expander are
upsampler and interpolator
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Transform Domain Analysis

m Expander |
@)=, 2 0= 5 g
= 3 ypUz M=y
= B ZL)
So (

m This means that Y (e/?) is an L-fold
compressed version of X(e/»).

m The expander creates an imaging effect
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Transform Domain Analysis

m Decimator

| 1] M-1 A1
VAN B Y X e](w 2mk)/ M
p(e’™) M ( )

m Decimation produces expansion in
frequency domain giving rise to “aliasing”

m Aliasing can be avoided if x(n) is a
lowpass signal bandlimited to the region
lo| < /M
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Decimation Filter

m In most applications, the decimator is
preceded by a lowpass digital filter
called the decimation filter.

m This filter ensures that the signal being

decimated

is bandlimited.

SOV

H(z) — +M — y(n)

Decimation filter Decimator

1

ECR)
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Interpolation Filter

m A digital filter that follows an expander.
m Used to suppress all the images

m Typically it is lowpass with cutoff
frequency =/L.

<l el ES L e HE i e
Expander Interpolation filter

[H(e)
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Fractional Sampling Rate
Alteration

m In some applications it is necessary to change
the rate by a rational fraction
(such as L/M or M/L) .

m Example: L=2, M=3, M/L=1.5

A

X(ew) N ~/\\\(\(eJ'W)

-t -27/3 0 2n/3 T« ®

X(n) _ x3(n)  X;(n) y(n)

—»TL — H(2) —»lM ==
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Digital Filter Banks

m Collection of digital filters, with a common input

or a common output. So there can be two types of
filter banks

s Analysis Bank — Composed of Analysis Filters
s Synthesis Bank — Composed of Synthesis Filters

Hy(2)

> Xo(N)  Ye(n)

Fy(2)

x(n) TI::

H,(z)

_>X1(n) 3’1(”)_>

Fi(2)

[

Hy1(2)

Ly Xm1(N)  Yma(n)—s
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Digital Filter Banks

m Example: The DFT Filter Bank
Consider a filter bank based on DFT

matrix
x(n) —> """"""" >
2 Fso(n)
YA s.(n)
;Zl Sm-1(N)
B
Delay Chain
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Example: The DFT Filter Bank (contd.)

W is an M x M DFT matrix with elements [W], ., = Wkm , where

W = er7", M-l .

(M=% s;(mw "
k=0

sl ki
Xp(2)= X §;2)W
i=0
LERBRRES AR e R s
=Yz W "X(2)=2X ") "X(2)
i=0 i=0
So Xy (z)=Hp(2)X(z) where
H,(2)AHy(zW")
with N
Ho(z)=1+z_1+...+z_(M_1)
The system is equivalent to analysis bank with analysis filters
H(z)
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Time Domain Descriptions of
Multirate Filters

m The input-output relation in the time
domain for decimation, interpolation and
fractional decimation filters is given by

/[ ©
k:z_j.f(k)h(nM_k) , M-fold decimation filter

y(n) T S x(kh(n—kL) , L-fold interpolation filter

k=—0o0

§x(k)h(nM—kL) , M/L-fold decimation filter

k=—o0

N
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Interconnection of Building Blocks

m Some commonly occurring building
blocks in multirate systems

—>

IM S

—§—>

X;(n)

M

—>

M

X(N)—»

M

x(n) — *

M

M

d(n)
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Decimator-expander cascades

m The two structures are equivalent [i.e
y:(n)=y-(n) for every possible input x(n)]

iIff L and M are relatively prime integers
(i.e. greatest common divisor = 1)

x(n) —»

M

>

tL

N

x(n)

tL

o
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Noble Identities

m Noble identities are very useful in the
theory and implementations of
multirate systems.

