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Advanced Signal Processing: The fundamentals of 
detection theory  

 

 

1 Problem Statements 
 

The technical development is a fast and continuous process. Special new 

Technologies step in our daily life, video mobile phoning, positioning 

systems, wireless networks and so on. 

All these are based on the exchange of information and as we know 

information is transmitted by numerous Signals.  

“Modern detection theory is fundamental to the design of electronic signal 

processing systems for decision making and information extraction.” 

All these systems share the same goal of being able to decide when an 

event interest occurs and then to determine more information about that 

event. There are two components: first the detection and then the 

decision. The information extraction is not subject to this topic. 

 

These components will be described by mathematical formulation and 

techniques. You often cannot predict whether a signal is correctly 

transmitted or not. Many factors are in such a system that will interfere 

with the real signal. Therefore we will approximate if a signal can be 

transmitted and further more received. For this we will need the statistic 

and its distribution functions. With the help of the statistic we will find out 

what a good detector is and which is not. 

 

The decision theory we find out something about the basic statistical 

groundwork for the design of detectors of signals in noise. The approaches 

follow directly from the theory of hypothesis testing. 
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2 Detection Theory in Signal Processing 
 

As mentioned before detection theory is fundamental to electronic signal 

processing systems. These systems include: 

 

1. Radar 

 

2. Communications 

 

3. Speech 

 

4. Sonar 

 

5. Image Processing 

 

6. Biomedicine 

 

7. Control 

 

8. Seismology 

 

All these systems share a common goal of being able to decide when an 

event of interest occurs. To do so we will need the decision and detection 

theory. To illustrate the problems of detection the first three systems will 

be described. 

 
 

2.1 The radar System 
 

In radar we are interested in determining the presence or absence of an 

approaching aircraft. For this we transmit an electromagnetic pulse, which  
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if reflected by a large moving object, that will indicate the presence of an 

aircraft. If an aircraft is present, the received waveform will consist of the 

reflected pulse and noise due to ambient radiation and the receiver 

electronics. Now it is the function of the signal processor to decide 

whether the received waveform consists of noise only or a signal in noise. 

When an echo is present, the character of the received waveform will be 

somewhat different because of propagation loss and interaction of 

reflection. If it is detected we are interested in the aircrafts bearings, 

speed and range. So after the first task of the signal processing system 

the second task will start: the information extraction which is called 

estimation theory. 

 

2.2 A digital information System 
 

An example for a digital information system is the binary phase shift 

keyed system (BPSK). It is used to communicate the output of a digital 

data source that emits a “0” or “1”. The data bit is first modulated, then 

transmitted, and at a receiver, demodulated and detected. The modulator 

converts a “0” into a waveform s0(t) = cos2πF0t and a “1” in s1(t) = 

cos(2πF0t+π) = -cos2πF0t to allow transmission through a bandpass 

channel whose center frequency is F0. 

Now there is the function of the detector to decide between the two 

possibilities, although now we always have a signal present, the question 

is which signal. The signal is usually distorted and corrupted, therefore 

we’d be in need of filters. 

 

2.3 Speech recognition 
 

Here we wish to determine which word was spoken from among a group 

of possible words. A simple example is to discern among the digits “0”, “1”  
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to “9”. To recognize a spoken digit using a digital computer we would 

need to match the spoken digit with some stored digit. The big problem is 

that the waveform changes lightly for each utterance of the same word. 

We think of noise but this is the natural variability of speech. 

 

2.4 Central Problem 
 

In all of these systems , we are faced with the problem of making a 

decision based on a continuous-time waveform. Modern-day signal 

processing systems utilize digital computers to sample the continuous-

time waveform and store the samples. So as a result, we have the 

equivalent problem of making a decision based on a discrete time 

waveform or data set. Mathematically, we assume the N-point data set 

{x[0], x[1], x[2],… x[N-1]} is available. We first form a function of the 

data or T(x[0], x[1], x[2],… x[N-1]) and then make a decision based on 

its value. Determining the function T and mapping it into a decision is the 

central problem addressed in detection theory. 

