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Abstract

This paper describes three methods for the synthesis
of singing speech. For each system, the speech syn-
thesis process is explained in detail. Each of the de-
scribed methods uses a different technique to produce
synthetic speech. Finally the performance of these sys-
tems is discussed and possible further improvements are
mentioned.

1 Introduction

The intention of this paper is to give an overview of
methods for synthesizing singing speech. As this is a
very current research topic, there are some very different
basic approaches. Three of them are described in detail.

Synthesizing singing speech differs from the synthe-
sis of spoken speech in several points. First of all the
musical score has to be integrated. It contains instruc-
tions for pitch heights and note durations as well as
overall properties of the song like tempo and rhythm.
Secondly, this score should not be followed too strictly
because that would lead to unnatural sounding speech.
Thus several singing effects like vibrato, overshoot and
preparation have to be considered and modeled by the
systems. Another important point is the avoidance of
”perfect” synthesis. Personal variations in the voice of
singers have to be taken into account to produce decent
results.

This paper is organized as follows: In section 2 an
HMM-based approach is presented as an extension of
an existing speech synthesis system [1]. Section 3 deals
with an articulatory speech synthesizer [3] whereas in
the sections 4, 5 and 6 a vocal conversion method based
on the speech analysis system STRAIGHT is presented
[6], [7]. Section 7 finally draws conclusions and compares
the performance of the presented systems.

2 HMM-based synthesis of
singing

This system uses a Hidden-Markov-Model based ap-
proach to produce synthetic speech presented in [2]. The
usage of the HMM-based synthesis technique is justified

by the necessary amount of recorded singing voice data,
especially in comparison to the unit-selection method.
The latter requires a huge amount of data to be able
to take the large number of combinations of contextual
factors that affect singing voice into account. An HMM-
based system on the other hand can be trained with
relatively little training data.

Figure 1: Overview of the HMM-based system [1]

An overview of the speech synthesis system together
with the analysis part can be seen in figure 1. In the
upper part (analysis), there is a singing speech database
from which labels and speech parameters are extracted.
The latter are mel-cepstral coefficients (MFCCs) for the
spectral features and F0 for the excitation parameters.
These parameters are used for the training of the context
dependent phoneme HMMs. Also the state duration
models and the so-called time-lag models, which will be
described later, are trained.

In the synthesis stage, the given musical score to-
gether with the song lyrics are converted into a context-
dependent label sequence. The overall song HMM is
a concatenation of several context dependent HMMs
which are selected by this label sequence. In the next
step, the state durations together with the time-lags are
determined. A speech parameter generation algorithm
[2] is used to get the parameters for the Mel-log spectrum
approximation (MLSA) filter, which finally produces the
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synthetic speech.
The system is very similar to an HMM-based reading

speech synthesizing system presented in [2]. However,
there are two main differences in the synthesis of singing:
Contextual factors and the time-lag models, which will
be described in the next subsections.

2.1 Contextual factors

According to [1], the contextual factors that affect
singing voice should be different from those that affect
reading voice. The presented method uses the following
contextual factors:

• Phoneme

• Tone (as indicated by the musical notes)

• Note duration and

• Position in the current musical bar

For each of these factors, the preceding, succeeding
and current one is taken into account. These factors
are determined automatically from the musical score,
however the paper does not go into detail about that.

2.2 Time-lag models

The time-lag models seem to be the main feature of
this method. Their principal purpose can be explained
in the following way: If a singing voice is synthesized
that exactly follows the instructions given by the musical
score, the result will sound unnatural. This is due to
the fact that no human singer will ever strictly follow
the score. There are always variations in any of the
parameters and the time-lag models take variations in
the note timing into account.

Figure 2: Usage of time-lag models [1]

The effect can be seen in figure 2. Time-lags are
placed between the start of the notes given by the score
and the start of the actual speech. The authors mention
for example the well-known tendency of human singers
to start consonants a little earlier than indicated by the
score [1].

Determination of these time-lags is in principle analo-
gous to the other speech parameters like pitch and state
duration: There is a context-clustering using a deci-
sion tree. Context dependent labels are assigned to the
time-lags and so they can be selected. Like the state
duration models, the time-lag models are in fact just
one-dimensional Gaussians. The process can be seen in
figure 3.

