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1 Introduction

Space Time Codes(STC) were first introduced by Tarokh et al.from AT&T

labs in 1998 as a novel means of providing transmit diversity for the multiple-

antenna fading channel. Other temporal diversity techniques like temporal

diversity, frequency diversity and receive antenna diversity were used to deal

with multipath fading in multiple antenna wireless systems before the STC

came into scene.

STC is a means /technique to address broad goals in maximizing link

performance, maximize link throughput and minimize error.The supporting

performance criteria to meet this goal could be signaling rate (in bps/Hz or

bits per transmission), diversity gain (or diversity order, which is the slope of

the error vs SNR curve), coding gain (from code design that increases effec-

tive SNR), and the array gain (from antenna combining that also increases

effective SNR).

Improving error performance is possible by maximizing diversity whose

upper bound is MT MR)in MIMO channels. A well designed STC codes

can ensure this upperbound. Increasing coding gain also depends on the

minimum distance of the code. Certain classes of ST codes (STTC) which

are discussed in this report can provide coding gain as well as diversity gain.

2 Coding and interleaving architecture

We now discuss the general coding architecture for transmission over multi-

ple antennas shown in Fig 1. A block of qK bits is input for temporal coding,

interleaving and symbol mapping and in the process q(N − K) parity bits

are added and N symbols are output.
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Figure 1: Coding Arc

Nsymbols are added to the ST coder that adds an additional MT T − N

parity symbols and packs the resulting MT T symbols into an MT × T frame

of length T . The block/frame is then transmitted over T symbol periods and

is noted as an ST codeword. Signaling data rate is qK/T bits/transmission

and this should be should be with in channel capacity.

qK

T
= q

(
qK

qN

) (
N

T

)
= qrtrs (1)

rt is temporal code rate of the outer encoder and rs is the spacial code rate

defined as the average number of independent symbols transmitted from the

MT antennas over T symbol periods.

The spacial code rate rs varies between 1 to MT . When all transmit

antennas send one symbol per symbol period we get rs = 1. In Spatial Mul-

tiplexing scheme we send MT independent symbols per symbol period to get

rs = MT .

Interleaving is used to spread burst errors that could occur due to fades

across codewords to improve error correction performance. Interleaving is

absolutely necessary in ST coding to exploit all available spatial diversity by

mitigating any space selective fading across transmit antennas.
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3 ST coding for frequency flat channels

3.1 Signal model

Consider a MIMO system with MT and MR and a code word MT × T di-

mension. The code word can be denoted by S = [s[1]s[2] . . . s[T ]], where

s[k] = [s1[k] . . . sMT
[k]]T , is the transmitted vector symbol over the kth sym-

bol period.

y[k] =

√
Es

MT

Hs[k] + n[k], k = 1, 2, . . . , T, (2)

Y =

√
Es

MT

HS + N, k = 1, 2, . . . , T, (3)

where Y = [y[1]y[2] . . .y[T ]] and N = [n[1]n[2] . . .n[T ]]

are matrices of size MR × T

For decoding a transmitted codeword, a receiver is assumed to use a

Maximum Likelihood ML detection with perfect channel knowledge. The

estimated codeword is:

Ŝ = arg mins‖Y − HS‖2
F

= arg mins‖y[k] −

√
Es

MT

Hs[k]‖2
F (4)

Minimization is performed over all admissible codewords S

3.2 ST codeword design criteria

To extract the parameters for codeword design, first we define the pair wise

error probability (PEP). Given that the receiver constructs a ML estimate of

the transmitted codeword according to the equation in 4, the probability that
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the receiver mistakes the transmitted codeword S(i)for another codeword S(j)

is referred to us the Pair Wise Error Probability.

P (S(i) → S(j)|H) = Q

(√
Es‖H(S(i) − S(j))‖2

F

2MT No

)

= Q

(√
ρ‖HEi,j‖2

F

2MT

)

(5)

Ei,j = S(i) − S(j) is the MT × T codeword difference matrix and ρ = Es/N0

is the SNR, applying Chernoff bound to the PER we get;

P (s(i) → S(j)|H) ≤ e
−

ρ‖HEi,j‖
2

F
4MT (6)

After some computational manipulation our PEP equation reduces to;

P (s(i) → S(j)|H) ≤
1

( ∏r(Gi,j)
k=1 λk(Gi,j)

)MR

(
ρ

4MT

)
−r(Gi,j)MR

(7)

where λk(Gi,j)(k = 1, 2, 3, . . . , r(Gi,j)) are non-zero eigenvalues of Gi,j =

Ei,jE
H
i,j. The above equation (7) leads to the two-well known criteria for ST

codeword construction ”rank criterion” and ”determinant criterion”.