The future trend is based on discrete-time signals or sequences and digital 

circuitry. With this transition the detection problem has evolved into one 

of making a decision based on the observation of a time series, which is 

just a discrete time process. Therefore our problem has now evolved into 

decision making based on data, which is subject to the statistical 

hypothesis testing. 

 
 

3 The detection Problem 
 

The simplest detection problem is to decide whether a signal is present, 

which, as always, is embedded in noise or if only noise is present. (Radar 

example)  
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Since we wish to decide between two possible hypotheses, signal and 

noise present vs. noise only present, we term this the binary hypothesis 

testing problem. The goal is to use the data as efficiently as possible in 

making our decision. This will be more general if we take a look at the 

communication problem. There we have to decide which of two possible 

signals was transmitted. 

On the other hand it occurs that we wish to decide among more than two 

hypotheses like in speech communication systems. Such problems for 

example, where we have to determine which digit among ten possible 

ones was spoken, are referred to as the multiple hypothesis testing 

problem. 

All these problems are characterized by the need to decide among two or 

more possible hypotheses based on observed data sets. 

 

 

4 The Mathematical Detection Problem 
 

We consider the detection of a DC level of Amplitude A=1 embedded in 

white Gaussian Noise ω[n] with variance σ². To simplify the discussion we 

assume that only one sample is available on which to base the decision. 

So now we wish do decide between two hypotheses: 

H0: x[0] = ω[n]  und H1: x[0] = 1 + ω[n]. Since the noise is assumed to 

have zero mean, me might decide that a signal is present if x[0]>½ and 

noise only is present if x[0] <½ since E(x[0]) = 0 if noise only is present 

and E(x[0]) = 1 if a signal in noise is present. 

We will always be in error if a signal is present and ω[n] < -½ or 

whenever only noise is present and ω[n] > ½. It is also not possible to 

make correct decisions all the time but hopefully most of the time. For 

better understanding we consider what would happen if we repeated the 

experiment a number of times. For example observe x[0] for 100 
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realisations of ω[n] when a signal in noise is present and when it is not. 

You will get typical results for σ²= 0.05 as shown in the Figure: 

 

 

 

The “o”’s denote the outcome when no signal is present and the “x”’s 

when a signal is present. You can see that we may make an incorrect 

decision but only rarely. If we change σ²= 0.5, then our chances of 

making an error increase dramatically which is shown in the next figure on 

the next page: 
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This is due to the increasing spread of the realisations of ω[n] as σ² 

increases. 

 

4.1 The Probability Density Function 
 

The PDF of noise is: 
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Properties of a PDF: 

 

• shows distribution graphically 

• only at continuous Probability distributions 

 

4.1.1 The PDFs for noise only: 
 

PDF for σ²= 0.05: 

 ( )]0²[10exp
1,0

1])0[( xxp −=
π 

 

PDF for σ²= 0.5: 

 

 
( )]0²[exp1])0[( xxp −=

π 

 

4.1.2 The PDFs for Signal in noise: 
 

PDF for σ²= 0.05: 
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PDF for σ²= 0.5: 

 
( ))²1]0[(exp1])0[( −−= xxp

π 

 

The performance improves as the distant between the PDF’s increases or 

the SNR increases A²/ σ² 

 

4.2 Hypothesis 
 
Detection Performance depends on the discrimination between two 

hypotheses or PDF’s. We model the detection problem as one of choosing 

between H0 and H1 The PDF’s are denoted by p(x[0];H0) and p(x[0],H1) 

We ask whether x[0] has been generated according to p(x[0];H0) or 

p(x[0],H1)? 

Alternatively more general: p(x[0];A) for A = 1 or 0 which is 

parameterized by A. 