Figure 3: Decision tree clustering of the time-lag models
[1]

At the synthesis stage, the concrete time-lags have to
be determined. This is done by firstly taking each note
duration from the musical score. Secondly, the state
durations and time-lags are determined simultaneously
such that their joint probability is maximized:

P (d,g|T,Λ) = P (d|g,T,Λ)P (g|Λ) (1)

=
N∏

k=1

P (dk|Tk, gk, gk−1,Λ)P (gk|Λ)

where dk are the start durations of the kth note, gk is the
time-lag of the start timing of the k+ 1th note and Tk is
the duration of the kth note from the score. Finding the
values of d and g that maximize this probability leads
to a set of linear equations that can be solved quite
efficiently.

2.3 Experimental evaluation

The authors say that they could not find a suitable and
available singing voice database, so they recorded one
by themselves for which they took a non-professional
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japanese singer. Manual corrections were done to en-
hance the quality. Speech analysis, HMM training and
context clustering were performed. A subjective listen-
ing test was performed where they took 14 test persons
and played them 15 randomly selected musical phrases
synthesized with their system. An important result was
that the incorporation of the time-lag models substan-
tially improved the perceived speech quality. The test
persons also found that the voice characteristics of the
original singer were found in the synthetic speech. An
example for this is that the original singer had the ten-
dency to sing a little too flat, which was reflected by the
synthesized F0-pattern.

3 Articulatory synthesis of
singing

This method, which is described in [3] and [4], uses
a completely different approach to synthesize speech
sounds. Like the HMM-based system from the previ-
ous section, it is also an extension of an already existing
speech synthesizer that was modified to be able to pro-
duce singing speech. This was done for the synthesis of
singing challenge at the Interspeech 2007 in Antwerp,
Belgium [5].

This method consists of a comprehensive three-
dimensional model of the vocal tract together with ad-
ditional steps and other models to simulate this model
in order to get speech sounds out of it. The geometric
model is converted into an acoustic branched tube model
and finally to an electric transmission line circuit. An-
other interesting feature is the way how this method is
controlled. All these points are explained in more detail
in the following subsections.

3.1 Overview of the synthesizer

Figure 4 shows an overview of the articulatory speech
synthesizer [3]. On top, the input to the system is miss-
ing but that will be described later. The system con-
sists of three parts: The three-dimensional wireframe
vocal tract representation (upper part of the figure),
the acoustic branched tube model (middle part) and
the simulated electrical transmission line circuit (lower
part).

Shape and position of all movable structures in the
vocal tract model are a function of 23 parameters, like
horizontal tongue position or lip opening for example.
To create the wireframe model, magnetic resonance im-
ages (MRI) of a german male speaker were taken during
the pronunciation of each german vowel and consonant.
This MRI data was used to find the parameter combi-
nations.

It is well-known that vowels and consonants do
not stand for themselves concerning their articulation.
There is the important topic of coarticulation. If you for

Figure 4: Overview of the articulatory synthesizer [3]

example say the german utterances ”igi” and ”ugu” you
will find out that your vocal tract behaves differently
for both times you pronounce the consonant g. Your
tongue will be raised both times, so the vertical tongue
position is likely to be important for the pronunciation
of a g. The horizontal tongue position however is differ-
ent: For the ”igi”, the tongue will be more in front of
the mouth than it is for the ”ugu”. So the horizontal
tongue position for a g is an example for coarticulation,
some parameters of the vocal tract depend on surround-
ing vowels or consonants. This method takes this into
account by a so-called dominance model [4], which con-
sists of a weighting of the vocal tract parameters for
consonants and vowels. A high weight means that the
corresponding parameter is important for this letter, a
low weight indicates coarticulation.

The next step is the acoustical simulation of the model
via a branched tube model that represents the vocal
tract geometry. It consists of short adjacent elliptical
tube sections which can be represented by an overall
area function (see figure 4, middle part) and a discrete
perimeter function.

This tube model can be transformed into an inhomo-
geneous transmission line circuit with lumped elements
(see figure 4, lower part). This is done by using an anal-
ogy between acoutic and electric transmission that both
deal with wave propagation along a path where there are
impedance changes. Each of the tube sections is repre-
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sented with a two-port T-type network, whose elements
are a function of the tube geometry. Speech output is
produced by simulating this network by means of finite
difference equations in time domain. Many additional
effects that can occur in the vocal tract are taken into
account by making the electrical network more complex.
There are for example parallel circuits for the paranasal
sinus or parallel chinks in the vocal tract. The author
says that all major speech sound for German are possible
with this method [3].

3.2 Gestural score

In figure 4, the overall input to the system was miss-
ing. Utterances can be produced by certain combina-
tions and movements of 23 vocal tract parameters but
until now there is no way of controlling these parameters.
The author developed a method called gestural score [3],
[4] which fills the gap between musical score and lyrics
on the one hand and the vocal tract parameters at the
other hand. It is important to mention that this gestural
score does not contain the vocal tract target parameters
themselves, but are used for their generation. The au-
thor calls them ”goal-oriented ariculatory movements”
[4], so they more or less show what has to be done by
the vocal tract, but not how.

