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1 Introduction

The aim of every communication system is the transmission of information between two or more points.
One may distinguish between analogue and digital communication systems depending on the type of data
that is transmitted. A digital system like DSL can be divided into the transmitter, the digital channel
and the receiver. A stream of bits is generated inside the transmitter and subsequently fed to the digital
channel. The receiver tries to determine the right bit values out of the signal on the other end. Unfortu-
nately the bits may be distorted while being sent over the channel. Some error sources like echos or the
transfer function of the channel are deterministic, hence their influence can be cancelled. On the other
hand it is not possible to correct non-deterministic errors like those originated in white noise. In this case
the possibility to detect or even correct bit errors is crucial to the function of the given communication
system.

1.1 Error Detection and Error Correction

In principle the designer of a communication system has got two choices: Either he implements a system
with simple error detection with no chance to correct bits without a feedback from the receiver to the
transmitter. If an error is detected, the receiver asks the transmitter to repeat the distorted bit stream by
a feedback protocol. The other possibility is a system with error correction capabilities. In both cases
a certain amount of transmission redundancy has to be applied to the bit stream. Otherwise the receiver
would not be able to distinguish between valid and invalid data.

This redundancy can be inserted either at bit level or at bit-to-symbol level. At bit level some addi-
tional bits like parity bits are merged to the given information bits (Figure1). If a line code with more
than two symbols like quadrature amplitude modulation (QAM) is used, some of the possible symbols
may be defined as valid, whereas others are invalid in order to make it possible to detect distorted signals.

Information bits Redundancy bits
(e.g. parity)

Figure 1: Transmission redundancy on bit level

However, if additional bits are inserted, the required transmission throughput is increased. It can be
satisfied by either increasing the transmission rate or by expanding the number of symbols of the line
code. In the first case the channel bandwidth is increased resulting in a small reduction of the signal-
to-noise ratio (SNR). Hence the bit error rate (BER) rises because now it is more likely for a bit to be
changed by random noise. An example of a diagram that compares the ratio between signal energy of
every information bit and channel noise and the resulting BER is shown in Figure2. If a certain BER
has to be guaranteed, a certain minimum SNR must be provided. If an error correction code is used, this
necessary minimum SNR decreases because it is now possible to correct some of the errors. This change
in SNR is called coding gain.

1.2 Basic Terms

Let the whole code word consist ofN bits. The code word itself is generated out ofk information bits. If
these information bits appear inside the code word without any change, the code is called to be systematic.
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Figure 2: BER over SNR - Example of coding gain

All the other bits inside the code word are redundancy bits. The code rateRc is defined as

Rc =
k
N

(1)

telling us how much redundancy has been added to the original data. But this is not enough to describe
the real error detection and correction capabilities of a given code. The minimum number of different
bits between two code words is called Hamming distance. The Hamming distance of a codedH

min is the
minimum of all Hamming distances of its code words. In Figure3 two code words with a Hamming
distance of 4 are shown. If these code words are transmitted over a binary symmetrical channel with
independent white noise, the likelihood that a bit is changed from 1 to 0 is equal to the probability that a 0
is altered to 1. Moreover, it is more likely that only one bit is distorted than two or more bits. Hence if an
invalid code word is received, it is most likely that the nearest code word is the original one. Therefore, a
given code with a hamming distancedH

min has the following capabilities:

• dH
min−1 bit errors may be detected

• t = bdH
min−1

2 c bit errors may be corrected.

A short terminology is introduced calling such a code(N,k,dH
min)-Code.

d
H
min

valid
codeword

Figure 3: Hamming distance and error correction capability
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2 Block Codes

One family of codes are block codes. A certain block of information bits are taken and redundancy bits are
added. The simplest members of this family are parity codes. A more systematic approach for designing
proper parity bits are cyclic codes (sometimes known as cyclic redundancy check - CRC). If one wants to
generate codes which can correct more than one bit errors, the mathematical theory of Galois fields has
to be used leading to BCH and Reed Solomon (RS) codes. RS codes are used in high speed DSL systems
like ADSL.