So the detection Problem could be seen as parameter test. We obtain 

p(x[0];H0) if A = 0 and p(x[0],H1). when A =1. Given the observation 

x[0] we whish to test if A = 1 or A = 0 or symbolically: 

 

• H0: A = 0 

• H1: A = 1 

 

It is also convenient to assign prior Probabilities to the possible 

occurrences of H0 and H1. This is useful for On Off Keyed Systems where 

you want to transmit either a ZERO by sending no Pulse or a ONE by 

sending a Signal with the Amplitude A = 1. In an OOK System we will 

transmit a steady stream of data bits. Since the data bits are equally likely 

to be generated by the source, we would expect H0 to be true half the 

time and H1 the other half. The Hypotheses so appear as random events  
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with the probability ½. When we do so the notation of the PDF will be 

p(x[0]|H0) and p(x[0]|H1) 

 

4.3 The Gaussian PDF 
 

Is also referred as normal PDF; for a scalar random variable x it is defined 

for –infinity < x < +infinity 

x~N(µ,σ²)  „~“ means “is distributed according to” 

 

Cumulative distribution function CDF  µ=0 and σ²=1  the PDF for 

CDF is called standard normal PDF 

CDF is defined as PHI: 
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Right tail Probability  Q(x) 1 – Φ(x)  

Defined as: 
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4.4 Right Tail Probability 
 

Is also referred as Complementary cumulative distribution function and 

can be sometimes approximated as 

 
⎟
⎠
⎞

⎜
⎝
⎛−≈ ²

2
1exp

2
1)( txQ
π 

 

 is the Probability of exceeding a given value  approximation useful for 

x > 4 
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4.5 CHI – SQUARED PDF 
 

Is the distribution of a sum of X=Z1²+…+Zn² of n independent Z squared 

standard normal random variables  or if Zk ~ N(0,1) for k = 1 to n is 

independent then X ~ Χ²(n). 

For n>100 X is approximately normal distributed. 

The graph on the next page shows the CHI-Squared distribution for some 

n 

If n is 0 the PDF is infinite at x=0 

As n rises the chi squared becomes Gaussian. 

 

A specific case of interest occurs when n=2: 

This is referred to as an exponential PDF for x>0 
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The Right tail probability of a CHI Squared random variable is: 

 
∫
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5 Decision Theory 
 

We lay basic statistical groundwork for the design of detectors of signals in 

noise we address simple hypothesis testing problem where the PDF of 

each assumed Hypothesis is known. 

The primary approaches to simple hypothesis testing are the classical 

approach based on NEYMAN PEARSON theorem and the BAYESIAN 

approach based on minimization of BAYES risk. 

 

SONAR and RADAR systems  NEYMAN PEARSON criterion 

Communication and Pattern recognition  BAYES risk 

 

5.1 Neyman-Pearson Theorem (1) 
 

The Detector that maximizes the probability of detection for a given 

probability of false alarm is the likelihood ratio test. as specified by the 

NEYMAN PEARSON theorem. The threshold is found from the false alarm 

constraint 

In discussing the NP approach we center our discussion around a simple 

example of hypothesis testing. We must determine if µ is 0 or 1 based on 

only a single observation x[0]. 

 

binary hypothesis test  choose between two hypotheses 
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5.1.1 Error Types 
 

On the basis of a single sample it is difficult to determine which PDF 

generated it. 

Reasonable: decide H1 if x[0] > ½  then x[0] is more likely if H1 true 

Then we can say that p(x[0],H1)>p(x[0],H0) 

Detector compares the observed value with ½  threshold 

Notation: P(Hi;Hj)  deciding Hi when Hj is true 

P(H1;H0)=Pr(x[0]>1/2;H0)  darker area 

Failure unavoidable but we should trade them off against each other  

change threshold 

It is not possible to reduce both error probabilities simultaneously 

 

5.1.2 Probabilities 
 

We choose to constrain P(H1;H0) to a fixed value α, then distinguish 

between two hypotheses H0 und H1  we have the signal detection 

problem. 

