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Introduction

� Multirate Systems

� Systems that employ more than one sampling rate

� Result in more efficient processing of signals

� Sampling rates at various internal points can be kept as 

small as possible

� Also results in “aliasing”, that can be cancelled
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Introduction

� Sampling rate alteration can be 
performed by using “Decimators” and 
“Expanders”.

� Multirate Systems have applications in

� Digital Audio Systems

� Subband Coding of Speech and Image Signals

� Adaptive Filters

� Digital Telephony
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Basic Multirate Operations 

� The most basic operations in multirate 
digital signal processing are
� Decimation

� Interpolation

� These operations can be performed by 
the building blocks known as
� Decimator

� Expander
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M-fold Decimator

� It takes an input sequence x(n) and 
produces the output sequence

yD(n) = x(Mn)

where M is an integer

� Retains only those samples of x(n) 
which occur at time equal to multiples 
of M. 

Mx(n) yD(n)
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M-fold Decimator

� For example, M = 2

� Decimator is also called a downsampler, 
subsampler or a compressor

0      2      
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L-fold Expander

� This device takes an input x(n) and 
produces an output sequence

yE(n) = x(n/L),  if n is integer-multiple of L

0          otherwise

Here L is an integer

Lx(n) yE(n)
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L-fold Expander

� For example, L = 2

� Other names for expander are 
upsampler and interpolator

0      1      2     3       4     5       6     7       8    

0      1       2     3      4
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Transform Domain Analysis

� Expander

So

� This means that YE(e
jω) is an L-fold 

compressed version of X(ejω).

� The expander creates an imaging effect
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Transform Domain Analysis

� Decimator

� Decimation produces expansion in 
frequency domain giving rise to “aliasing”

� Aliasing can be avoided if x(n) is a 
lowpass signal bandlimited to the region 
|ω| < π/M
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Decimation Filter

� In most applications, the decimator is 
preceded by a lowpass digital filter 
called the decimation filter.

� This filter ensures that the signal being 
decimated is bandlimited.

H(z) Mx(n) y(n)

Decimation filter     Decimator

0

1
|H(ejω)|

ωD π/M ωs                                       π
ω
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Interpolation Filter

� A digital filter that follows an expander.

� Used to suppress all the images

� Typically it is lowpass with cutoff 
frequency π/L.

0

1
|H(ejω)|

ωD π/L ωs                                        π
ω

L H(z)x(n) y(n)

Expander      Interpolation filter
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Fractional Sampling Rate 
Alteration

� In some applications it is necessary to change 
the rate by a rational fraction 
(such as L/M or M/L) .

� Example: L=2, M=3, M/L=1.5

X(ejw) Y(ejw)

x(n)     x1(n)    x2(n)     y(n)

-π -2π/3          0                2π/3   π ω

L H(z) M
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Digital Filter Banks

� Collection of digital filters, with a common input 

or a common output. So there can be two types of 
filter banks

� Analysis Bank – Composed of Analysis Filters

� Synthesis Bank – Composed of Synthesis Filters

x(n) x0(n)      y0(n)

x1(n)      y1(n)

xM-1(n)   yM-1(n) x^(n) 

Ho(z)

H1(z)

HM-1(z)

Fo(z)

F1(z)

FM-1(z)
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Digital Filter Banks

� Example: The DFT Filter Bank

Consider a filter bank based on DFT 
matrix

x(n) x0(n)

z -1 s0(n)                        x1(n)

z -1 s1(n)

z -1 sM-1(n)                        xM-1(n)

W*

Delay Chain
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Example: The DFT Filter Bank (contd.)

W is an M × M DFT matrix with elements [W]km = Wkm , where 

W = e-j2π/M . 

So where

with

The system is equivalent to analysis bank with analysis filters 
Hk(z)
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Time Domain Descriptions of 
Multirate Filters

� The input-output relation in the time 
domain for decimation, interpolation and 
fractional decimation filters is given by

,  M-fold decimation filter

y(n) = ,  L-fold interpolation filter

,  M/L-fold decimation filter∑
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Interconnection of Building Blocks

� Some commonly occurring building 
blocks in multirate systems

a ≡ a

x1(n) x1(n)

≡
x2(n)                                     x2(n)

x(n) ≡

d(n)

M M

M

M

M

M

M

Mx(n)

d(n)
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Decimator-expander cascades

� The two structures are equivalent [i.e 
y1(n)=y2(n) for every possible input x(n)] 

iff L and M are relatively prime integers 
(i.e. greatest common divisor = 1)

M L

L M

x(n)

x(n)

y1(n)

y2(n)
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Noble Identities

� Noble identities are very useful in the 
theory and implementations of 
multirate systems.