2.1 Parity Codes

The simplest parity code one could use is a (?,1,1)-code: Only one additional parity bit is generated.
Assuming 4 information bits, the whole code word may be written as(i1, i2, i3, i5, p1) where the parity bit
is calculated as

p1 = i1 + i2 + i3 + i4 (2)

One should note that all this has to be carried out in modulo-2 arithmetic, where the addition is
actually a logical exclusive-or (XOR) operation. This results in a (4,1,1)-code with a hamming distance
of 2, hence it is possible to detect one-bit-errors, but no bits can be corrected at all.

If this type of code should be equipped with error correction capabilities, some additional parity bits
have to be introduced. An example is the following (6,3,3)-code, which can be used to detect two bit
errors and to correct one bit errors.

p1 = i1 + i2 (3)

p2 = i2 + i3 (4)

p3 = i1 + i3 (5)

The whole task can be written in a more general way with bit vectors and matrices. The code word
c is a vector(i1, i2, i3, p1, p2, p3) built from a generator matrix G and the original message wordm =
(m1,m2,m3):

c = m·G (6)

G can be divided into two parts: An identity matrixIk with k bits and the parity generator part P:

G = [Ik P] (7)

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

 (8)

The identity matrixIk appears in G, since this code is systematic. Columns of P must be unique, otherwise
two parity bits are always equal. This theoretical way also enables us to think about the correction
procedure inside the receiver. First the parity matrix H is introduced as

H = [PT Ir ] (9)

wherePT is the transposed parity generator part of matrix G andIr is an identity matrix with r bits. In our
example this leads to

H =

 1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

 (10)
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One important property of the two matrices P and H is

G·HT = [Ik P] ·
[

P
Ir

]
= P+P = 0 (11)

Let y be the vector containing the received bits. If no error occurred, y will be equal to c. Otherwise the
bit error may be described by an additional term e:

y = c+e (12)

The syndrome word s is calculated as follows.

s= y·HT (13)

If an error occurred, this leads to

s= (c+e) ·HT = m·G·HT +e·HT = e·HT (14)

If the syndrome word is non-zero, a bit error has been detected. This code is capable to correct one bit
errors, in such a case the error word e contains one set bit on the position where the error occurred. Hence
s is one column of H. If all columns of H are unique, it is then easy to decide which bit has to be toggled
in order to correct the error.

2.2 Cyclic Codes

In the latter section a simple example of a parity code was presented. If the number of information bits
k is getting bigger, it is harder to find proper equations for the parity bit calculation. In addition to that,
the hardware to generate these parity bits gets more complicated. One solution to that problem are cyclic
codes. The code word of a cyclic code is generated by a shift register with certain feedback.

The theory of cyclic codes starts with a special notation for bit streams exploiting polynomials. The
message word m may be written as follows:

m = (i0, i1, i2, i3) (15)

m(x) = i0 + i1x+ i2x2 + i3x3 (16)

It has to be noted that x is not a variable, its exponent only defines the position inside the bit stream.
Now a special generator polynomial is used in order to generate valid code words. This generator poly-
nomial has to meet several conditions, if the resulting code should have certain bit correction capabilities.
The theory behind this important topic is covered in the next section dealing with Galois fields.

The code words are formed by multiplying the message word with the generator polynomial. The
following table illustrates this task for a (6,3,3)-code with the generator polynomialg(x) = 1+x3.

Message Code-word Code-polynomial
000 000000 0× (1+x3) = 0
100 100100 1× (1+x3) = 1+x3

010 010010 x× (1+x3) = x+x4

110 110110 (1+x)× (1+x3) = 1+x+x3 +x4

001 001001 x2× (1+x3) = x2 +x5

101 101101 (1+x2)× (1+x3) = 1+x2 +x3 +x5

011 011011 (x+x2)× (1+x3) = x+x2 +x4 +x5

111 111111 (1+x+x2)× (1+x3) = 1+x+x2 +x3 +x4 +x5



2 BLOCK CODES 5

Again, addition is a modulo-2 operation, hence for instancex+ x = 0. It is clear that the code word is a
multiple of g(x). The message word m(x) is shifted by d bits, where d is the number of redundancy bits
and the order of g(x). The polynomialm(x) · xd is usually not a multiple of g(x). But this would be the
case if the remainder of the operationxd ·m(x)/g(x) is subtracted fromxd ·m(x). Since all operations are
carried out in modulo-2, subtraction is equal to addition. This remainder is simply copied into the d least
significant bits ofxd ·m(x).

