Advanced Signal Processing

Fundamentals of Detection Theory 1 by Klaus Kainrath

kainrath@sbox.tugraz.at

Fundamentals of Detection Theory

- Problem Statements
- Mathematical formulation and techniques
- Decision Theory

Detection Theory in Signal Processing

- Radar
- Communications
- Speech
- Sonar
- Image Processing
- Biomedicine
- Control
- Seismology

Radar Systems

- Electromagnetic pulse
- Reflection on a large moving object

Detection	Decision
noise	nothing
echo in noise	aircraft

Communication Systems

BPSK System

Detection	Decision
Zero in noise	Zero sent
One in noise	One sent

Speech Systems

Which Digit from 0 to 9 was spoken?

Detection	Decision
"Zero" in noise	"Zero" spoken
"One" in noise	"One" spoken

Central Problem

Determining the Function of the DataMapping it into a decision

→ Decision-making based on data

 \rightarrow statistical hypothesis testing

The Detection Problem

- Signal present
- Only noise present

➔ Binary Hypothesis Testing Problem

➔ Multiple Hypothesis Testing Problem

The Mathematical Detection Problem

Detection of a DC level of amplitude A = 1 embedded in Gaussian noise $\omega[n]$ with variance σ^2 . We have to decide between two Hypotheses:

■ H0 : x[0] = ω[0]	(noise only)
■ H1 : x[0] = 1 + ω[0]	(signal in noise)

Since noise is assumed to be zero mean:

■ x[0] > ½	(Signal is present)
■ x[0] < ½	(Only noise is present)

9

Observe x[0] for 100 realisations

The PDF

The Probability Density Function of noise

$$p(\omega[0]) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}\omega^2[0]\right)$$

The performance of each detector will depend upon how different the PDFs of x[0] are under each Hypothesis.

11

PDFs for x[0] for signal present or absent

Choosing between H0 and H1

H0: x[0] =
$$\omega[0]$$
 (Noise only
Hypothesis)
H1: x[0] = 1 + $\omega[0]$ (Signal present Hypothesis)
 $p(x[0]; H0) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}\omega^2[0]\right)$
 $p(x[0]; H1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x[0]-1)^2\right)$

The Gaussian PDF

Normal PDF

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- µ is the mean
- σ^2 is the Variance
- It is denoted $N(\mu, \sigma^2)$

Special:

- Cumulative Distribution Function $\rightarrow \Phi(x)$
- Right Tail Probability or Complementary Cumulative Distribution Function $\rightarrow Q(x) = 1 \Phi(x)$

Right Tail Probability

The right-tail Probability is the probability of exceeding a given value

CHI-SQUARED PDF (Central)

The chi-squared PDF is denoted by χ²_n and is defined as

$$f(x) = \frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} \exp\left(-\frac{x}{2}\right) \quad 0 < x < \infty$$

- n is an Integer with n>= 1 and is called freedom
- It becomes Gaussian if n becomes large
- It arises as the PDF where x=sum(χ²) for i=1 to n if χ ~ N(0,1) and χ's are independent and identically distributed IID

Decision Theory

Simple hypothesis testing Problem

Classical Approach:

- Neyman Pearson theorem
- Bayesian approach based on minimum Bayes risk

Neyman-Pearson Theorem (1)

- Observe a realisation of a random variable whose PDF is either N(0,1) or N(1,1)
- N(μ,σ²) denotes Gausian PDF with mean μ and variance σ²
- Only a single observation x[0]
- We have to choose among two competing hypotheses: H0 : µ = 0 (Null H.) H1 : µ = 1 (Alternative H.)

→ Binary hypothesis test

Error Types

- Decide H1 if $x[0] > \frac{1}{2}$ → threshold
- ERROR Type I \rightarrow decide H1 but H0 is true
- ERROR Type II → decide H0 but H1 is true

These Errors are unavoidable!

Probabilities

■ Hypotheses \rightarrow H0 : X[0] = ω [0] \rightarrow H1 : X[0] = s[0] + ω [0] ■ S[0]=1 and ω [0] ~ N(0,1)

■ P(H1;H0) Probability of False Alarm \rightarrow P_{FA} ■ P(H1;H1) Probability of Detection \rightarrow P_D

We wish to maximize P_{D} subject to the constraint $\mathsf{P}_{\mathsf{FA}}\text{=}\alpha$

21

Neyman-Pearson Theorem (2)

Theorem: To maximize for a given decide H1 if

$$L(x) = \frac{p(x; H1)}{p(x; H0)} > \gamma$$

where the threshold is found from

$$P_{FA} = \int_{\{x; L(x) > \gamma\}} p(x; H0) dx = \alpha$$

L(x) is termed the likelihood ratio

Minimum Probability of Error

- In digital communications a "0" or "1" is equal likely
- Now we have: → H0 ("0" sent)
 → H1 ("1" sent)

 $P(H0) = P(H1) = \frac{1}{2}$ where P(H0) and P(H1) are the prior probabilities of the respective Hypothesis. This type of approach is the Bayesian approach.

Minimum Probability of Error (2)

- Probability of error P_e
 - $P_e = P_r \{ \text{decide H0,H1 true} \} + P_r \{ \text{decide H1,H0 true} \\ = P(H0|H1)P(H1) + P(H1|H0)P(H0) \}$
- Minimizing the error probability
 Decide H1 if: P(H1|x) > P(H0|x)

$$\frac{p(x \mid H1)}{p(x \mid H0)} > \frac{P(H0)}{P(H1)} = \gamma$$

MAP Detector

- minimizes Pe for any prior probability
- Effect of prior probability on decision regions
 - 1. P(H0) = P(H1) = ¹/₂
 - 2. P(H0) = 1/4, $P(H1) = \frac{3}{4}$

Cross-Reference of Statistical Terms for Binary Hypothesis Testing

Statisticians	Engineers
Test statistic (T(x) and threshold (γ))	Detector
Null hypothesis (H0)	Noise only hypothesis
Alternative Hypothesis (H1)	Signal + noise hypothesis
Critical Region	Signal present decision Region
Type I error	False Alarm (F _A)
Type II error	Miss (M)
Level of significance (a)	Probability of FA (P _{FA})
Probability of Type II error (β)	Probability of miss (P _M)
Power of test (1- β)	Probability of detection (P_D)