M G(z)

G(z) L

x(n)

x(n)

y1(n)

y3(n)

G(zM) M

L G(zL)

x(n)

x(n)

y2(n)

y4(n)

≡

≡

Identity 1

Identity 2
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Polyphase Representation

� This representation permits great 
simplification of theoretical results

� Leads to computationally efficient 
implementations of decimation and 
interpolation filters as well as filter banks.   



5/9/2007 23

Polyphase Representation

� Basic Idea

Consider a filter 

By separating the even numbered coefficients 
of h(n) from odd numbered one, 
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Polyphase Representation

� Basic Idea (contd.)

Suppose an integer M, then H(z) can be decomposed as

This can be compactly written as

(Type 1 polyphase)

where 0≤ l ≤ M-1
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Polyphase Representation

H(z) can also be written as

(Type 2 polyphase)

The Type 2 polyphase components Rl(z) are 
permutations of El(z), that is 

Rl(z) = EM-1-l(z)
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Efficient Structure for Decimation 
Filters

� Consider the decimation circuit

� We can represent this circuit using 
polyphase implementation for M=2 as

H(z) Mx(n) y(n)

Decimation filter     Decimator

x(n)

z-1

E0(z
2)

E1(z
2) 2y(n)
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Efficient Structure for Decimation 
Filters

� Consider a Nth order FIR, with traditional direct 
implementation

� Computes only even numbered samples y(2n) requiring 
N+1 multiplications and N additions.

� Time change from 2n to 2n+1, change the stored signals 
in the delay

� Computation must be completed in one unit of time.

� Inefficient resource utilization

2 y(2n)

z-1                  z-1                z-1

x(n)

y(n)

h(0)          h(1) h(N)
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Efficient Structure for Decimation 
Filters

� Consider the polyphase implementation for H(z)

� Let n0 and n1 be the orders of E0(z) and E1(z) (N +1= 
n0+n1+2)

� El(z) requires nl +1 multiplications and nl additions. Total 
cost is again N+1 multipliers and N adders.

� Rate of operation for El(z) is (N+1)/2 MPUs and N/2 
APUs.

� Efficient resource utilization.

x(n)

z-1
E0(z)

E1(z)

2

y(2n)2
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Efficient Structure for 
Interpolation Filters

� Consider and interpolation circuit

� In direct implementation H(z) performs 
inefficiently, due to at most 50% nonzero 
coefficients.

� Only 50% multipliers h(n) have nonzero input, 
and job must be completed in half unit of 
time.

� Inefficient resource utilization     

L H(z)x(n) y(n)

Expander      Interpolation filter
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Efficient Structure for 
Interpolation Filters

� Efficient structure can be obtained by using Type 
2 polyphase decomposition.

� Rl(z) operates at input rate and each multiplier 
gets one unit of time to complete its task

� Complexity is N + 1 MPUs and N – 1 APUs, last 
adder after expander only performs interlacing
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12
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x(n)

z-1
R0(z)

R1(z)

2

y(n)2
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Polyphase Structure of DFT 
Filter Banks

� Polyphase implementation of k-th filter in a uniform DFT 
bank is

With Xk(z) denoting the output of Hk(z)

This can be represented by

∑
−

=

−−
==

1

0

1
0 )()()()(

M

l

M
l

lkk
k zEWzzWHzH

∑
−

=

−−
=

1

0

))()(()(
M

l

M
l

lkl
k zXzEzWzX

x(n)                                                            x0(n)

z-1 

z-1

xM-1(n)

W*

E0(z
M)

EM-1(z
M)



5/9/2007 32

Decimated Uniform Filter Banks

� In many applications such as QMF banks, 
outputs of Hk(z) are decimated by M.

� This structure requires M times fewer 
MPUs and APUs.

x(n)                                                            x0(n)

z-1 

z-1

xM-1(n)

W*

E0(z)

EM-1(z)

M

M
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Perfect Reconstruction (PR) 
Systems

� A system in which                    for some 
c ≠ 0 and integer n0 .