The remainder of the division operation can be calculated easily by a shift register with feedback.
First consider how a division in modulo-2 arithmetic looks like:

11010 000
1011
01100
1011
0111 0
101 1
010 10
10 11
00 010

010

Figure 4: Division in modulo-2 arithmetic

The original message word 11011 is shifted left by 3 digits. The generator word 1011 (1+ x2 + x3)
is subtracted from the most significant bits of the message word. The result is taken and the next bit of
the message word is put at the end. Again one tries to subtract the generator word. If this does not work,
the next message word bit is taken into account as well. This procedure is repeated until all message bits
have been processed. The result of the last subtraction is the remainder of the division 11011000 / 1011.

This procedure can be implemented in a shift register as well (Figure5). First all the message bits are
transmitted to the output and shifted into the shift register starting with the most significant bit (MSB).
Each time when the MSB of the shift register is a 1, the generator polynomial must be subtracted from
the bit stream. This is done by feeding back this 1-bit to some stages of the shift register. For instance,
if g(x) = 1+ x2 + x3, g0 andg1 in the feedback are 1. After all message bits were shifted through the
shift register, it contains the remainder of the divisionxd ·m(x)/g(x). Now the gate is opened and the
switch at the output is altered. The bits of the shift register (and hence the remainder of the division) are
transmitted to the output.

The decoder inside the receiver contains the same shift register. The received code word is shifted
through. At the end the remainder of the division is stored inside the register stages. If it is zero, the
received code word was a multiple of the generator polynomial, hence no error has been occurred. If it
is non-zero, the remainder is the syndrome word. Usually, the position of the error bit is determined by
exploiting a lookup table.

2.3 Galois Fields

The next step towards Reed Solomon codes is the introduction of Galois fields. Reed Solomon codes are
able to correct more than one bit error. Galois fields are part of the basic theory of how to design such
codes. A Galois field GF(p) is an abstract mathematical object consisting of a set of p numbers and two
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Message
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+

Figure 5: A shift register with feedback as CRC encoder

operations: An addition and a multiplication. An additive inverse element−a and a multiplicative inverse
elementa−1 exist. The zero element 0 is the neutral element for the addition, the one element 1 is the
neutral element for the multiplication.

It can be shown that if p is a prime number, a primitive elementα exists. All numbers from 1 to p-2
may be generated byαx. Here is one example for GF(7). It turns out that 3 is the primitive element:

30 = 1
31 = 3
32 = 2
33 = 6
34 = 4
35 = 5

All operations are carried out in modulo-p, therefore there is a wrap around at 7=0. The addition is simply
a modulo-7 operation like 3+5=1 without a carry to the next digit. The inverse element−a is found by a
mirror operation around 0 or 7, e.g. 5↔ 2.

The multiplication is a modulo-7 operation as well, for instance 3×5= 31×35 = 36 = 1. The inverse
elementa−1 may be found by considering that 36 = 1. Hence 3n⇒ 3−n = 36−n.

2.4 Extended Galois Fields

A special family are Galois fields withp = 2m because they represent a code word with m bits. As shown
in the previous section, the following conditions must be met:

αp−1 = α2m−1 = 1 (17)

α2m−1 +1 = 0 (18)

The latter polynomial may be separated into smaller polynomials. One of these polynomials has to be
set to zero in order to meet the condition above. If this polynomial is irreducible and if it does not divide
an +1 for n< 2m−1, it is called primitive polynomial. Some of them are listed below.

m Primitive-polynomial
3 1+x+x3

4 1+x+x4

5 1+x2 +x5
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A complete GF(2m) may be generated by using such a primitive polynomial. Consider a GF(8) with a
primitive polynomial 1+x+x3. Henceα3 can be reduced to 1+α leading to the following binary repre-
sentation:

Power Polynomial Binary
0 0 000
1 1 100
α α 010
α2 α2 001
α3 1+ α 110
α4 α + α2 011
α5 1+ α + α2 111
α6 1+ α2 101

Now the abstract valueα and its exponentials can be realised with 3 bits.
Every polynomial has got certain rootsβ in a Galois field. They may be found by separating the

polynomial into several smaller ones. For instance,

1+x+x3 = (x+ α)(x+ α2)(x+ α4) = ∑(x+ βi) (19)

in GF(8), whereα,α2 andα4 are the roots of 1+x+x3. The minimum polynomial of a is the polynomial
with root a, which coefficients are only certain values, for example 0 or 1 - hence binary.

Roots Minimum-Polynomial
α,α2,α4, ... 1+x+x4

α3,α6, ... 1+x+x2 +x3 +x4

α5, ...1+x+x2

The same strange things can be found in our well known decimal system: The minimum polynomial of
5 is (x-5), but the minimum polynomial of the complex number 1+j is(x2−2x+ 2) if the coefficients
should be real values.

It now turns out that valid code words are binary polynomials with certain roots in GF(2m). The fact
that the code word(c0,c1,c2, ...,cn−1) has got the rootβ might be rewritten as

c(β) = cn−1βn−1 + . . .+c1β1 +c0β0 = 0 (20)

c·


βn−1

...
β1

β0

 = c·HT = 0 (21)

β is a number of the Galois field. Hence all elementsβi are defined and may be represented by bits as
shown above. Therefore the parity matrix H is defined leading to an already known block code. This is
the case if the code should be a one-bit-correcting code.

2.5 BCH-Codes

BCH is short for Bose, Chaudhure and Hocquenghem. BCH-codes offer a systematic approach to a t-
error-correcting code with a desired code size N. The code is built inside a GF(N+1). The generator
polynomial is the least common multiple of minimum polynomials for t independent roots. Assume a
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code with a desired Hamming distance of 3, therefore it will be capable of correcting 2 bit errors. Hence
the two independent roots have to be found, one choice would beα andα2. Unfortunatelyα2 is not
independent toα since they both share the same minimum polynomial. Thusα3 is chosen to be the
second root. For every code word c(x)

c(α) = 0 (22)

c(α3) = 0 (23)

have to be met. The generator polynomial yields

g(x) = (1+x+x4)(1+x+x2 +x3 +x4) = 1+x4 +x6 +x7 +x8 (24)

It is the polynomial of smallest order with the two rootsα andα3. Since all code words are multiples of
the generator polynomial, there all will have these two roots as well. The parity matrix H becomes

HT =


α12 α14

...
...

α6 α2

α3 α1

α0 α0

 (25)

The encoder may be realised by a shift register with feedback with the given generator polynomial. The
syndrome computation is done like in simpler block codes.

s= y·HT = e·HT = e·


α12 α14

...
...

α6 α2

α3 α1

α0 α0

 (26)

Two errors at positions i and j lead to a syndrome words= (s1,s2) with

s1 = αi + α j (27)

s2 = α3i + α3 j (28)

These are two equations with two unknown variables i and j. The two positions i and j are determined
usually by exploiting lookup tables, the appropriate bits are toggled afterwards in order to correct the
error.

2.6 Reed Solomon Codes

Reed Solomon Codes (RS codes) are non-binary BCH codes. All the symbols processed inside the
polynomials and shift registers are not bits any longer, they are now m bits wide. 2m− 1 symbols are
combined to one block. Since all variables inside the polynomials are symbols with m bits, they can
represent values between 0 andα2m−2. Hence coefficients of minimum polynomials are located in this
range as well. As an example a byte-based RS code for 2-bit-error-correction is shown here - two roots
are necessary in this case. The generator polynomial would be

g(x) = (x+ α7)(x+ α14) = x2 + α119x+ α21 (29)

This leads to a feedback shift register consisting of 2 stages withg0 = α21 andg1 = α119. Of course
bytes are processed during each cycle, therefore the stages in the shift register store whole bytes and the
additions and multiplications operate with bytes as well.

