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Abstract— This paper introduces various methods for the opti-
mum detection of deterministic and random signals in Gaussian
noise. The derivation of the detectors is based on the Neyman-
Pearson theorem. We will only deal with Gaussian noise and
assume that the probability density function is completely known.
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I. I NTRODUCTION

DETECTION theory deals primarily with techniques for
determing how good data obtained from a certain model

corresponds to the given data set. A typical example is a radar
system where the presence and absence of a target has to be
determined from the measurements of a sensor array. Or in a
binary communication system where the received signal has
to be processed to decide whether a binary ”0” or ”1” was
sent. This can certainly be extended to the case of detecting
M signals. However, signal processing algorithms performing
the detection process have to tackle the problem that the
information-bearing signals are corrupted by noise.
In this paper we will only deal with the detection of a single
signal in noise. The perhaps simplest case is when the signal
is assumed to bedeterministic(as it is for a radar system).
In other cases, the signal is more appropriately modeled as
a random process. For example the waveform of a speech
signal depends strongly on the identity of the speaker, the
context in which the sound is spoken etc. It is therefore not
meaningful to assume the signal to be known but rather to be
a random process with known covariance structure. In both
cases, however, we want to find a detector which performs
optimal in some sense.

II. PROBLEM STATEMENT

The main idea behind the detection process is based on
statistical hypotheses testing. Given an observation vectorx
and several hypothesesHi (a listning of probabilistic models
which may have generated the data), our aim is to find
an optimal method to determine which model fits the data
best. Although the number of hypotheses can in principle be
arbitrary, we will only consider the case of two hypothesesH0

andH1. We will further assume that the probability density
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function (PDF) for each assumed hypothesis is completely
known. This leads us to thesimplehypothesis testing problem
which is formulated as

H0 : x[n] = w[n] n = 0, 1, . . . , N − 1

H1 : x[n] = s[n] + w[n] n = 0, 1, . . . , N − 1
(1)

where s[n] is the signal to be detected andw[n] is a noise
process. Therefore, we have to determine anoptimal method
so that for each observation data we decide whether hypothesis
H0 orH1 was true. There are several mathematical approaches
to solve such a problem depending on what we mean by
optimal. Though, the primary approaches to simple hypothesis
testing are the classical ones, namely theNeyman-Pearson
(NP) and theBayesianapproach. The choice of the method
depends on how much prior knowledge about the probabilities
of occurence of the two hypotheses we want to incorporate in
our decision process. Therefore, the problem itself determines
the choice of the appropriate approach. While communication
and pattern recognition systems use the Bayes risk, we will
employ the NP criterion as it is the case for radar and sonar
systems. Moreover, the derivation of the optimal detectorswill
depend on our assumption about the noise.

III. D ETERMINISTIC SIGNALS

A. Replica-Correlator

We begin our discussions about optimal detection by consid-
ering the case where the signals[n] in our hypothesis testing
problem (1) is deterministic.w[n] is thereby assumed to be
a zero mean Gaussian noise process with varianceσ2 and
autocorrelation function

rww[k] = E {w[n]w[n + k]} = σ2δ[k]

We will refer to this as white Gaussian noise (WGN) and
denote

w ∼ N (0, σ2
I)

wherew = [w[0] w[1] . . . w[N − 1]]
T is a noise vector. As

already mentioned, we will use the NP criterion to derive an
optimal detector. Such a detector decides hypothesisH1 if the
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likelihood ratio exceeds a threshold or

L(x) =
p(x;H1)

p(x;H0)
> γ

where x = [x[0] x[1] . . . x[N − 1]]
T is our received data

vector. Since the PDF under either hypothesis is Gaussian, i.e.

p(x;H1) =
1

(2πσ2)
N

2

exp

[

− 1

2σ2
(x − s)T (x − s)

]

p(x;H0) =
1

(2πσ2)
N

2

exp

[

− 1

2σ2
x

T
x

] (2)

we have

L(x) = exp

[

− 1

2σ2

[

(x − s)T (x − s) − x
T
x
]

]

> γ

Taking the logarithm of both sides yields

l(x) = ln L(x) = − 1

2σ2

[

(x − s)T (x − s) − x
T
x
]

> ln γ

This does not change the inequality because the logarithm
is a monotonically increasing transformation and both sides
will be affected equally. After performing some algebraic
manipulations, we get

