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2 ACOUSTIC TUBE MODELS

1 Introduction

Speech synthesis methods that simulate speech production mechanisms are mainly based

on the source/filter–theory. The model consists of three parts, the source, the filter and

lip radiation, as seen in figure 1. The vocal tract can be modelled as an acoustic tube

with varying cross–sectional area. A linear filter simulates the vocal tract that varies over

time, which in turn is driven by an adequate source. To this category belong two main

techniques: The Formant Synthesizer and Diphone Concatenation.

Figure 1: Source/Filter–Model

2 Acoustic Tube Models

The wave equation is a linear partial differential equation whose solution describes pressure

and velocity of air particles in a sound wave as a function of time and space, and provides

a means to approximately describe the acoustics of speech production. Sound in the vocal

tract can be described by a simple lossless uniform tube model. This model can be extended

to a nonuniform tube model with energy loss, including vocal tract wall vibration, viscosity,

thermal conduction of air particles and radiation loss of the lips. The losses are described

by partial differential equations which are coupled to the wave equation. These equation

set can be solved by numerical simulation. To get a closed–form transfer function of air

particle velocity from the glottis to the lips an alternative approach can be followed. This

model approximates the vocal tract by a concatenation of acoustic tubes, each of small

length and uniform cross–section. This model assumes that the vocal tract is linear and
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2 ACOUSTIC TUBE MODELS 2.1 Uniform Tube Model: Lossless Case

Figure 2: Vocal tract to acoustic tube model

time–invariant. More accurate models consider a time–varying vocal tract and nonlinear

coupling between vocal folds and vocal tract.

2.1 Uniform Tube Model: Lossless Case

• Constant (time– and space–invariant) cross–section A(x, t) = A

• Moving piston provides an ideal particle velocity source

• The open end represents opened lips

Figure 3: Lossless uniform tube model

Volume Velocity u(x, t): Rate of flow of air particles perpendicularly through a specified

area. u(x, t) is used instead of the air particle velocity v(x, t) and is related by u(x, t) =

A · v(x, t).
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2 ACOUSTIC TUBE MODELS 2.1 Uniform Tube Model: Lossless Case

Wave Equation:

−∂p
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is the acoustic inductance and A
ρ·c2 the acoustic capacitance. These quantities describe

the inertia (mass or density) and the springiness (elasticity) of the air medium.
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Velocity and pressure is comprised by a forward– and backward–travelling wave. The

steady–state solutions can be represented in the frequency domain, because ultimately

we are interested in the frequency response of the tube.

Pressure (p) ↔ Voltage (v)

Volume Velocity u ↔ Current (i)

Acoustic Inductance ρ
A

↔ Electric Inductance L

Acoustic Capacitance A
ρ·c2 ↔ Electric Capacitance C

Table 1: Analogies between Acoustic Tube and Electrical Transmission Line

We assume a sinusoidal volume velocity source on the one end and on the other end the

pressure equals zero, which represents opened lips. With these boundary conditions we get

the particular solution, which is referred to as standing wave. The forward– and backward–

travelling waves have added and made the wave shape stationary in time. Pressure and

velocity are 90◦ out of phase.

Acoustic Impedance:

ZA(Ω) =
p(x, t)

u(x, t)

Transfer Function:

Va(s) =
1∏∞

k=1(s− sk)(s− s∗k)
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2 ACOUSTIC TUBE MODELS 2.2 Nonuniform Tube Model: Considering Losses

Figure 4: Dependence of the formants from the tube–length

2.2 Nonuniform Tube Model: Considering Losses

Energy loss can be described by partial differential equations coupled to the wave equation.

The closed–form solution of these equations is quite difficult to obtain and so numerical

simulation is preferred, which requires discretization in time and space.

2.2.1 Wall Vibration

The cross–section of the vocal tract is nonuniform and time varying. The walls of the vocal

tract are pliant and so can move under the pressure induced by the sound propagation.

It is assumed that small, differential pieces are locally reacting. Each of these pieces can

be modelled by a mass mw, spring constant kw and a damping constant bw per unit surface

area and is called lumped parameter model, as can be seen in figure 5. The change of the

cross–section due to pressure changes is small compared to the average cross–section. As

a result of this loss the bandwidth gets nonzero and the resonant frequencies increase.