Figure 5: Gestural score with an example [4]

The way this gestural score works is explained by an
example given in figure 5, the german utterance ”musik”
[4]. Below the speech signal there are six rows, which
correspond to the six types of gestural scores. The first
two are simply vocalic, in this case the u and i and con-
sonantal gestures, here m, s and k. At the first glance it
is striking that there seem to be the wrong consonants,
but it is well-known that certain groups of consonants

use very similar vocal tract shapes. The group (b,p,m)
is an example for this. These consonants are produced
by a common vocal tract configuration with minor vari-
ations. The second conspicuity is the overlapping of
consonants and vowels. This is again due to the coar-
ticulation phenomenon mentioned in section 3.1.

The other four gestural score types are the targets
for velic aperture, glottal area, target F0 and lung pres-
sure. Below those there are two examples of concrete
vocal tract parameters, the lip opening and the tongue
tip height. These are generated from the gestural score
and are target functions for the vocal tract parameters.
They are realized using critically damped, third-order
dynamical systems with the transfer function:

H(s) =
1

(1 + τs)3
(2)

where τ is a time constant which can be used to control
the speed of the parameter change.

The author derives the gestural score by using a rule-
based transformation of a self-defined XML-format that
represents a song including its score and lyrics.

3.3 Pitch dependent vocal tract target
shapes

It is well-known that singers use different vocal tract
shapes for the same vowel at different pitches. The orig-
inal articulatory speech synthesizer did not take this into
account and used just one general target shape. Figure
6 explains the occurring effects.

Figure 6: Pitch dependent vocal tract target shapes [3]
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The solid line in the graphs represents the vocal tract
transfer function and the spectral lines are the harmon-
ics of the voice source. The first of the three graphs
shows these for an /i:/, sung at F0 = 110 Hz and the
conventional, low pitch vocal tract shape (on the upper
left). If that /i:/ is produced by the same vocal tract
shape, but at F0 = 440 Hz, this will result in the second
graph that is shown. One can clearly see that the first
formant of the vocal tract does not match the first for-
mant of the voice source at all. To overcome this prob-
lem, a second, high-pitch (440 Hz) target shape, shown
on the upper right, was created. So this and the con-
ventional (110 Hz) shape are the two ”extreme” target
shapes. The lowest graph in figure 6 shows the high-
pitch /i:/ with the high-pitch shape. Here one can see
that the first harmonic of the source and the first vocal
tract formant match well.

Between these two vocal tract shapes, a linear inter-
polation is performed.

3.4 Evaluation

Articulatory speech synthesis is a very interesting ap-
proach to speech synthesis in general, because it reflects
the natural way speech is produced. At the synthesis of
singing challenge 2007, this method finished at the sec-
ond place [5] out of six contestants. It is also worth men-
tioning that this method seems to need a lot of manual
fine tuning, especially for optimizing vocal tract shapes.
The author also mentions the guidance of this fine tun-
ing by a professional singer as one possible future im-
provement.

4 Converting Speech into Singing
Voice

The method of the winner of the Synthesis of Singing
Contest 2007 [5], [6] is presented. The main idea here
is to analyse a speaking voice reading the lyrics of song
and to convert it to a singing voice by adapting the
speech parameters according to a musical score and some
know-how about singing voices. The speaking voice is
analysed by a system called STRAIGHT. After adapt-
ing the parameters to represent a singing voice, they
are re-synthesised. The next section describes the basic
ideas of STRAIGHT, the main tool used here. Then the
conversion system is discussed in more detail.

5 STRAIGHT

STRAIGHT stands for ”Speech Transformation
and Representation using Adaptive Interpolation of
weighted Spectrum” and was proposed by Kawahara
et al. [7]. The idea for STRAIGHT was introduced by
the need for flexible and robust speech analysis and

modification methods. In its first version, it consists
of a robust and accurate F0 estimator and a spectral
representation cleaned from distortions which normally
occur in the standard spectrogram.

5.1 Principle

The STRAIGHT system is derived from the channel
vocoder, which is illustrated in figure 7. The channel
vocoder detects whether the input signal x(k) is voiced
or unvoiced and encodes this information in a binary
variable S. If the input signal is voiced, the F0 (N0) is ex-
tracted, normally by measuring the fundamental period.
Additionally, the input is processed by a band pass fil-
ter bank with central frequencies covering the frequency
range of x(k). After each band pass filter, the envelope
of the channel signal is determined giving a gain factor
for each channel.