The coding gain of an RS code based on a 16 QAM line code with 10% redundancy and different
error correction capabilities is shown in Figure6. Significant coding gain of several dBs may be achieved.
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Figure 6: Coding gain of a Reed Solomon code with different bit error correction capabilities

3 Convolution Codes

The second big family of codes beside block codes are convolution codes. Their name comes from the
fact that the output data stream of an encoder is the result of a convolution operation of the input data
stream and the impulse response of the code.

3.1 Principles

Figure7 shows the principle of an encoder for a convolution code. k input bits are fed into a shift register
with M-1 stages. Each of the n output bits are generated from the input bits and their delayed values
are stored in the shift register. If only one 1-bit is input to this encoder, a certain bit stream will appear
on its output. This bit stream is the impulse response of the code. In the more general scenario with
more than one 1-bit inside the input stream, this shift register simply performs a convolution operation
between the input and the impulse response mentioned before. A short terminology for convolution codes
is introduced: Such a code is called (n,k,M)-code; very similar to block code terminology.

T T T n encoded
bits

k input
bits

M−1 delay stages

Figure 7: Encoder for a convolution code

As an example an encoder for a (3,2,2) convolution code is presented in Figure8. Three encoded
bits (n=3) are generated out of two information bits (k=2) resulting in a code rate 2/3. There is no
clear boundary between information bits and redundancy bits at the output as it is in a block code. The
redundancy is mixed into the output data stream permanently.
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T

T

2 information
bits

3 encoded
bits

c1

c2

c3

m1

m2

Figure 8: Encoder for a (3,2,2) convolution code

Similar to block codes a generator matrix may be introduced:

g(D) =
[

1 0 D
0 1 1+D

]
(30)

where D denotes a delay of one clock cycle. However, other possibilities of a code description exist which
are very useful for developing the appropriate decoder for such a code. First, a state transition diagram
may be derived from the generator matrix (Figure9). The state of the encoder is defined by the bits stored
inside the shift register. The encoder in Figure8 contains two 1-bit registers, hence there are 4 possible
statesS0 to S3. During each cycle two new input bits are fed into the encoder leading to 4 possible
transitions from an old state to the new one. Each transition is directly linked to a certain combination of
3 bits at the output. This is denoted as xx/yyy in Figure9 where xx are the 2 input bits and yyy are the 3
output bits, respectively.

Figure 9: State transition diagram

The state transition diagram may be unfolded for each clock cycle resulting in a so called trellis
diagram as shown in Figure10. Again, there are 4 possible states. But this time the transitions point
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towards 4 new states for the next clock cycle. A trellis diagram is well suited for the explanation of the
Viterbi decoding algorithm.

Figure 10: Trellis diagram

3.2 Viterbi Decoding

First consider the trellis diagram of the example code. LetS0 be the initial state of the encoder and
decoder. Assuming that the first three received bits are 011, the branch metrics for each transition starting
at S0 may be calculated. There are two major principles of how to determine the branch metrics. The
easiest way is to quantise the input into 0 or 1. This solution is presented in Figure11. The branch metrics
is simply the number of different bits between the real input data and the data bits that would be necessary
for the given transition. In our example the transition fromS0 to S1 fits perfectly, whereas the transition
from S0 to S3, for instance, has a metric of 1.

Figure 11: Viterbi decoding algorithm for quantised input: r=(011 001 001 111)
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In the next clock cycle another 3 bits are received. Again the branch metrics can be determined by
adding the metrics of every original state to the metrics of the transition. If one looks at a certain new
state, there are many possible branches that end at this new state. However, there is always a branch with
a minimum branch metrics. Only this branch has to be stored and its branch metrics is linked to the state.
In the next clock cycle only this branch has to be considered for the new calculation of the branch metrics.
The idea behind this so called Viterbi decoding algorithm is that it is only necessary to store the branch
with the minimum branch metrics that ends at a certain end state. All the other possible branches do not
survive because they will never lead to a smaller branch metrics in the future. After a while only one
branch will survive defining the decoded bit stream.