2.2.2 Viscosity and Thermal Loss

The wave equation has to be extended by a

• Resistive Term: Represents the energy loss due to friction of the air particles along

the wall.

• Conductive Term: Represents the heat loss through the vibrating walls.

Due to these losses the resonant frequencies decrease and the resonant bandwidth broadens.
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2 ACOUSTIC TUBE MODELS 2.2 Nonuniform Tube Model: Considering Losses

Figure 5: Lumped parameter model of vibrating wall

2.2.3 Boundary Effects

Until now it was assumed, that the pressure at the lips is zero, the volume velocity source

is ideal and there is no energy loss at the output or input of the uniform tube.

• The description of sound radiation at the lips is quite complicated, but it can be

simplified by an acoustic impedance. The consequences of radiation are broader

resonant bandwidths and a decrease of the resonant frequencies.

• There can be found an acoustic impedance for the glottis by simplifying a nonlinear,

time varying two–mass vocal fold model. This impedance broadens the resonant

bandwidth.

2.2.4 Complete Model

A complete model involves boundary condition effects, energy loss due to vibrating walls,

viscosity and thermal conduction. The effects can be summarised and are depicted in figure

6:

1. There is a shift of the resonant frequencies due to the various sources of energy loss.

2. Bandwidths of the lower resonances are controlled by vibrating walls and glottal

impedance loss.

3. Bandwidths of the higher resonances are controlled by radiation, viscous and thermal

loss.
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2 ACOUSTIC TUBE MODELS 2.3 Discrete–Time Model Based on Tube Concatenation

Figure 6: (a) vibrating walls, (b) vibrating walls, viscosity and thermal loss (c) vibrating walls,

viscosity, thermal loss and radiation

The complete model leads to cumbersome time and spacial numerical simulation. With

additional approximations a transfer function through concatenated tubes can be found.

This approach leads to a discrete–time model which can be computed efficiently.

2.3 Discrete–Time Model Based on Tube Concatenation

Sound Propagation in the Concatenated Tube Model

• Concatenation of short lossless uniform tubes, as seen in figure 7.

• Energy loss appears only at the two boundaries (glottis, lips). Typical it is assumed,

that the glottal impedance is infinite and so the only loss ocurrs at the lips.

• This model is linear and easy to work with.
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2 ACOUSTIC TUBE MODELS 2.3 Discrete–Time Model Based on Tube Concatenation

Figure 7: Concatenation of short tubes

The concatenated tube model provides a convenient transition from a continuous–time

to a discrete–time all–pole model, and the resulting all–pole model leads naturally into

the linear prediction speech analysis. Each tube has a cross–section area Ak, a length lk
and a time of propagation down the length of the tube τk. We can assume planar wave

propagation (no loss), so that the pressure and velocity relations for each tube satisfy the

wave equation. The solution for pressure and velocity for the k–th tube can be written as

(0 ≤ x ≤ lk):

uk(x, t) = u+
k

(
t− x

c

)
− u−k

(
t +

x

c

)
pk(x, t) =

ρ · c
Ak

[
u+

k

(
t− x

c

)
− u−k

(
t +

x

c

)]
To give a specific solution requires boundary conditions between two adjacent tubes. Pres-

sure and volume velocity have to be continuous in time and space everywhere in the system.

uk(lk, t) = uk+1(0, t)

pk(lk, t) = pk+1(0, t)

At discontinuities in the area function A(x, t) there occur propagation and reflection of the

travelling wave. This can be described by the reflection coefficient rk:

rk =
Ak+1 − Ak

Ak+1 + Ak

u+
k+1(t) = (1 + rk) · u+

k (t− τk) + rk · u−k+1(t)

u−k (t + τk) = −rk · u+
k (t− τk) + (1− rk) · u−k+1(t)

Boundary conditions at the glottis and the lips have also to be considered:

• The forward–travelling wave is reflected back at the lips boundary with the reflection

coefficient for the lips rL. There is no backward–travelling wave from free space.
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2 ACOUSTIC TUBE MODELS 2.3 Discrete–Time Model Based on Tube Concatenation

• The boundary condition at the glottis can also be modelled by a reflection coefficient

rg.