3.2.1 Rank criterion

The rank criterion optimizes the spatial diversity extracted by an ST code.

Referring equation (7), the ST code extracts r(Gi,j)MR order diversity. r(Gi,j)is

the rank of Gi,j.

To extract the full spatial diversity gain of MT MR, the code design should

be such that Ei,j between any pair of codewords is full-rank (r(Gi,j) = MT).

3.2.2 Determinant criterion

The determinant criterion optimizes the coding gain. Referring eq (7), the

coding gain depends on the term:
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( ∏r(Gi,j)
k=1 λk(Gi,j)

)

For high coding gain, this term should be maximum over all possible pairs

of codeword matrices S(i) and S(j)

3.3 ST diversity coding (rs ≤ 1)

Here two flavors of ST diversity codes are presented for discussion, STTC

and STBC, which extract full diversity order (MT MR)with spatial rate rs ≤ 1

3.3.1 STTC

STTC are an extension of convolutional trellis codes to multiantenna systems.

They map an arbitrary number of information symbols to antenna outputs

according to a finite-state machine.

These codes can be designed to extract diversity gain and coding gain

using the mentioned criteria in eq (7). Their ability to provide both kinds of

gain makes them superior in performance over their STBC counterparts.

The simplest example of a STTC is the delay-diversity scheme depicted

bellow, This transmitter can be modeled as a finite state machine, whose

state at time kis kk−1. The previous and current sequence of input symbols

uniquely defines a trellis path. The number of trellis states is equal to the

size of the input alphabet and the receiver can can implement ML sequence

detection using Viterbi algorithm.

Fixing the number of input symbols to k, we can construct the following

space-time block code A.

A(x) =

[
x1 x2 x3 . . . xK−1 xK 0
0 x1 x2 x3 . . . xK−1 xK

]

(8)
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Two zeros are inserted in the first and the last columns to initialize and

terminate the trellis to a known state.

The code in the scene is a linear code and A(x) − A(x′) between two

distinct codewords reduces to A(e), whose rank is 2 and the delay diversity

achieves full rank according to the rank criterion.

Another good example for improved delay diversity is a case of 8-PSK

alphabet, (A = ejlπ/4).

A(l) =

[
l1 l2 l3 . . .
0 5l1 5l2 5l3 . . .

]

(9)

In the above representation the parity symbol index is 5l(modulo8). Iden-

tifying symbols by their integer lables l, the (2,1)reptition code in eq (8)

can be written us C = {00, 15, 22, 37, 44, 51, 66, 73} and the code for the 8-

PSK alphabet can be written as C = {00, 15, 22, 37, 44, 51, 66, 73}, the Min

equilidean distance for the former code is dmin ≈ 1.082 and the latter code
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achieves a maximal minimum Euclidean distance of dmin = 2.

Thus using the code in eq (9) in place of the reptition code in eq (8) in

the delay-diversity transmitter structure, two antenna 8-state 8-PSK STTC

is achieved
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Both the mentioned delay-diversity and the space-time trellis code above

satisfy the rank criterion for full diversity achievement. However, the 8-PSK

STTC shown, performs better because its coding gain is larger.

In fig(2) A space time trellis code for 4-PSK is shown, it is similar to

the previous example except the fact that it is constrained to use a 4 PSK

alphabet.

As indicated on the diagram, the mappers convert an integer l ∈ 0, 1, 2, 3

a 4-PSK symbol a according to a = e( jlπ

2
).The number of nodes in the trellis

diagram corresponds to the number of states. MT entries in each constellation

correspond to the symbols to be transmitted from the MT antennas.There

are four group of symbols for the four possible inputs (4-QAM constella-

tion). Each group has two entries corresponding to the symbols to be output

through the two transmit antennas

Decoding will be done using ML sequence estimation using Viterbi algo-
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rithm.

Important points to note

STTC are an effective means of capturing diversity. Increasing the number

of states also increases the coding gain. However, the computational load for

decoding an STTC increases exponentially with the number of states.

3.3.2 STBC

STBC are generalizations of Alamouti’s scheme (two-antenna transmit di-

versity scheme)and we start discussion of the STBC by presenting the Alam-

outi’s scheme.

Alamouti’s scheme is a scheme which improves the signal quality at the

receiver on one side of the link by simple processing across two transmit an-

tennas at the opposite end. Bellow is the schemetic diagram of Alamouti’s

scheme.