The code gain may be further increased by introducing soft inputs (Figure12). In this case the Viterbi
decoder also gets the information how good a received bit was a 1 or 0. The input is not only (0 1 1) but
for instance (0.2 1.4 0.7). This might be realised by an ADC with more than 1 bit resolution. Here the
branch metrics is calculated asBM = ∑(r i−βi)2 wherer i is the soft value of the received bit andβi is the
necessary bit value for the transition. The information about the received bits is finer, hence it is easier
for the decoder to determine the right bit stream.

Figure 12: Viterbi decoding algorithm for soft input: r=(0.2 1.4 0.7; 0.4 -0.3 1.6; -0.2 0.2 1.1; 1.3 0.9 0.8)
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3.3 Trellis Code Modulation

As mentioned earlier the added coding overhead or redundancy leads to an increased transmission through-
put. There are two possible solutions to that problem. One could increase the transmission bandwidth if
possible. Due to this higher bandwidth the SNR is decreased, but typically by less than 1.5dB. However,
in many communication systems increasing the transmission bandwidth is not possible. In this case the
number of symbols in the line code has to be expanded. Unfortunately this results in a SNR reduction of
typically 3 or 6dB, if no additional measures like a sophisticated bit-to-signal mapping are introduced.

In general the Hamming distance between two code words do not determine the error possibility.
But there is a close relationship between the Euclidean distance and the likelihood of false detection
(Figure13). The big dots denote the positions of the valid symbols of a given line code with more than
2 symbols. This is called the constellation structure of the line code. The transmitter outputs one symbol
per cycle with its exact position. On the channel noise is added to the original symbol value. If it is a
Gaussian channel, the noise amplitude is Gaussian distributed. The variance of this distribution is related
to the noise power. Somewhere in the middle between two symbols a threshold valueVdi f f is defined.
Hence the part of the Gaussian distribution that excesses this threshold leads to an error in detection. The
error possibility is related to the distance between the two symbols - this distance is called Euclidean
distance.

constellation structure
of the line code

Gaussian channel
(variance = noise power)

Vdiff

error in detection

Euclidian distance

Figure 13: Euclidean distance of symbols in a constellation structure of a line code

In Figure14 a (3,2,2) convolution encoder is shown. Three output bitsy0 to y2 are generated from
two input bitsx1 andx2. y2 is always equal tox2, y1 is the delayedx1. Buty0 is the output of a convolution
encoder, hence it contains more “security” against bit errors.

T Tx1

x2

y1

y0

y2

Figure 14: (3,2,2)-encoder for a trellis code

Assume that a line code with pulse amplitude modulation (PAM) with 8 different signal levels is used
(Figure15. Each level is associated to a unique stream of 3 bits. It is most likely thaty0 is distorted by
noise since adjacent signal levels or symbols only differ in the value ofy0. However, bit errors iny0 may
be corrected leading to better coding gain.



3 CONVOLUTION CODES 14

+7

+5

+3

+1

−1

−3

−5

−7

000

001

010

011

100

101

110

111

(y2,y1,y0)

Figure 15: PAM bit-to-signal mapping

A more complicated constellation set mapping for a 16 symbol line code with quadrature amplitude
modulation (QAM) is shown in Figure16. First the 16 symbols are divided into two sets of 8 symbols.
Each set is related toy0 equal to 0 or 1, respectively. The minimum Euclidian distance between all the
16 symbols is∆0, which is increased to

√
2∆0 inside each set. Hence bit errors inside each set are more

unlikely. The effective BER ofy0 may be improved ify0 is secured by a convolution code.