The concatenated tube model is not necessarily consistent with the underlying physics of

sound propagation. However it is possible to control the formant bandwidths with these

two boundaries (glottis, lips).

Discrete Time Realization We assume that all tubes are of equal length ∆x = l
N

and

the time to propagate through one tube is τ = ∆x
c

. This is equivalent to a discretization

of the continuous–space tube by ∆x in space, corresponding to τ in time. This leads to a

periodicity of the transfer function representation.

V (z) =
A · z−N

2

1−
∑N

k=1 ak · z−k

• The poles of the transfer function correspond to the formants of the vocal tract.

• The resulting system is stable. (all poles inside unit cycle)

• The all–pole transfer function is only a function of the reflection coefficients, and

these are only a function of the cross–section areas. Therefore, if we could estimate

the area functions, we could then obtain the all-pole discrete–time transfer function.

Complete Discrete Time Model The discrete–time speech production model can be

described as:

Figure 8: Complete discrete time model
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2 ACOUSTIC TUBE MODELS 2.3 Discrete–Time Model Based on Tube Concatenation

Periodic voiced speech: X(z) = Av ·G(z) ·H(z) = Av ·G(z) · V (z) ·R(z)

Fricatives (noise): X(z) = An · U(z) ·H(z) = An · U(z) · V (z) ·R(z)

Plosives: X(z) = Ai ·H(z) = Ai · V (z) ·R(z)

• H(z) = V (z) ·R(z) is the discrete–time transfer function from volume velocity input

to pressure output.

• R(z) = Zr(z) denotes the discrete–time radiation impedance. R(z) ≈ 1 − α · z−1

is approximately a differentiation of volume velocity to obtain pressure. R(z) has a

zero at α inside the unit circle.

• V (z) is the stable discrete–time all–pole vocal tract transfer function from the volume

velocity at the glottis to volume velocity at the lips. Function of speech sound, speaker

and speaking style. Poles inside the unit circle.

• Av is controlling the loudness of the sound and is determined by the subglottal

pressure.

• Periodic (voiced) speech: G(z) is the z–transform of the glottal flow input g[n]

over one cycle. Differs with speech sound, speaker and speaking style.

G(z) =
1

(1− β · z)2

For real β < 1 represents two identical poles outside the unit circle. This model

considers only the loss by radiation at the lips. The source for periodic (voiced)

speech is the impulse sequence
∑∞

k=−∞ δ[n− k · P ].

• Fricatives: H(z) denotes the z–transform of a noise sequence u[n].

• Plosives: The input for a plosive is simply modelled by a impulse.

In the noise and impulse source state, oral tract constrictions may give zeros as well as

poles. Zeros in the transfer function also occur for nasal consonants and nasalized vowels.

In these cases V (z) has poles inside the unit circle, but may have zeros inside and outside

the unit circle.

X(z) = A · (1− α · z−1)
∏Mi

k=1(1− ak · z−1)
∏Mo

k=1(1− bk · z)

(1− β · z)2
∏Ci

k=1(1− ck · z−1)(1− c∗k · z−1)

(1−ak ·z−1)(1− bk ·z) are zeros inside and outside the unit circle, due to oral and/or nasal

tract configurations.
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3 LINEAR PREDICTION

Vocal Fold/Vocal Tract Interaction Up to now it was assumed that:

• there is no glottal loss (glottal impedance is infinite)

• glottal air flow source isn’t coupled with the vocal tract

This allowed us to model the output speech waveform as an ideal volume velocity from the

glottal source convolved with a linear vocal tract impulse response. In reality there is a

nonlinear coupling between the glottal airflow velocity and the pressure in the vocal tract.

The treatment of this interaction is quite complicated and not further examined here.

3 Linear Prediction

A signal sample can be described as a linear combination of the preceding samples. The

algorithm calculates model coefficients by minimizing the mean square error between the

predicted signal and the original signal. These coefficients are recalculated every 5 to 20ms.

The system is an all–pole linear filter that simulates the source spectrum and the vocal

tract transfer function. Speech sounds with periodic or impulsive sources can be classified

as ‘deterministic’ sounds, and with noise sources (σ2
u = 1) as ‘stochastic’ sounds.