Given that s1 and s2 to be transmitted, the Alamouti scheme transmits

Tx1

Tx2

Fig3 Alamouti’s Two Antenna Transmit Diversity Scheme
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symbol s1 and s2 from antenna 1 and antenna 2 respectively in the first sym-
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bol period, followed by −s∗2 and s∗1 from antenna 1 and antenna 2 respectively

during the next symbol period.

The transmitted code word can be expressed as:

S =

[
s1 −s∗2
s2 s∗1

]

(10)

The codeword difference matrix between any pair of codewords( S(i) and

S(j))

Ei,j =

[
e1 −e∗2
e2 e∗1

]

(11)

Ei,j is an orthogonal matrix with two non-zero eigenvalues (rank 2) of equal

magnitude. The Alamouti scheme therefore delivers full 2MR order diversity

where MR represents the number of receive antennas.

Alamouti’s receiver output can be stated us:

yi =

√
Es

2
‖H‖2

F si + n, i = 1, 2, (12)

yiis the scalar processed received signal corresponding to transmitted symbol

si and ni is ZMCSCG noise with variance ‖H‖2
F N0

ST code construction for Alamouti type scheme to an arbitrary number of

transmit antennas is possible. An example of an orthogonal design for MT =

4 is shown bellow:

S =





s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1



 (13)

Symbols s1, s2, s3, s4 are all drawn from a real constellation. The difference
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matrix between such type codewords Ei,j is orthogonal matrix.The average

PEP in the high SNR regime for an orthogonal STBC(OSTBC)from eq (7):

P (s(i) → S(j)|H) ≤

(
MT

‖Ei,j‖2
F

)MT MR
(

ρ

4MT

)
−MT MR

(14)

From the above equation we learn that OSTBC extract the full diversity

gain of MT MR. In the case of complex constellations, an orthogonal design

with spatial rate 1 doesn’t exist for systems more than two transmit anten-

nas, an Alamouti’s scheme is the only existing code for complex constilation

codewords.

Orthogonal designs for rs = 1
2

and rs ≥ 1
2

do exist for systems with any

number of transmit antennas.

OSTBC are attractive due to their low complexity implementation; simple

linear processing at the receiver can decouple the vector detection problem

into simpler scalar detection problems resulting in a simple input-output

relations.

We can generalize their main feature as the provision of full diversity with

very simple decoding as compared to the requirement by STTC. If coding

gain is required, however, they have to be concatenated with an outer code.

3.4 Spatial multiplexing as a ST code (rs = MT) :

So far the discussion has been with spatial rate rs ≤ 1 and diversity order

MT MR where ofcourse there was one or less independent symbol transmitted

per symbol period over the MT antennas. In this part we discuss Spatial

Multiplexing (SM) where we transmit more or less MT independent symbols

per symbol period.
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In an uncoded SM scheme rt = 1 and rs = MT the signaling rate will be:

qMT bits/transmission

The receiver on the other side of the link treats each received signal vec-

tor as a codeword, and performs ML decoding on every vector symbol. The

code word difference matrixEi,j is now an MT × 1 vector and the Ei,jE
H
i,j is

matrix with one rank and thus the average PEP is written as:

P (s(i) → S(j)) ≤
1

λ(Gi,j)MR

(
ρ

4MT

)
−MR

(15)

SM with no coding may be considered as a ST code with spatial rate MT

with MR order diversity

3.4.1 Horizontal Encoding (HE)

In HE the bit stream is first demultiplexed into MT separate streams to

undergo temporal coding, interleaving and symbol mapping before transmis-

sion. The spatial rate for this scheme will be then rs = MT and the signaling

rate will be qrtMT bits/transmission.

The HE scheme, like the uncoded SM, can at most achieve MR order di-

versity since any given symbol is transmitted from only one transmit antenna

and received by MR receive antennas (source of sub-optimality). Coding gain

of the scheme depends on the strength of the temporal code and array gain

of MR is achievable.

3.4.2 Vertical Encoding (VE)

In VE the bit stream undergoes temporal coding, interleaving and symbol

mapping before demultiplexing and transmission. With this scheme optimal-

ity is achievable since potentially each bit can be spread across all antennas.

