

Advanced Signal Processing 1

VDSL

Very-high-bit-rate Digital Subscriber Lines

Klaus Doppler

TU Graz 2002

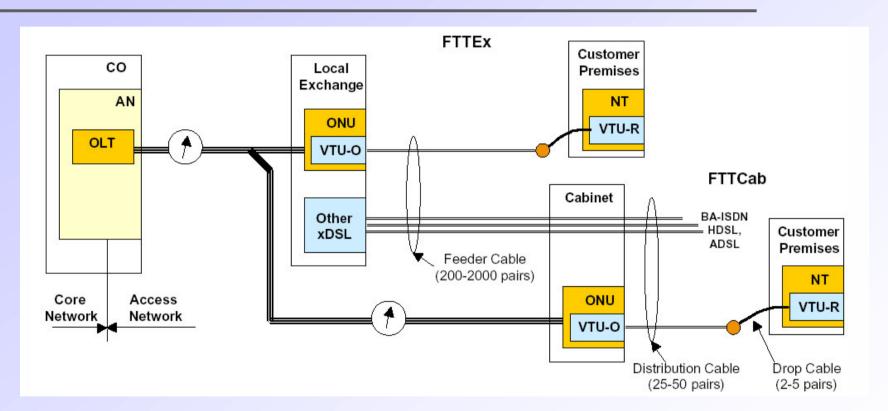
- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

VDSL Applications

	<u> </u>	
Application	Downstream	
distance learning	384 kbps-1.5 Mbps	
telecommuting	1.5 Mbps-3.0 Mbps	
multiple digital TV	6.0 Mbps-24.0 Mbps	64 kbps-640 kbps
Internet access	400 kbps-1.5 Mbps	128 kbps-640 kbps
Web hosting	400 kbps-1.5 Mbps	400 kbps-1.5 Mbps
video conferencing	384 kbps-1.5 Mbps	384 kbps-1.5 Mbps
video on demand	6.0 Mbps-18.0 Mbps	64 kbps-128 kbps
interactive video	1.5 Mbps-6.0 Mbps	128 kbps-1.5 Mbps
telemedicine	6.0 Mbps	384 kbps-1.5 Mbps
high-definition TV	16 Mbps	64 kbps

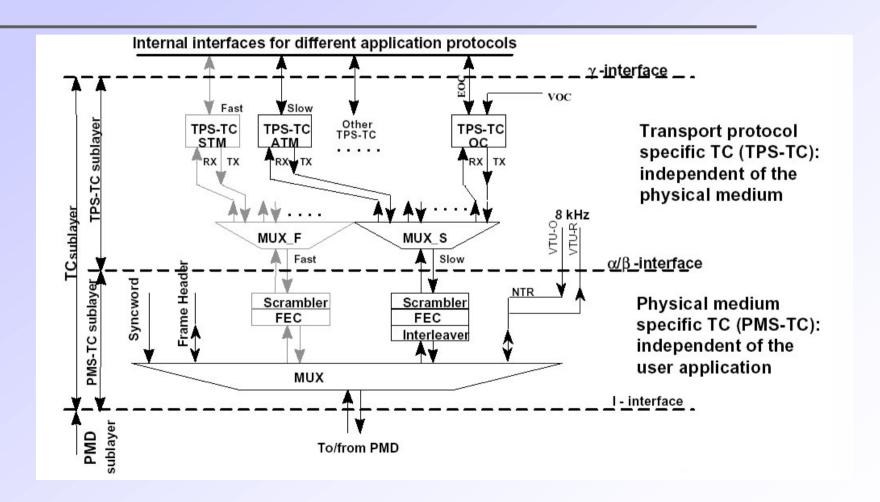
Goals

Performance Requirements


- Noise Margin > +6 dB
- Bit Error ratio of < 1 in 10^7
- Data rate (Mbps) asymmetric 22/3 (NA) 23/4 (Europe) symmetric 13/13 (NA) 28/28 (Europe)
- Latency fast/slow path 1ms/20ms
- POTS or BA-ISDN life-line over the same pair
- Power Consumption < 1W at the Cabinet</p>

- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

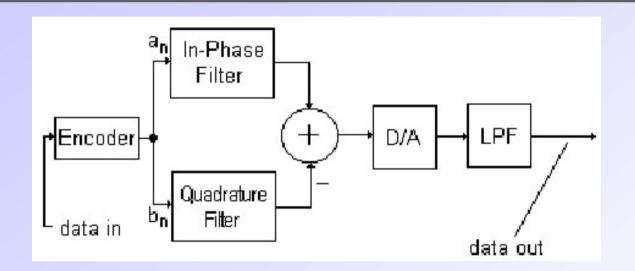
General network architecture


Abreviations:

AN Access Network
ONU Optical Network Unit
VTU VDSL Transmitting Unit

FTTEX CO OLT Fiber-To-The Exchange Central Office Optical Line Termination

TC sublayer architecture


TC Transmission Convergence

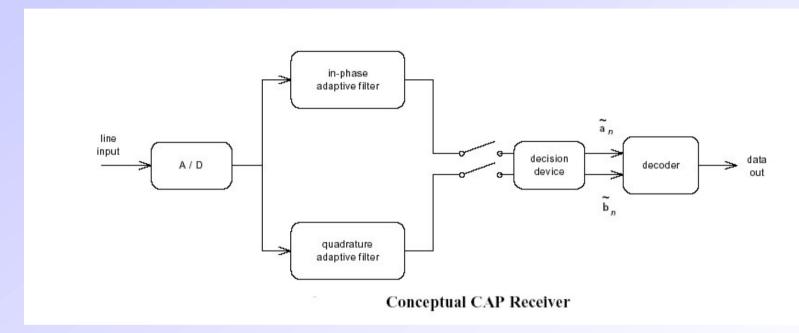
- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

CAP Transmitter

256-CAP

$$A_n = a_n + jb_n$$

Impulse responses h(t) and h'(t) form a Hilbert pair


$$h(t) = g(t)\cos(2\pi f_c t) \qquad h'(t) = g(t)\sin(2\pi f_c t)$$

Transmitted Signal

$$s(t) = \sum_{n=-\infty}^{\infty} [a_n h(t - nT) - b_n h'(t - nT)]$$

CAP Receiver

- T/I fractionally spaced linear equalizer (FSLE)
- outputs FSLE → symbol rate 1/T → decision device

Recover symbols

Linear filtering step:

$$h(t) \otimes f(t) = p(t) \rightarrow h'(t) \otimes f(t) = \widetilde{p}(t)$$

Impulse Responses of adaptive filters:

$$e_{II} = -\widetilde{e}_{I}$$

Output of adaptive filters:

$$S_{I} = \sum_{n=-\infty}^{\infty} \left[\left(a_{n} p(t - nT) - b_{n} \widetilde{p}(t - nT) \right) \right]$$

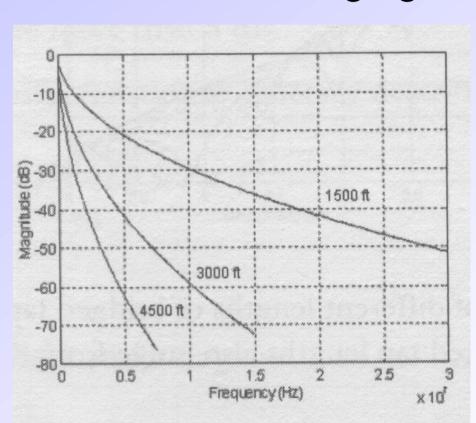
$$s_{II} = \sum_{n=-\infty}^{\infty} \left[\left(b_n p(t - nT) - a_n \widetilde{p}(t - nT) \right) \right]$$

- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

Channel Capacity:

$$C = \int_{f_1}^{f_2} \log_2 \left(1 + \frac{S(f)}{N(f)} \right)$$

- Expanding signal bandwidth
- High signal-to-noise ratio
- Sophisticated Coding and Modulation


Limiting factors

- Insertion loss
 - Especially for higher frequencies
- Noise
 - Background noise
 - Crosstalk noise
 - Impulse noise
- Compatibility
 - Existing services (e. g. POTS, ISDN, ADSL)
- Radio Frequency Interference
 - Standard amateur and broadcast radio bands
- Economic limitations
 - Power consumption at the Cabinet
 - Cheap and robust solution