3.1 Model

The relationship between the input sequence v[n] and the output sequence x[n] can be

represented by the difference equation:

x[n] =
m∑

k=0

bk · v[n− k]−
m∑

k=1

ck · x[n− k]

The transfer function is given by:

H(z) =
B(z)

C(z)
=

∑m
k=0 bm−k · zk∑m
k=0 cm−k · zk

This is the general case of a pole–zero model, however for speech–synthesis the all-pole

model is used, with the difference equation:

x[n] = b0 · v[n]−
m∑

k=1

ck · x[n− k]

and the transfer function:

H(z) =
b0 · zm∑m

k=0 cm−k · zk

In this model the nasal–tract and the filter of the glottis and the lips is neglected.
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3 LINEAR PREDICTION 3.2 Formulation

3.1.1 Why All-Pole Model?

A stable pole–zero system function can by decomposed into a minimum phase system

Hmin(z) and an all–pass system HAP (z).

H(z) = Hmin(z) ·HAP (z)

For speech–synthesis it is sufficient to consider the minimum phase system, because the

human ear is insensitive to the phase variations of the all–pass system. This implies two

important consequences:

1. For the minimum phase exists a stable inverse system Hmin(z)−1 = 1
Hmin(z)

. Due to

filtering the speech output signal x[n] with the inverse vocal tract system the input

signal v[n] can be extracted.

2. A minimum phase pole–zero system can be represented by an all–pole system with

an infinite amount of poles, which can be approximated by a filter of m–th degree.

This is the justification for the use of an all–pole filter in speech–synthesis.

3.2 Formulation

Figure 9: Forming of the prediction error signal d[n]

The basic idea behind linear prediction analysis is that each speech sample is approximated

as a linear combination of past speech samples. The filter coefficients are determined by

linear prediction, which implies inverse filtering of x[n], so that the input signal v[n] is

extracted (usefull for coding and synthesis). The true coefficients aren’t known, but an

estimation can be stated, which is called a linear predictor of order p:

x̂[n] =

p∑
k=1

ak · x[n− k]
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3 LINEAR PREDICTION 3.3 Optimum Predictor Coefficients assuming stationarity

with an predictor error (p = m and b0 = 1):

d[n] = x[n]− x̂[n]

= v[n]−
m∑

k=1

ck · x[n− k]−
m∑

k=1

ak · x[n− k]

= v[n]−
m∑

k=1

(ck + ak) · x[n− k]

If ak = −ck then d[n] = v[n], which equals an inverse filtering.

3.3 Optimum Predictor Coefficients assuming stationarity

The minimal mean–squared prediction error is defined as:

E
{
d [n]2

} !
= min

It is assumed, that the coefficients ck and the impulse response h[n] are time–invariant and

that the order p = m is known. The input sequence v[n] is a real, stationary, uncorrelated

and average–free sequence (White Noise).

Autocorrelation Function of v[n]

ϕvv[λ] = E {v[n] · v[n± λ]} =

{
σ2

v for λ = 0

0 for λ = ±1,±2, . . .

Autocorrelation Function of x[n]

ϕxx[λ] = E {x[n] · x[n± λ]} = σ2
v ·

∞∑
k=0

h[k] · h[k ± λ]

Crosscorrelation Function of x[n] and v[n]

ϕvx[λ] = E {v[n] · x[n± λ]} = h[λ] · σ2
v

To get the minimal mean–squared prediction error we derive the equation with respect to

aλ.

∂E {d[n]2}
∂aλ

= E

{
2 · d[n] · ∂d[n]

∂aλ

}
= E {−2 · d[n] · x[n− λ]} !

= 0

= −2 · E {d[n] · x[n− λ]} = −2 · E

{[
x[n]−

p∑
k=1

ak · x[n− k]

]
· x[n− λ]

}

= −2 · ϕxx[λ] + 2 ·
p∑

k=1

ak · ϕxx[λ− k]
!
= 0
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3 LINEAR PREDICTION 3.4 Block Oriented Adaptation of the Linear Predictor

With λ = 1, 2, . . . p follow the so called normal equations.