Figure 7: Channel vocoder

On the receiving side of the channel vocoder, an arti-
ficial excitation signal is generated from S and N0. This
excitation is processed by an identical filter bank like on
the transmitting side and amplified by the gain factors.
The gain factors together with the filter bank model the
vocal tract in the well known source-filter model (figure
8) widely used in speech processing. Note that a band-
pass of the filter bank can be seen as a modulated version
of a prototype low-pass, if the shapes of the band-passes
are identical. Further the filter bank can be described in
terms of of the Short Term Fourier Transform (STFT)
using the impulse response of the prototype low-pass as
windowing function [8]. In that way, the power spectro-
gram models the vocal tract filter.

The advantages of the channel vocoder are the simple
and easy to understand concept, the intelligible speech
quality and a robust possibility to change speech param-
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Figure 8: Source-filter model

eters.
The disadvantage is that the vocoder produces bad

quality in sense of naturalness. A normal vocoder voice
sounds mechanic and robot like. In some cases this de-
sired. For example, it is a nice effect used in computer
music to take the signal of an instrument as excitation of
the vocal tract filter. The instrument still can be heard
clearly, but it is coloured by the singing voice. As an
example hear the song ”Remember” by the group Air.
However, the typical vocoder voice is not desired if the
goal is natural sounding synthesised speech.

5.2 Spectrogram Smoothing

One of the main problems of the vocoder is a certain
buzziness when the excitation is plosive. There are al-
ready affective approaches to reduce this problem. The
other problem are interferences in the estimation of
the spectrogram, introduced by periodic excitations, i.e.
voiced sounds. In the Vocoder concept, the estimation
of spectrogram is equivalent to the identification of the
vocal tract filter. It is clear, that this identification is
easier if a noise like input signal, i.e. unvoiced sounds,
is used. However, if the excitation is quasi-periodic, the
spectrogram exhibits interferences, which appear as pe-
riodic distortions in the time domain and in the fre-
quency domain. Therefore information of F0 and the
window length is visible in the whole spectrogram and
a clean separation of excitation and vocal tract is not
achieved.

Figure 9: Spectrogram of a regular pulse train with in-
terferences

The solution proposed by Kawahara et al. is to regard
the periodic excitation signal as 2 dimensional sampling
operator, which provides information every t0 and F0.
Due to this, the spectrogram can be seen as 3D surface,
where time and frequency are on the abscissae and the
power is on the ordinate. In that way, spectral anal-
ysis can be seen as a surface recovery problem. The
first approach proposed by the authors was to use a
2D smoothing kernel, which is computational intensive.
The next approach they presented was to reduce the re-
covery problem to one dimension. If the window of the
STFT matches the current fundamental period of the
signal, the variations in the time domain are eliminated
and the surface reconstruction problem is reduced to the
frequency domain. For that, an exact and robust F0 es-
timator is needed, and will be discussed later as part of
the STRAIGHT strategy.

The easiest method to recover the 1 dimensional fre-
quency surface is to connect the frequency pins with
straight line segments. An equivalent approach which
is more robust against F0 estimation errors, is the con-
volution with a smoothing kernel. Luckily, convolution
in frequency domain is equivalent to multiplication in
time domain and can be achieved by selecting an ap-
propriate form of the pitch adaptive time window. The
authors chose a triangular window, since it corresponds
to a (sin(x)/x)2 function in frequency domain and places
zeros on all harmonic pins except the pin at 0. In addi-
tion, the triangular window is weighted with a Gaussian
window to further suppress F0 estimation errors.

Figure 10: Spectrogram of pulse train using pitch adap-
tive windows

In figure 10 one can see that this operation eliminates
the periodic interferences. One can also see phasic ex-
tinctions of adjacent harmonic components, visible as
holes in spectral valleys. In order to reduce these, a
complementary spectrogram is computed by modulat-
ing the original window in the form

wc(t) = w(t)sin(πt/t0) (3)

The resulting spectrogram has peaks where the orig-
inal spectrogram has holes, as it can be seen in figure
11. The spectrogram with reduced phase extinctions
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in figure 12 is created by blending the original and the
complementary spectrogram in the form of

Pr(w, t) =
√
P0(w, t)2 + ξPC(w, t)2 (4)

The blending factor ξ was determined by a numerical
search method and set to 0.13655.