Insertion Loss

Insertion Loss of a 24-gauge twisted pair loop

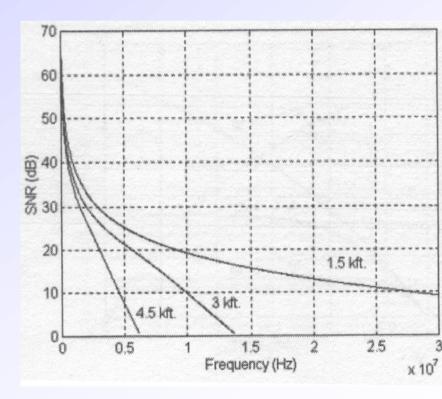
Transfer Function:

$$H(d,f) = e^{-d\gamma(f)} = e^{-d\alpha(f)} e^{-jd\beta(f)}$$

Propagation Loss in dB/m:

$$Lp(f) = -20 \log |H(1,f)|$$

$$Lp(f) \approx 8.686(a\sqrt{f} + bf)$$


TUG

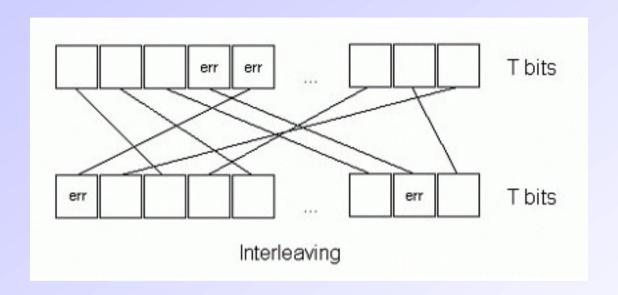
Noise Model

- Background Noise
 - White noise –140 dBm/Hz
- Crosstalk Noise

$$\frac{S(f)}{N_{F}(f)} = \frac{Q(f)|H(f)|^{2}}{Q(f)FEXT(f)} = \frac{1}{klf^{2}}$$

S(f) Received signal power density Q(f) Transmit power spectral density H(f) Channel transfer function FEXT(f) power sum transfer function

SNR for 24-gauge TP-Loop



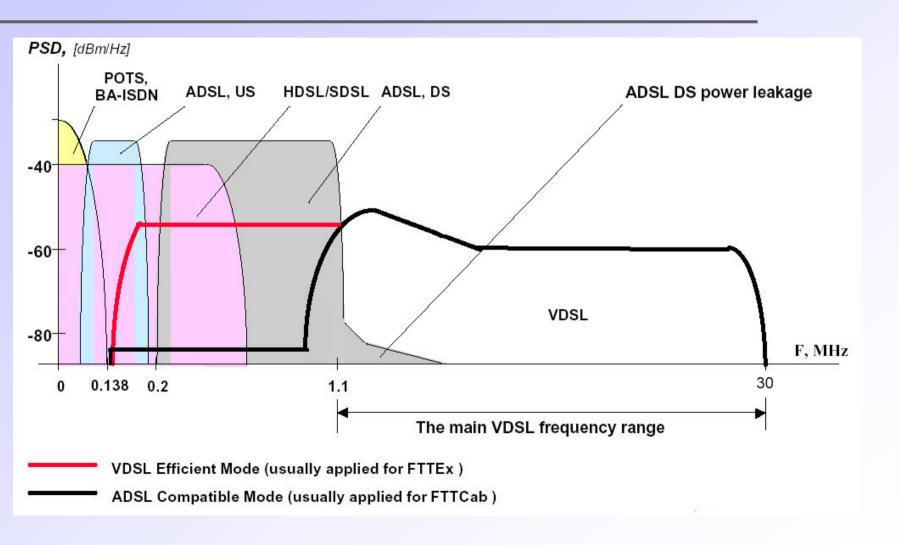
Channel Capacity

- Channel Capacity Results:
 - Length of TP loop in m → Mbps
 - 500/1000/1500 → 160/68/25
- 6 dB performance margin
 - 500/1000/1500 → 108/44/18
- Realized transmission throughputs
 - Lower due to allocation of guardbands and not using the whole spectrum
 - Europe 28Mbps/28Mbps