ϕxx[1]

ϕxx[2]
...

ϕxx[p]

 =


ϕxx[0] ϕxx[−1] . . . ϕxx[1− p]

ϕxx[1] ϕxx[0] . . . ϕxx[2− p]
...

... . . .
...

ϕxx[p− 1] ϕxx[p− 2] . . . ϕxx[0]

 ·


a1

a2

...

ap


ϕxx = Rxxa

The solution for the optimal coefficients:

aopt = R−1
xx ϕxx

ϕxx ... correlation vector

Rxx ... correlation matrix (symmetric, real → positive–definite Toeplitz matrix)

For optimal setting of the predictor coefficients the resulting error power can be solved in

closed form:

σ2
d = E

{
(x[n]− x̂[n])2

}
= . . . = σ2

x −
p∑

λ=1

aλ · ϕxx[λ]

The ratio Gp =
σ2

x

σ2
d

is called prediction gain. It is a quantity for bit–rate reduction due to

predictive coding. Gp increases above a prediction order of p = 3− 4 only slowly.

3.4 Block Oriented Adaptation of the Linear Predictor

The vocal tract and its source are time–varying. It is assumed, that the characteristics are

changing slowly, so that the vocal tract and thus its transfer function remain fixed for a

short–time interval. A sliding window is used to make the short–time approximation valid.

The choice of the length of the window is a tradeoff between time– and frequency resolution.

Also the specific shape of the window contributes to the time– and frequency resolution

properties e.g.: A rectangular window has a narrower mainlobe, but higher sidelobes than

a Hamming window. The optimization takes place for blocks with N samples. The block

length is typically about 10 . . . 30ms and with a sampling frequency of 8kHz one block

contains N = 80 . . . 240 samples. There are two possible procedures, the window can by

applied on the input sequence x[n] or on the prediction error sequence d[n], as depicted in

figure 10.

Autocorrelation Method The window h[n] is applied to the input signal x[n] which

contains N samples until n0.

x̃[n] = x[n] · h[n0 − n]
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3 LINEAR PREDICTION 3.4 Block Oriented Adaptation of the Linear Predictor

Figure 10: (a) autocorrelation method (b) covariance method

Covariance Method

d̃[n] = d[n] · h[n0 − n]

3.4.1 Stationary Solution (Autocorrelation Method)

The sequence x̃[n] has finite energy and is only nonzero in the interval n1 = n0 −N − 1 ≤
n ≤ n0. The predictor error signal d̃[n] is due to consideration of the finite prediction order

p limited to the interval n1 = n0−N−1 ≤ n ≤ n0+p = n2 and also possesses finite energy.

For the optimization of the energy of the sequence ď[n], following term can be minimized:

Ê
{
ď2[n]

}
=

n2∑
n=n1

ď2[n]
!
= min

The same approach as for stationarity can be followed, but the short–time autocorrelation

function has to be used.

ϕ̂x̃x̃[λ] = Ê {x̃[n] · x̃[n + λ]} =

n2∑
n1

x̃[n] · x̃[n + λ] =

n0∑
n1+λ

x[n] · x[n + λ]

With the simplification in notation rλ
.
= ϕ̂x̃x̃ it follows:

r1

r2

...

rp

 =


r0 r1 . . . rp−1

r1 r2 . . . rp−2

...
... . . .

...

rp−1 rp−2 . . . r0

 ·


a1

a2

...

ap


r = Rx̃x̃a

r ... short–time correlation vector

Rx̃x̃ ... short–time correlation matrix (symmetric, Toeplitz matrix)

The autocorrelation method is a suboptimal method, but leads to the normal equation

system, which can be solved efficiently by the Levinson–Durbin algorithm.
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3 LINEAR PREDICTION 3.4 Block Oriented Adaptation of the Linear Predictor

3.4.2 Instationary Solution (Covariance Method)

The energy of the predictor error signal d̃[n] is minimized over an interval of length N .