Figure 11: Complementary spectrogram

Figure 12: Blended spectrogram

One problem introduced by the method described
here is over-smoothing. Using the pitch adaptive tri-
angular window weighted with a Gaussian window is
equivalent to apply a Gaussian smoothing kernel fol-
lowed by a (sin(x)/x)2-kernel in the frequency domain.
This over-smooths the underlying spectral information.
To overcome this problem, Kawahara et al. modified the
triangular kernel using an inverse filter technique. The
new kernel reduced the over-smoothing effect while still
aiming at the goal to recover spectral information in the
frequency domain [7].

5.3 F0 Estimation

Normally the F0 is estimated by detecting the funda-
mental period. This approach is hard for speech signals,
since they are not purely periodic and their F0 is unsta-
ble and time variant. The following representation of a
speech waveform is used, which is a superposition of am-
plitude modulated and frequency modulated sinusoids

s(t) =
∑
k∈N

αk(t)sin
(∫ t

t0

k(ω(τ) + ωk(τ))dτ + Φk

)
(5)

The STRAIGHT method uses a new concept called
”fundamentalness” for the F0 estimation. For this pur-
pose, the input signal is split into frequency channels,
where a special shaped filter is used. This procedure is
illustrated in figure 13. Note that the filter has a steeper
edge at higher frequencies and a slower cut-off at lower
frequencies. This shape can contain the fundamental
component alone, but will contain lower components if
it is moved over higher components. The fundamental-
ness for each channel is defined as the reciprocal of the
product of the FM and the AM components, where the
AM component is normalized by the total energy and
the FM component is normalized by the squared fre-
quency of the channel. Therefore, the fundamentalness
of a channel is high, if the FM and AM magnitudes are
low. The F0 is determined by averaging the instanta-
neous frequencies of the channel with the highest fun-
damentalness index and its neighbouring channels. The
fundamentalness was found to be a good estimator for
F0 even at low SNR. Also, a reciprocal relation between
the fundamentalness value and the estimation error of
F0 was observed. Due to this, the fundamentalness can
also be used for the voiced/unvoiced decision.

Figure 13: Illustration of fundamentalness

6 Application in the Speech to
Singing Voice system

The overall system is sketched in figure 14 [6]. The
speaking voice signal and the musical score including
the song lyrics are inputs to the system. Addition-
ally, synchronization information between these has to
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be provided, which is created by hand in the current
system (see figure 15). STRAIGHT extracts the F0, the
spectral envelope and a time-frequency map of aperi-
odicity, which is a concept introduced in later versions
of STRAIGHT. These parameters are changed in three
ways: change of the F0, change of the duration and
change of the spectral information.

Figure 14: Overall conversion system

6.1 F0

The ideal F0 of the singing voice is completely given by
the musical score (see figure 16). Following the pitch
exactly would sound very unnatural. Therefore the F0
is changed according to features observed in real singing
voices. Firstly, overshoot is added, which is a exceeding
over the target note after a jump. Secondly, a vibrato is
simulated by a 4-7 Hz frequency modulation. Thirdly,
a movement of pitch in opposite direction just before a
jump is added, which is called preparation. Fourthly,
fine fluctuations (>10 Hz) in F0 are modeled by adding
low-pass filtered noise.

6.2 Duration

The duration of the spoken words has to be adapted to
the duration of sung words, given by the musical score.
A consonant followed by a vowel is modelled as a con-
sonant part, a boundary part of 40ms and a vowel part.
The consonant parts are lengthened by fixed rates, de-
pendent on the consonant type. These rates were found

Figure 15: Synchronisation information

empirically. The boundary part is kept unchanged and
the vowel part is lengthened, so that the whole combi-
nation fills the desired note length.

Figure 16: F0 changes

6.3 Spectral Envelope

Different than in speech voices, in singing voices a strong
peak can be observed at about 3kHz, a so-called singing
formant. In the conversion system, this peak is empha-
sised in the spectrogram. Another feature the authors
implemented is an AM of the formants synchronized
with the vibrato of the F0, which also occurs in real
singing voices.

7 Conclusion

This paper described three very different methods of
synthesizing singing voice. In particular, the underlying
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Figure 17: Original and modified spectrogram

techniques of speech synthesis were presented, together
with the necessary extensions to produce singing voice.

The choice of the presented methods was made ac-
cording to their relevance. From the synthesis of singing
challenge 2007 [5], the first- and second-placed partici-
pants were considered as well as an example for HMM-
based singing synthesis. The latter one was chosen be-
cause it can be understood as an extension of a speech
synthesis system that was presented earlier.

In general, current methods show a surprisingly good
performance, although there are many situations in
which a still too artificial sounding output is produced.
Here, the goal has to be naturalness. Therefore, typical
variations in all voice parameters have to be taken into
account.
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