1

σ2
x

T
s − 1

2σ2
s
T
s > ln γ

The second term in this inequality represents the energy of
the signal. But since the signals[n] is known, we can simply
move this expression to the right side. So

x
T
s > σ2 ln γ +

1

2
s
T
s

Hence, we get a new thresholdγ′ and we decideH1 if

T (x) = x
T
s =

N−1
∑

n=0

x[n]s[n] > γ′ (3)

The NP detector of (3) is referred to as acorrelator or
replica-correlatorsince this expression represents a correlation
process of the received datax[n] with a replica of the known
signal s[n]. As expected, it consists of a test statisticT (x)
(a function of the data) and a thresholdγ′, which is chosen
to satisfyPFA = α for a givenα. A block diagram of the
detector is given in Fig. 1.
A physically relevant interpretation of (3) comes from the
theory of linear vector spaces. The quantityx

T
s is termed

as thedot productbetweenx and s or the projection of x

onto s. According to the Schwarz inequality, the largest value

> γ′

< γ′

H1

x[n]

s[n]

T (x)
N−1
∑

n=0
H0

Fig. 1: Replica-correlator

occurs when the vectors are proportional to each other. More
precisely, the dot product measures the similiarity between the
two vectors yielding the highest value when they are parallel
and the lowest value (i.e. zero) when they are orthogonal to
each other. Thus, such a detector removes those components
from the received data which are orthogonal to the signal.
Since the noise is assumed to be independent of the signal, the
detector simply eliminates it whereas the components parallel
to the signal are retained.

B. Example

To illustrate the result above, we assume thats[n] = A for
some known levelA, whereA > 0. Then from (3)

T (x) = A
N−1
∑

n=0

x[n]

If we further divideT (x) by NA, we decideH1 if

T ′(x) =
1

N

N−1
∑

n=0

x[n] = x > γ′′

But this is just the sample mean detector. Note that ifA < 0,
we get the same detector but we decideH1 if x < γ′′

C. Matched Filter

There is another important signal processing interpretation of
(3). The correlation can be viewed in terms of a filtering
process of the data. Since we have a summation of a finite
number of samples, we take aFIR filter into considerations.
If we now letx[n] be the input to such a filter, then the output
y[n] at timen is given by the convolution operation, i.e.

y[n] =
n
∑

k=0

h[n − k]x[k] (4)

where the impulse responseh[n] of the FIR filter is nonzero
for n = 0, 1, . . . , N −1. Note that forn < 0 the output is zero
since we assumex[n] is also nonzero only over the interval
[0, N − 1]. The question that further arises is how we have to
chooseh[n] in (4) to get the test statistic in (3). The proper
choice of the impulse response is the ”flipped around” version
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> γ′

< γ′

x[n]
T (x)

h[n]
n = N − 1

H0

FIR filter

h[n] =

{

s[N − 1 − n] n = 0, 1, . . . , N − 1
0 otherwise

H1

Fig. 2: Matched filter

of the signal or

h[n] = s[N − 1 − n] n = 0, 1, . . . , N − 1 (5)

Inserting (5) into (4) and sampling the output of the FIR filter
at timen = N − 1 yields

y[N − 1] =
N−1
∑

k=0

s[k]x[k] := T (x)

which with a change of the summation variable is identical to
the replica-correlator of (3). This implementation is shown in
Fig. 2 and known as amatched filterbecause the observations
are passed through a filter whose impulse-responsematches
that of the signal being sought. The output of the matched
filter is sampled exactly at the moment when all observations
fall within the filter’s memory.

D. Properties of a Matched Filter

The matched filter may also be viewed in the frequency
domain. Taking the discrete-time Fourier transform (DTFT)
of (5) yields

H(ejω) = S∗(ejω)e−jω(N−1) (6)

When we take the absolute value of this equation, the expo-
nential term vanishes and it becomes apparent that the matched
filter emphasizes the bands where there is more signal power.
This can also be shown by considering the convolution sum
of (4). We may view this equation as an inverse DTFT of the
product of the input spectrum with the frequency response of
the filter. Together with (6), we get

y[n] =
1

2π

∫ π

−π

Y (ejω)ejωndω

=
1

2π

∫ π

−π

H(ejω)X(ejω)ejωndω

=
1

2π

∫ π

−π

S∗(ejω)X(ejω)ejω(n−(N−1))dω

Sampling the output atn = N − 1 produces

y[N − 1] =
1

2π

∫ π

−π

S∗(ejω)X(ejω)dω

This equation relates the output value of the matched filter
to the spectrum of the input signal. Note that when the noise
is absent orX(ejω) = S(ejω), the output becomes simply
the signal energy. This result can also be seen from (3) when
x[n] = s[n].
Another property can be derived when we consider the signal-
to-noise ratio (SNR) at the output of an FIR filter with arbitrary
impulse response given by