Ê
{

d̃2[n]
}

=

n0∑
n=n1

d̃2[n]
!
= min

With the relationship

d[n] = x[n]−
p∑

k=1

ak · x[n− k]

the partial derivative to aλ yields

∂Ê
{

d̃[n]2
}

∂aλ

= Ê

{
2 · d̃[n] · ∂d̃[n]

∂aλ

}
Ê

{
−2 · d̃[n] · x[n− λ]

}
!
= 0

= −2 · E {d[n] · x[n− λ]} = −2 ·
n0∑

n=n1

[
x[n]−

p∑
k=1

ak · x[n− k]

]
· x[n− λ])

→
n0∑

n=n1

x[n] · x[n− λ] =

p∑
k=1

ak

n0∑
n=n1

x[n− k] · x[n− λ]

Considering the factor 1/N in this equation system the short–time autocorrelation function

measuring values ϕ̂xx[n,−k,−λ] can be substituted. Introducing the simplification:

r̂i,λ
.
= N · ϕ̂xx[n,−k,−λ] =

n0∑
n=n1

x[n− k] · x[n− λ]

Thus follows the equation system:


r̂0,1

r̂0,2

...

r̂0,p

 =


r̂1,1 r̂1,2 . . . r̂1,p

r̂1,2 r̂2,2 . . . r̂2,p

...
... . . .

...

r̂1,p r̂2,p . . . r̂p,p

 ·


a1

a2

...

ap


r̂0 = R̂xxa

R̂xx has no Toeplitz structure, so more complicated algorithms are needed to solve this

equation system.
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3 LINEAR PREDICTION 3.4 Block Oriented Adaptation of the Linear Predictor

3.4.3 Levinson–Durbin–Algorithm

This is an effective algorithm for solving the equation system of the autocorrelation method.

r = Rx̃x̃a

Solving the equation system by building the inverse matrix, would require p3 multiplications

and additions, on the contrary the recursive solution only needs p2 multiplications and

additions. This algorithm finds from the known solution ap−1 the solution ap with little

effort. Modifying the notation αk = −ak. Starting from p = 0 (no prediction), the solution

for p = m is calculated in m recursions.

Algorithm

1. Calculation of m + 1 values of the short–time autocorrelation

2. p = 0, no prediction

d[n] = x[n], Ê(0) = r0, α
(0)
0

.
= 1

3. for p ≥ 1

(a) q =
∑p−1

k=0 α
(p−1)
k rp−k, kp = − q

Ê(p−1)

(b) αp−1
p = 0

(c) α
(p)
k = α

(p−1)
k + kp · α(p−1)

p−k 0 ≤ k ≤ p

(d) Ê(p) = Ê(p−1) · (1− k2
p)

(e) p = p + 1

4. Repeat step 3 while p ≤ m

5. ak = −α
(n)
k

The algorithm delivers the predictor coefficients ak and the reflection coefficients kp. The

predictor can be implemented in direct form or lattice structure, as can be seen in figure

11.

Two approaches:

• The cross–sectional area ratios aren’t known. Out of a speech measurement the

reflection coefficients kp are known. The reflection coefficients kp coincide with the

reflection coefficients of the tube model, so the cross–sectional area ratios can be

computed by:
Ai+1

Ai

=
1 + ki

1− ki
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4 FORMANT SYNTHESIZER 3.5 Sequential Adaptation of the Linear Predictor

Figure 11: (a) direct form (b) lattice structure

• The cross–sectional areas of the tubes are known. Out of these the reflection coeffi-

cients and the predictor coefficients and hence the transfer function of the vocal tract

can be computed.

The effect of the predictive filtering can be seen, if the waveform and spectrum of x[n]

and g[n] are compared. There is a reduction of dynamics in the time signal g[n], which

corresponds to the glottis signal and a whitening in the spectrum of g[n] due to the inverse

filtering, as depicted in figure 12.

3.5 Sequential Adaptation of the Linear Predictor

In block–oriented adaptation the predictor coefficients are calculated after N samples. In

sequential adaptation the coefficients are altered after every sample.