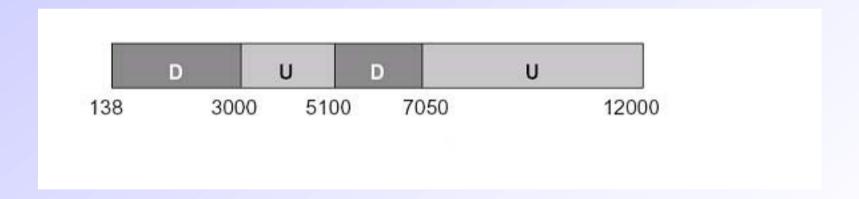
Impulse Noise

- Interleaving
 - Temporal permutation of Bits
 - Errors spread over block
 - Only for slow path

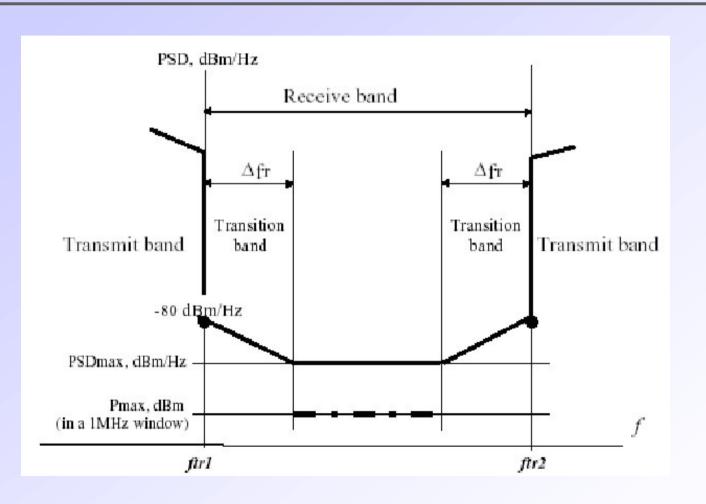
Radio Frequency Interference


- RF Egress
 - Caused by drop cable connection
 - At cusomer premises
 - HAM radio frequencies
 - CAP → Set notch filters
 - DMT
 switch off subcarrier

- RF Ingress
 - CAP → equalizer
 - DMT → switch off subcarrier


Spectral Compatibility

Transmit spectra


Band allocation Europe

- D ... Downstream transmission
- U ... Upstream transmission

Out-of-Band PSD mask

- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

CAP vs DMT I

- DMT VDSL Alliance
 - Texas Instruments and Alcatel
- CAP Coalition
 - Lucent, Broadcom, Infineon

CAP vs DMT II

DMT

- \odot
- No error propagation
- Subchannels degrade → redistributing data to other subchannels
- Relies on signal analysis techniques → reliability in the field?
- Requires 0.18 micron processes to meet the power constraints

CAP

- \odot
- 0.25 micron processes to meet the power constraints
- Relies on well-known and extensively field-proven digital signal processing algorithms
- (Ξ)
- Equalizer can create errors that propagate
- Equalizers with short, low-complexity filters. do not perform well on difficult channels

- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Channel Capacity
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

VDSL Standard

- Europe (ETSI TM6)
 - 2 parts: Functional requirements and Transceiver specification
 - SCM, MCM technologies are specified as possible implementations
- North America (ANSI T1E1.4)
 - 3 parts: Functional requirements,
 SCM, MCM Transceiver specification
- International (ITU-T)
 - only Functional requirements

- VDSL Applications, Goals
- Network Architecture
- CAP
- Achievable Bit-Rates and Limitations
 - Channel Capacity
 - Noise
 - Compatibility
- CAP vs. DMT
- Standard development
- Conclusion

Conclusion

- **VDSL** is
- ... a well developed technology
- ... at the last stages of standardization
- ... a multiservice architecture
- ... designed to operate in the presence of all kinds of impairments in copper pairs
- ... spectrally compatible with other xDSL
- And will have a great market potential