η =
E2 {y[N − 1];H1}
Var {y[N − 1];H1}

=

(

N−1
∑

k=0

h[N − 1 − k]s[k]

)2

E







(

N−1
∑

k=0

h[N − 1 − k]w[k]

)2






=

(

h
T
s
)2

E
{

(hT w)
2
} =

1

σ2

(

h
T
s
)2

hT h

wheres = [s[0] s[1] . . . s[N − 1]]T , h = [h[N − 1]
h[N −2] . . . h[0]]T andw = [w[0] w[1] . . . w[N −1]]T . By
the Cauchy-Schwarz inequality, this equation is maximal iff

h = cs

which corresponds to our matched filter. Lettingc = 1 we
obtain the maximum output SNR given by

ηmax =
s
T
s

σ2
=

ε

σ2

where ε is the signal energy. For the detection of a known
signal in WGN, the NP criterion and the maximum SNR
criterion lead to the matched filter. Since the NP criterion is
optimal, the maximum SNR criterion also produces an optimal
detector under these model assumptions. On the other hand,
when we assume that we have non-Gaussian noise the matched
filter is not optimal in the NP sense because the NP detector
is not linear. However, the matched filter still maximizes the
SNR at the output of a linear FIR filter (more generally, this
is true for any linear filter, even for an IIR type).

E. Performance of a Matched Filter

To determine the detection performance of a matched filter,
we consider again the derived test statistic of (3)
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PDFs of matched filter test statistic

T ε 0 

p(T;H
0
) p(T;H

1
) 

Fig. 3: PDFs of a matched filter test statistic

T (x) =
N−1
∑

n=0

x[n]s[n] = x
T
s > γ′

We know from Chap. II that under either hypothesisx[n] is
Gaussian. SinceT (x) is a linear combination of Gaussian
random variables,T (x) is also Gaussian. If we compute
the expected value and the variance of the test statistic (i.e.
E {T ;Hi} andVar {T ;Hi} for i = 1, 2), we get

T ∼
{

N (0, σ2ε) under H0

N (ε, σ2ε) under H1

(7)

This is the so calledmean-shifted Gauss-Gauss problemwhere
we decide between two hypotheses that differ by a shift in the
mean ofT . More precisely, the corresponding PDFs have the
same shape (same variance) but are displaced byε against
each other (as illustrated in Fig. 3).

To state something about the detection performance, we divide
(7) by

√
σ2ε

T ′ ∼
{

N (0, 1) under H0

N (
√

ε/σ2, 1) under H1

We see that the detection performance must increase with
√

ε/σ2. This is obvious because increasing the energy-to-
noise ratio (ENR)ε/σ2 does not change the shape of the
PDF but simply moves them further apart. To derive an
expression that confirms that, we reconsider the definition for
the probability of false alarm

PFA = P (H1;H0) = Pr {x[0] > γ;H0}

= Q

(

γ − µ0

σ

)

(8)

and for the probability of detection

PD = P (H1;H1) = Pr {x[0] > γ;H1}

= Q

(

γ − µ1

σ

)

(9)

whereµ0 andµ1 are the mean values under each hypothesis
andσ is the standard deviation. Using (8) and (9) in (7), we
get

PFA = Pr {T > γ′;H0}

= Q

(

γ′

√
σ2ε

)

PD = Pr {T > γ′;H1}

= Q

(

γ′ − ε√
σ2ε

)

From that we can show that the detection probability is given
by

PD = Q

(

Q−1(PFA) −
√

ε

σ2

)

(10)

Since the probability of false alarm is fixed, the key parameter
in (10) is the ENR. As its value increases, the argument of
Q(.) decreases andPD increases. This relation is shown in
Fig. 4. It is obvious that to improve the detection performance
we can always increasePFA and / or ε/σ2. It is important
to note that due to the ENR the detection performance stays
unaffected when the shape of the signal varies. This means
that two signals with arbitrary shape but same signal energy
will lead to the same detection performance. We will later see
that this is just the case for white Gaussian noise.