4 Formant Synthesizer

This synthesizer type is based on the source/filter–theory of speech production. The basic

assumption is that the transfer function of the vocal tract can be modelled by simulating

formant frequencies and formant amplitudes. The synthesis consists of the artificial recon-

struction of the formant characteristics. This is done by exciting a set of resonators by a

voicing source, which simulates the vocal fold vibration or a noise generator, that simulates

a constriction somewhere in the vocal tract.
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4 FORMANT SYNTHESIZER 4.1 Source Modelling

Figure 12: (a) speech signal x[n] (b) prediction error signal d[n] (c) spectrum of x[n] (d) spectrum

of d[n]

4.1 Source Modelling

Speech sounds can be divided into those produced by a periodic vibration of the vocal

folds (voiced sounds), and those generated without vocal fold vibrations, but with plosive

or friction noise (voiceless sounds).

Two Sources

• Voicing Source, producing a quasi–periodic wave

• Friction Source, producing noise

Voicing Source The model is composed of an impulse generator that simulates the

acoustic energy and a linear filter whose frequency response G(f) approximates the glottal

wave form. Different timing of the glottal opening results in different spectral character-

istics e.g.: the slope of the spectrum. A gain control allows the adjustment of the voicing

amplitude, as can be seen in figure 13.

Models for characterising G(f)
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4 FORMANT SYNTHESIZER 4.1 Source Modelling

Figure 13: Voicing Source

• Low–pass filter with variable slope (simple)

• Mathematical function e.g. by Fant and Liljencrants (figure 14)

The discrete time radiation impedance R(z) = 1 − α · z−1, can approximately be

thought as a differentiator of volume velocity to obtain pressure at the lips.

x(t) ≈ A · d

dt
[ug(t) ∗ v(t)] = A ·

[
d

dt
ug(t)

]
∗ v(t)

So the source to the vocal tract can thought to be the derivative of the glottal airflow.

The glottal waveform can be composed by two time–reversed exponentially decaying

sequences and is described by the so called LF–Parameters.

• Mechanical simulation of the vocal fold vibration

Figure 14: (a) glottal airflow (b) derivative of the glottal airflow
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4 FORMANT SYNTHESIZER 4.2 Vocal Tract Modelling

Friction Source To produce voiceless sounds, the vocal folds are non–vibrating and

held open. The air becomes turbulent across a constriction formed in the vocal tract. The

usual model of a friction source consists of a pseudo random white noise generator and a

gain parameter. This model is not very accurate, because the actual friction source is not

located in the larynx, but at the location of the main constriction.

4.2 Vocal Tract Modelling

Figure 15: Formant characteristics of vowels

The source/filter modelling of vocal tract behaviour is intended to simulate the formant

characteristics of the various speech sounds, as can be seen in figure 15. It is assumed

that there is no source/tract interaction. For vowels the sound wave propagates through

the vocal tract, where some frequencies are augmented and others are depressed. The
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4 FORMANT SYNTHESIZER 4.2 Vocal Tract Modelling

resonance frequencies for a given sound are called the formants. These resonances may

be assumed to behave as a all–pole filter, and thus can be modelled with a set of poles.

The poles are identified as peaks in the frequency spectrum. The nasal cavities can be

coupled with the vocal tract, and anti–resonants (anti–formants) appear in the spectrum,

as a result of the damping properties of the nasal cavities. They can be modelled as zeros

in the transfer function. Such spectras can be seen in figure 16.

Figure 16: (a) vowel (b) nasalized vowel

A good approximation is to form each formant with an electrical resonator, such as a

band–pass filter (pole filter). The band–pass filter can be described by two parameters,

the resonance frequency F and the bandwith BW . A spectrum including the formants can

be modelled by a superposition of resonators at different frequencies, as in figure 17.

Figure 17: (a) Spectrum of a single formant resonator (b) Superposition of resonators

These resonators can be combined in parallel or cascade configuration. The parallel ap-

proach allows the control of each formant amplitude, but is not an accurate imitation of
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4 FORMANT SYNTHESIZER 4.3 Lip Radiation

the vocal tract behaviour in speech. It is better adapted at producing consonants. The

cascade approach direct produces a replica of the total formant energy distribution, and is

good for synthesising vowel sounds. Both configurations are depicted in figure 18.

Figure 18: Resonator configurations

4.3 Lip Radiation

At the mouth opening the sound wave is constrained in its propagation. The modification

of the propagation medium is identified by the radiation impedance. Higher frequencies

are better transmitted through the opening than the low frequency counterparts, so that

this can be modelled by a high–pass filter.