Figure 16: 16 QAM constellation set partitioning for a trellis code

3.4 Phase Invariant Trellis Encoder

The symbol clock in DSL systems is not transmitted via a special line. Hence it must be recovered inside
the receiver out of the data stream (Figure17). Unfortunately it cannot be ensured that the input signal
contains a peak at the carrier frequencyfc. However, if the input signal is squared, the resulting signal
has got a peak at 2fc. A phase locked loop (PLL) may be used to lock onto this peak. Its output is divided
by two and subsequently sourced to the QAM demodulator.
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PLL :2

x

( )^2

input

QAM demodulation

peak at 2fc

Figure 17: Block diagram of a carrier recovery

This division by two leads to an uncertainty in phase of 0 or 180 degrees of the recovered carrier. One
solution is to transmit a preamble right in front of the data stream. If the bits of the preamble are inverted,
the phase is wrong and has to be changed. Another possibility is to exploit a phase invariant trellis code
(Figure18). The output bitsy2 to y4 are exact copies of 3 input bitsx2 to x4, whereasy0 andy1 are derived
from one input bitx1. A differential encoder is situated in front of the convolution encoder. Hencey0 and
y1 are only related to changes ofx1.

T

x1

x2

y1

y0

y2

TT

y3

y4

x3
x4

differential
encoder

convolutional
encoder

if phase is not correct,
y0 and y1 are inverted

Figure 18: Phase invariant encoder with differential encoder

The four state constellation mapping of Figure19 is 180 degrees invariant as far as the first three
output bitsy2 to y4 are concerned. If the phase is incorrect, the mirrored symbol around the origin will
be detected leading to inverted bitsy0 andy1. Since these bits only describe changes of the bitx1, this
inversion does not matter. Therefore, the whole communication system is invariant to a 180 phase shift
of the clock carrier.

4 Line Codes

This short section summarises different DSL systems and the codes being used.

• DSL: Data rate of 160kbps (bits per second). Line code is a 2B1Q-code, this is short for 2 input
bits are mapped to one 4-valued symbol.

• HDSL: Data rate of 800kbps. Again, a 2B1Q-code is used as line code with no error correction
capabilities.

• ADSL: Data rate of 2208/276kbps. It is a discrete multi-tone (DMT) system with 512/64 channels.
Trellis coding with a (3,2,4)-convolution-code is exploited. Reed Solomon codes with symbols of
1 byte are used for error correction.
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Figure 19: Four-state 180 degrees phase invariant constellation mapping



5 REFERENCES 17

5 References

Walter Y. Chen. DSL Simulation Techniques and Standards Development for Digital Subscriber Line
Systems. Indianapolis, MacMillan Technical Publishing, 1998.

Galois fields:

• William E. Cherowitzo. Lecture notes on Coding Theory and Cryptology.
Online available athttp://www-math.cudenver.edu/-wcherowi/courses/m5410/ctcln.html.
Mathematics Department, University of Colorado, Denver.

• Alex Grant. Lecture notes on Error Control Coding.
Online available athttp://www.itr.unisa.edu.au/-alex/ECC/notescontents.html.
Institute for Telecommunications Research, University of Southern Australia, Adelaide.

• Matlab Communications Toolbox - Galois Field Computations.
http://www.mathworks.com/access/helpdesk/help/toolbox/comm/tutor3.shtml.

Reed Solomon Codes:

• Martin Riley, Iain Richardson. Reed Solomon Codes.
Online available athttp://www.4i2i.com/reedsolomoncodes.htm.

• Adina Matache. Encoding/Decoding Reed Solomon Codes.
Online available athttp://drake.ee.washington.edu/-adina/rsc/slide/slide.html.
Department of Electrical Engineering, University of Washington, Seattle.

http://www-math.cudenver.edu/~wcherowi/courses/m5410/ctcln.html
http://www.itr.unisa.edu.au/~alex/ECC/notes_contents.html
http://www.mathworks.com/access/helpdesk/help/toolbox/comm/tutor3.shtml
http://www.4i2i.com/reed_solomon_codes.htm
http://drake.ee.washington.edu/~adina/rsc/slide/slide.html

	1 Introduction
	1.1 Error Detection and Error Correction
	1.2 Basic Terms

	2 Block Codes
	2.1 Parity Codes
	2.2 Cyclic Codes
	2.3 Galois Fields
	2.4 Extended Galois Fields
	2.5 BCH-Codes
	2.6 Reed Solomon Codes

	3 Convolution Codes
	3.1 Principles
	3.2 Viterbi Decoding
	3.3 Trellis Code Modulation
	3.4 Phase Invariant Trellis Encoder

	4 Line Codes
	5 References