12



B B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B BB B B B B B B B
C C C C C C C CC C C C C C C CC C C C C C C CC C C C C C C CC C C C C C C C

D D D D D D D DD D D D D D D DD D D D D D D DD D D D D D D DD D D D D D D D
E E E E E E E EE E E E E E E EE E E E E E E EE E E E E E E EE E E E E E E E

F F F F F F FF F F F F F FF F F F F F FF F F F F F FF F F F F F FF F F F F F FF F F F F F F

G G G G G G GG G G G G G GG G G G G G GG G G G G G GG G G G G G GG G G G G G G

+ symbol mapper

Temporal code+interleaver

qK bits

+ symbol mapper

Temporal code+interleaver

demultiplex

demultiplex+ symbol mapper

qK bits Temporal code

 + interleaving

symbols

symbols

symbols

Figure 5 Vertical Encoding (allows spreading of information bits across all antennas, needs complex decoding tech)

symbols

HIJKL

M NKL

O PQJKL

QJKL O PQJKL

M NKL

KL

KL

QJKL

QJKL

RSTUVW X YZVS[Z\] _̂ \̀aZbS\T cdUefZg]Sh _̂ W\aZbS\T ]Wai\SjUW ]î ] â g]UVWd ]̂ hZd] Kk ZVbWV bSlWVdS]m
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The disadvantage of this scheme is, it requires joint decoding at the re-

ceiver and hence may be complex. The spatial rate and the signaling rate are

the same as that of HE scheme. It can achieve a diversity order greater than

MR (bits are possibly spread over all antenna). Coding gain for this scheme

depends on the temporal code design, and array gain of MR is achievable

3.4.3 Diagonal Encoding (DE)

DE is a variation of the HE and VE schemes. Incoming data streams first

undergoes HE encoding and split into frames/slots as shown in fig 6. The

frames pass through a stream rotator so that the bit stream-antenna associ-

ation is periodically cycled. For large codeword, the codeword from any one

of the demultiplexed stream could be transmitted over all MT antennas as

in the special scheme called D-BLAST transmission technique.

In D-BLAST an initial wastage (no transmission) is required for optimal

encoding, refer fig 7. Similar to the HE and VE, the spatial rate for DE is
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MT and the signaling rate is qrtMT bits/transmission.

In D-Blast type schemes MT MR diversity is possible if the stream rotation

is optimal. In the this scheme also the coding gain depend on the temporal

code gain and an array gain of MR is achievable.
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Fig6 Diagonal Encoding (HE) with stream rotation

Fig7 D−Blast encoding−numerals represent layers belonging to the same codeword
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3.5 ST coding for intermediate rates (1 ≤ rs ≤ MT )

It is also possible to trade-off rate of transmission and reliability of transmis-

sion. The design metrics (rank and determinant) are not also directly related

to the capacity of encoding scheme.

The ST encoding can be viewed as an operator on the channel to yield

a new effective channel whose capacity is computed. Taking into consider-

ation the effective channel capacity as one more metrics in addition to the

rank and determinant criteria, a more powerful coding schemes could be

conceived. There are some new approaches in this direction, eg, the linear
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dispersion framework proposed by [Hassib ad Hochwald 2001], symbols are

spread across time and space through matrix modulation and superposition

with the objective of ergodic capacity maximization.

C̄ = max
Tr(XHX )=MT T

1

T
E{log2det(IMRT +

ρ

MT

HXXHHH)} (16)

3.5.1 Signal Model

N × 1 vector s of N complex data symbols is modulated by MT × N code

matrix, and transmitted over the MR × MT channel H for each symbol pe-

riod. Assume there are T distinct code matrices and at time 1 ≤ k ≤ T

signal X[k]s

(kth code matrix) is transmitted.

The received symbol vector at time instant k will be:

y[k] =

√
Es

MT

HX[k]s + n[k] (17)

The code design involves identifying the matrices X[k] that constitute the

code. The matrices are computed to maximize both diversity and ergodic

capacity. Similar analysis like presented earlier can apply here also to com-

pute the PEP.

4 ST coding for frequency selective channels

4.1 Signal model

Assuming the the channel between the ith transmit antenna and jth receive

antenna is frequency selective, The symbol-sampled baseband impulse re-

sponse can be denoted by: hi,j[l], (l = 0, . . . , L − 1)

15



As in the flat fading case it is also assumed that there is no channel

knowledge at the transmitter and full channel knowledge with ML decoding

at the receiver.

y[k] =

√
Es

MT





h1,1 . . . h1,MT

...
...

...
hMR,1 . . . hMR,MT









s1[k]
...

sMT
[k]



 + n[k] (18)

4.2 ST codeword design criteria

The codeword construction criterion to obtain full diversity is similar to the

flat fading case. The codeword has in effect µ = MTL virtual antennas.

Although there are MT L virtual antennas, the additional structure im-

posed may prevent these codes from exploiting full spatio-temporal diversity

equal to MT MRLeff .
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