)()( 0

^

nncxnx −=

x(n)                   z-1

z-1

z-1

W* W

z-1

z-1

z-1     

x^(n)
Analysis bank      Synthesis bank
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Multistage Implementations

� Used in applications, where decimation or 
interpolation by a large factor is required.

� Results in more efficient systems

e.g.  M =16. Since 16 = 4 × 2 × 2. So 
system can be implemented in three 
stages.

H0(z) H1(z) H2(z)4 2 2
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Interpolated FIR (IFIR) 
Approach

� Efficient technique for the design of narrowband lowpass 
filters.

1                        Desired narrowband response

0         ωp     ωs                                                               π ω

1                           Stretched filter G(z)

0                2ωp   2ωs                                                               π ω

1                           Response of G(z2)

0         ωp     ωs                                                               π ω

1                            Response of I(z)

Desired Undesired

0         ωp                                                               π-ωs                   π ω
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Interpolated FIR (IFIR) Approach

� If order of G(z) and I(z) are Ng and Ni , the 
system requires (Ng +1)+(Ni +1) multiplications 
and (Ng + Ni) additions.

� Filter G(z) is called the model filter and I(z) an 
image suppressor.

� It is also possible to stretch the specifications 
by an amount M1>2, so G(zM1) has M1-1 
unwanted passbands.

x(n)                           y(n)
I(z) G(z2)
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Multistage Design of Decimation and 
Interpolation Filters

I(z) G(zM
1) M1M2=Mx(n)

I(z) G(z)x(n) M1 M2

The two-stage decimator developed from IFIR decimation

I(z)G(zM
1)M1M2=M

I(z)G(z)M1
M2

The two-stage interpolator developed from IFIR interpolation    

x(n)

x(n)
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Applications of Multirate 
Systems

� Subband Coding

� Split a signal into M subbands 

� Decimate each subband signal by M

� Allocate bits for samples in each subband depending 
on the energy content.

Ho(z) M M Fo(z)
x0(n)            v0(n)             y0(n)

HM-1(z) M M FM-1(z)

xM-1(n)         vM-1(n)          yM-1(n)

H1(z) M M F1(z)
x1(n)            v1(n)             y1(n)

x(n)

x^(n)
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Applications of Multirate Systems

� Subband Coding (contd)

� Examples of subband coding include 

• ‘image coding (e.g. wavelet filter banks)’

• ‘audio coding’ such as digital compact cassette 
(DCC), MiniDisc, MPEG etc.

� General remarks on subband coding

• For subband coding to work, knowledge about 
energy distribution of X(ejω) is required

• The filters Fk(z) should be chosen carefully to cancel 
the aliasing introduced by band splitting and 
decimation
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Filter Banks Applications

� Subband adaptive filtering

� Example : Acoustic Echo Cancellation

• Adaptive filter models (time-varying) acoustic echo path and 
produces a copy of the echo, which is then subtracted from 
microphone signal.

� Difficult problem !

• Long acoustic impulse responses

• Time-varying
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� Subband Adaptive Filtering (contd)

- Subband filtering =  M subband modeling problems instead of one
fullband modeling problem

- Perfect reconstruction guarantees distortion-free desired near-end 
speech signal

Filter Banks Applications

H1(z)

3H2(z)

3H3(z)

3H4(z)

3H1(z)

3H2(z)

3H3(z)

3H4(z) +

+

+

+ 3 G1(z)

3 G2(z)

3 G3(z)

3 G4(z)

OUT+

ad.filter

ad.filter

ad.filter

ad.filter

3
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Filter Bank Applications

� Transmultiplexers

� Time Division Multiplexed (TDM)

� Frequency Division Multiplexed (FDM)

Ho(z) MM Fo(z)

HM-1(z) MM FM-1(z)

H1(z) MM F1(z)

y(n)

x0(n)

x1(n)

xM-1(n)

x^0(n)

x^1(n)

x^M-1(n)

TDM                       Synthesis Bank        FDM        Analysis Bank                           TDM

The complete transmultiplexer structure
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Summary

� Basic building blocks of multirate systems 
and interconnection of these blocks has 
been presented

� An in depth analysis of Polyphase 
representation and their applications in 
multirate systems has been discussed.

� Applications of Multirate systems such as 
subband coding, subband adaptive 
filtering and transmux has been 
presented 
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