X(ﬂ)g»lM 11}

G(2)

_3:1 (n)

s 62
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Polyphase Representation

m This representation permits great
simplification of theoretical results

m Leads to computationally efficient
implementations of decimation and
interpolation filters as well as filter banks.
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Polyphase Representation

m Basic Idea
Consider a filter H(z)= Sh(n)z™"

n=-—a0

By separating the even numbered coefficients
of h(n) from odd numbered one,

HEZ)= 3 2z +2z7! Sh2n+1)z 2"

Nn=—00 Nn=—00

Defining

Ey(2)= Sh(2n)z"E(2)= Sh2n+1)z™"

n=—0o0 n=—0

Therefore

H(z)=Ey(z*)+ 2z E(z%)
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Polyphase Representation

m Basic Idea (contd.)
Suppose an integer M, then H(z) can be decomposed as
H(z)= Sh(nM)z™™

+ 27l S (M +1)z™

n=—0

MDD S M + M —1)z M
This can be compactly written as H(2) = EO 2 Ey(z")

E(2)= Zeamz"  (Type 1 polyphase)

n

where el(n)éh(Mn+l) O</ < M-1

hm) — 22— M — ¢@)
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Polyphase Representation

H(z) can also be written as
H(z)="5 -0 p uy (Type 2 polyphase)
[=0

The Type 2 polyphase components R,(z) are
permutations of E£,(z), that is

R(z) = Ep.1./(2)

5/9/2007

25



Efficient Structure for Decimation
Filters

m Consider the decimation circuit

SOV

H(z)

—>»

‘M —— y(n)

Decimation filter Decimator

m We can represent this circuit using

polyphase imp

X(HLE EO(Zz)
E\(z%)

5/9/2007
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Efficient Structure for Decimation

Filters
Consider a Nth order FIR, with traditional direct
implementation  z! z’! z’!
X(Il) | I | lli—b—_
\/ h© \ /() /)
> > amsp @ y(n)>l2 — y(2n)

Computes only even numbered samples y(2n) requiring
N+1 multiplications and N additions.

Time change from 2n to 2n+1, change the stored signals
in the delay

m Computation must be completed in one unit of time.
m Inefficient resource utilization
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Efficient Structure for Decimation
Filters

Consider the polyphase implementation for H(z)
1 v2l» E\(z)
71
v2 ™ E (2 y(2n)
Let n, and n, be the orders of E,(z) and E,(z) (N +1=
np+n;+2)
E(z) requires n, +1 multiplications and n, additions. Total

cost is again N+1 multipliers and N adders.

Rate of operation for E,(z) is (N+1)/2 MPUs and N/2
APUs.

Efficient resource utilization.
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Efficient Structure for
Interpolation Filters

Consider and interpolation circuit

<l el el HED g @9
Expander Interpolation filter
In direct implementation H(z) performs
inefficiently, due to at most 50% nonzero
coefficients.

Only 50% multipliers h(n) have nonzero input,
and job must be completed in half unit of
time.

Inefficient resource utilization
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Efficient Structure for
Interpolation Filters

m Efficient structure can be obtained by using Type
2 polyphase decomposition.

H(z)=R(z%)+z'Ry(z%)

X(HL[: R,(z) 42 1 )

Ri(2) 12 y(n)

m R/(z) operates at input rate and each multiplier
gets one unit of time to complete its task

m Complexity is N + 1 MPUs and N - 1 APUs, last
adder after expander only performs interlacing
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Polyphase Structure of DFT
Filter Banks

m Polyphase implementation of k-th filter in a uniform DFT

bank is MEEEEEE
Hy(2) = Hy(zW") = > (2 WY E ")
With X,(z) denoting the output of H,(z)
EgR RS A SR EEAR ]
X ()= 2 WHGETEEDXE)

This can be represented by

x(n) . (™) Xo(1)
i
] : W :
il 1
By @) — Xp-1(10)
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Decimated Uniform Filter Banks

m In many applications such as QMF banks,
outputs of H,(z) are decimated by M.

x(n) M E@) Xo(1)

W*

E |
¢M—> E\.(2) —*

m This structure requires M times fewer
MPUs and APUs.

XM: (n)
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Perfect Reconstruction (PR)
Systems

7AN

m A system in which x(m)=cx(»-n) for some
c = 0 and integer n,.

> > >
x(n) z! z!
-
z! i z!
u

*
I W

£

; Z-l
> —»

Analysis bank <Synthesis bank

<
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Multistage Implementations

m Used in applications, where decimation or
interpolation by a large factor is required.

m Results in more efficient systems

e.g. M =16. Since 16 =4 x 2 x 2. S0
system can be implemented in three
stages.