 

Define a probability of false alarm  decide H1 when H0 is true  Pfa and 

is small 

Now we want to minimize the other error P(H0;H1) or minimize 1- 

P(H1;H0)=P(H1;H1)  Probability of detection Pd 

This setup is termed the NEYMAN PEASON approach to hypothesis testing 

 maximize Pd and constraint Pfa 
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The goal of a detector is to decide either H0 or H1 based on an observed 

data set {x[0]-x[N-1]} 

 

This is a mapping from each possible data set into a decision. The decision 

regions are shown below:. 

 

 

 

 

 

 

 

 

R1 is the set of values in RN 

that map into a decision H1: 

 

R1={x: decide H1 or reject H0}  critical region 

 

The set of Points in RN that map into decision H0 is the complement set of 

R1: 

 

R0={x: decide H0 or reject H1} 

 

R1 u R0 = RN 

 

The Pfa becomes then: 

α== ∫ dxHxpP
RFA

1

);( 0  

And the Pd: 

dxHxpP
RD ∫=

1

);( 1  
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Pd is called the power of the test and the critical region that attains the  

maximum power is the best critical region 

The NP theorem tells us how to choose R1 if we are given p(x;H0), 

p(x;H1) and alpha 

 

5.2 Neyman-Pearson Theorem (2) 
 

Function L(x) is termed Likelihood ratio since it indicates for each value of 

x the likelihood of H1 versus the likelihood of H0 

The entire test is called the likelihood ratio Test LRT 

 
γ>=
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Where the threshold can be found from: 

 

∫ >
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5.3 Minimum Probability of Error 
 
In detection Problems one can reasonably assign probabilities to the 

various hypotheses. 

In doing so we expect a prior believe in the likelihood of the hypotheses. 

For example: in digital communication the transmission of 0 or 1 is 

equally likely 

Then it is reasonable to assign equal probabilities to H0 (ZERO) and H1 

(ONE) 

Not possible in SONAR and RADAR 

This type of approach, where we assign prior probabilities, is the 

BAYESIAN approach to hypothesis testing. 
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With the BAYESIAN paradigm we can define a probability of error Pe 

Pe = Pr{decide H0,H1 true} + Pr{decide H1,H0 true} 

Pe = P(H0|H1)P(H1) + P(H1|H0)P(H0) 

 

Using the Pe criterion, the two errors are weighted appropriately to yield 

an overall error measure. Similar to the NP test we compare the 

conditional likelihood ratio to a threshold. 

Equivalently we choose the Hypothesis with the larger conditional 

likelihood or the one that maximizes p(x|Hi) for i=0,1 

This is called the Maximum Likelihood detector ML 

Decide H1 if:  

 

P(H1|x) > P(H0|x) 

 

With the Bayses rule: 

)(
)(*)|(

)|(
xp

HPHxp
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we come for p(x) is a constant value to: 

 

p(x|H1)P(H1)> p(x|H0)P(H0) 

 

and finally: 
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The probability of error decreases monotonically with NA²/ σ² which is the 

deflection coefficient. 
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5.4 MAP Detector 
 

We can also choose the hypothesis whose a posteriori (after data are 

observed) probability is maximum. This detector which minimizes Pe for 

any prior probability, is termed the maximum a posteriori detector  MAP 

 

For equal prior probabilities the MAP detector reduces to the ML detector. 

 

 

6 Cross-Reference of Statistical Terms for Binary 
Hypothesis Testing: 

 

Statisticians Engineers 

Test statistic (T(x) and threshold 

(γ)) 

Detector 

Null hypothesis (H0) Noise only hypothesis 

Alternative Hypothesis (H1) Signal + noise hypothesis 

Critical Region Signal present decision Region 

Type I error False Alarm (FA) 

Type II error Miss (M) 

Level of significance (α) Probability of FA (PFA) 

Probability of Type II error (β) Probability of miss (PM) 

Power of test (1- β) Probability of detection (PD) 
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