4.4 Klatt Formant Synthesizer

This synthesizer was proposed by Dennis Klatt in 1979. This is a direct application of

the source/filter–theory, implemented by a computer simulation of an electrical structure,

consisting of resonators combined in cascade or parallel. It is a cascade/parallel synthesizer

which allows simulation of male and female voices. 40 parameters determine the output

wave. 34 of these can be varied dynamically and the remaining are constant. A block

diagram of the synthesizer can be seen in figure 19.

The synthesizer implements two voicing sources, one destined for vowels and the other for

voiced fricatives. The low–pass filters (RGP, RGS,RGZ) modify the spectral shape of the

source. The friction source is implemented by a random noise generator. The vocal tract in

its cascade configuration is realised with five resonators (R1..R5), whose central frequence

and bandwith can be adjusted. The supplemental resonator (RNP ) and anti–resonator

(RNZ) are used for nasalized sounds. The parallel configuration consists of seven formant
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4 FORMANT SYNTHESIZER 4.4 Klatt Formant Synthesizer

Figure 19: Block diagram of the Klatt 79 synthesizer

resonators (R1..R6, RNP ), each having an individual gain control (A1..A6, AN). The whole

set of the control parameters can be seen in table 3.
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4 FORMANT SYNTHESIZER 4.4 Klatt Formant Synthesizer

Symbol C/V Min. Max. Name

DU C 30 5000 Duration of the utterance (ms)
NWS C 1 20 Update interval for parameter reset (ms)
SR C 5000 20000 Output sampling rate (Hz)
NF C 1 6 Number of formants in cascade branch
SW C 0 1 0=Cascade, 1=Parallel tract excitation by AV
G0 C 0 80 Overall gain scale factor (dB)
F0 V 0 500 Fundamental frequency (Hz)
AV V 0 80 Amplitude of voicing (dB)
AVS V 0 80 Amplitude of quasi-sinusoidal voicing (dB)
FGP V 0 600 Frequency of glottal resonator ”RGP”
BGP V 50 2000 Bandwidth of glottal resonator ”RGP”
FGZ V 0 5000 Frequency of glottal anti-resonator ”RGZ”
BGZ V 100 9000 Bandwidth of glottal anti-resonator ”RGZ”
BGS V 100 1000 Bandwidth of glottal resonator ”RGS”
AH V 0 80 Amplitude of aspiration (dB)
AF V 0 80 Amplitude of frication (dB)
F1 V 180 1300 Frequency of 1st formant (Hz)
B1 V 30 1000 Bandwidth of 1st formant (Hz)
F2 V 550 3000 Frequency of 2nd formant (Hz)
B2 V 40 1000 Bandwidth of 2nd formant (Hz)
F3 V 1200 4800 Frequency of 3rd formant (Hz)
B3 V 60 1000 Bandwidth of 3rd formant (Hz)
F4 V 2400 4990 Frequency of 4th formant (Hz)
B4 V 100 1000 Bandwidth of 4th formant (Hz)
F5 V 3000 6000 Frequency of 5th formant (Hz)
B5 V 100 1500 Bandwidth of 5th formant (Hz)
F6 V 4000 6500 Frequency of 6th formant (Hz)
B6 V 100 4000 Bandwidth of 6th formant (Hz)
FNP V 180 700 Frequency of nasal pole (Hz)
BNP V 40 1000 Bandwidth of nasal pole (Hz)
FNZ V 180 800 Frequency of nasal zero (Hz)
BNZ V 40 1000 Bandwidth of nasal zero (Hz)
AN V 0 80 Amplitude of nasal formant (dB)
A1 V 0 80 Amplitude of 1st formant (dB)
A2 V 0 80 Amplitude of 2nd formant (dB)
A3 V 0 80 Amplitude of 3rd formant (dB)
A4 V 0 80 Amplitude of 4th formant (dB)
A5 V 0 80 Amplitude of 5th formant (dB)
A6 V 0 80 Amplitude of 6th formant (dB)
AB V 0 80 Amplitude of bypass path (dB)

Table 3: Control parameters of the Klatt Synthesizer
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