—» Hy@2) > v4 > H@) > v2 I H(z) > v2 —>
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Interpolated FIR (IFIR)
Approach

m Efficient technique for the design of narrowband lowpass
filters. 4

1 —\ Desired narrowband response

| TINS
OA ®, O T ®
1 \ Stretched filter G(z)

| |
0 20, 20, T o
A

1 Response of G(z?) 3

| v\\Desired Undesired’/ |

! ! >
OA c?p ON T ®
1 | Response of 1(z)

| | >
0 ®, TT-0 T ®
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Interpolated FIR (IFIR) Approach

X(Il)_> I(2)

.

G(22)

y(n)

m If order of G(z) and I(z) are N, and N, , the
system requires (N, +1)+(N; +1) multiplications
and (N, + N;) additions.

m Filter G(z) is called the model filter and I(z) an

image suppressor.

m It is also possible to stretch the specifications
by an amount M,>2, so G(z") has M,-1
unwanted passbands.

5/9/2007
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Multistage Design of Decimation and
Interpolation Filters

X(n)—»

I(z)

X(n)—»

1(z)

G(z"))

—»

v M,

YyM,M,=M

—>

G(2)

—> v M,

—

The two-stage decimator developed from IFIR decimation

x(n) —t M\M,=M

<D TTEY

M,

G(z"))

— 1)

—»

G(z)

—>

M,

—>

I(z)

—

The two-stage interpolator developed from IFIR interpolation
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Applications of Multirate

Systems

m Subband Coding

m Split a signal into M subbands

m Decimate each subband signal by M

m Allocate bits for samples in each subband depending
on the energy content.

Hy(2)

Xo(n)

>y M

Vo(n)

‘M

Yo(n)

F(2)

y,(n)

v,(n)

H,(z)

>y M

*M

—>

F.(z)

x(n) T

yM.1(n

H,.(2)

*M

—>

Fy.1(2)

<4— 1mE
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Applications of Multirate Systems

m Subband Coding (contd)

s Examples of subband coding include
« ‘image coding (e.g. wavelet filter banks)’
« ‘audio coding’ such as digital compact cassette
(DCC), MiniDisc, MPEG etc.
s General remarks on subband coding

« For subband coding to work, knowledge about
energy distribution of X(e€?) is required

« The filters F,(z) should be chosen carefully to cancel
the aliasing introduced by band splitting and
decimation
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Filter Banks Applications

B Subband adaptive filtering

B Example : Acoustic Echo Cancellation

- Adaptive filter models (time-varying) acoustic echo path and
produces a copy of the echo, which is then subtracted from
microphone signal.

B Difficult problem !
- Long acoustic impulse responses
« Time-varying

far-end signal

o o)

near-end signal >

+ residual echo
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Filter Banks Applications

m Subband Adaptive Filtering (contd)

- Subband filtering = M subband modeling problems instead of one
fullband modeling problem

- Perfect reconstruction guarantees distortion-free desired near-end
speech signal

Hl(z) —+3  ad.filter
H2(z) —*,3 — adfilter

‘f H3(z) .3 adfilter
H4(z) .3 ad.filter

~HIE 3 @ 23 = Gl(@)

H22) 3 ) 13 G20 oy [y

H3(z) 43 (HH—3 | G3(2) |

Hd@) | 13 T A3 Gl
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m [ransmultiplexers

Filter Bank Applications

m Time Division Multiplexed (TDM)
m Frequency Division Multiplexed (FDM)

Xo(n)—>¢ M

>

F(2)

xl(n)—>f M

F.(z)

XM_l(n)—>f M

e

TDM
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Fy.1(2)

Synthesis Bank

Hy(2)

I

vM

— X",(n)

H,(z)

vM

==— ) X/\1 (n)

y(n) L

H, (2)

e

vM

— x*,,,(n)

FDM Analysis Bank

The complete transmultiplexer structure

TDM
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Summary

m Basic building blocks of multirate systems
and interconnection of these blocks has
been presented

m An in depth analysis of Polyphase
representation and their applications in
multirate systems has been discussed.

m Applications of Multirate systems such as
subband coding, subband adaptive
filtering and transmux has been
presented
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