F. Generalized Matched Filter

In many cases, the assumption of white noise is not sufficient.
The noise is rather modeled ascorrelatednoise described by
a covariance matrixC. Thus, we now assume that

w ∼ N (0,C)

To determine the NP detector we use the same derivation as
given in III-A. Due to the different noise assumption, the PDFs
of the two hypotheses are now given by

x ∼
{

N (0,C) under H0

N (s,C) under H1
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Fig. 4: Detection performance of a matched filter

or explicitly

p(x;H1) =
1

(2πσ2)
N

2 det
1

2 (C)
exp

[

−1

2
(x − s)T

C
−1(x − s)

]

p(x;H0) =
1

(2πσ2)
N

2 det
1

2 (C)
exp

[

−1

2
x

T
C

−1
x

]

Note that for WGNC = σ2
I and the equations reduce to the

ones in (2). Setting up the likelihood ratio test yields after
some algebraic manipulations

T (x) = x
T
s
′ =

N−1
∑

n=0

x[n]s′[n] > γ′ (11)

This detector is referred to as ageneralized replica-correlator
or generalized matched filterwhere the replica is the modified
signal s′ = C

−1
s. Note that in case of WGNC = σ2

I and
the detector reduces to the one given in (3).

G. Performance of a Generalized Matched Filter

Following the procedure, in III-E the detection performance
of a generalized matched filter is given by

PD = Q
(

Q−1(PFA) −
√

sC−1s

)

(12)

The probability of detection increases monotonically with
sC

−1
s and not with the ENRε/σ2 as for WGN. In the latter

case only the signal energy was important and not the shape.
Now, the signal can be designed to maximizesC

−1
s and

thereforePD. Note that sinceC = σ2
I in case of WGN,

(12) reduces again to its corresponding counterpart in (10).

IV. RANDOM SIGNALS

A. Energy Detector

As mentioned in Chap. I, there are cases in which the signal
is rather modeled as a random process. Therefore, we assume
that the signals[n] in our problem statement (1) is a zero-
mean, white, wide-sense stationary Gaussian random process
with covariance matrixCS = σ2

SI. As in the deterministic
case, we will later generalize the results to a process with
arbitrary covariance matrixCS . We could also say that the
signal is WGN but the term noise is somehow inappropriate.
The noise signalw[n] is assumed to be white Gaussian with
known varianceσ2 and to be independent of the signal.
Due to our modeling assumptions, the received data vector
x is distributed according to a Gaussian PDF under either
hypothesis but with the difference that the variance changes if
the signals[n] is present (i.e. for hypothesisH1). Hence

x ∼
{

N (0, σ2
I) under H0

N (0, (σS + σ2)I) under H1

or explicitly

p(x;H0) =
1

[2π(σ2
S + σ2)]

N

2

exp

[

− 1

2σ2
x

T
x

]

p(x;H0) =
1

(2πσ2)
N

2

exp

[

− 1

2σ2
x

T
x

]
(13)

After deriving the test statistic as given in III-A, we decide
H1 if

T (x) = x
T
x =

N−1
∑

n=0

x2[n] > γ′ (14)

The NP detector computes theenergyin the received data and
is therefore calledenergy detector. This is intuitively clear
because if the signal is present, the energy of the received data
increases. This becomes clear when we consider the scaled test
statisticT ′(x) = (1/N)

∑N−1
n=0 x2[n]. Since this expression is

simply the sample variance ofx[n], we get the the valueσ2

underH0 andσ2
S + σ2 underH1. Note that this is in contrast

to the detection of a deterministic signal where the mean value
changed under either hypothesis.

B. Performance of an Energy Detector

To derive the probability of detection for a energy detector,
we have to determine the PDF of the test statistic given in
(14). In general, a random variablex which is the sum of the
squares ofN independent and identically distributed Gaussian
random variablesxi ∼ N (0, 1) (i.e. x =

∑N−1
i=0 x2

i ) has a
PDF which ischi-squared. Due to our modeling assumption,
we have to divide the test statistic under each hypothesis
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Fig. 5: Energy detector performance (N=25)

by its corresponding variance so that the result is distributed
according to a chi-squared PDF

T (x)

σ2
∼ χ2

N under H0

T (x)

σ2
S + σ2

∼ χ2
N under H1

After some mathematics we end up with

PD = Qχ2

N

(

γ′/σ2

σ2
S/σ2 + 1

)

We see that asσ2
S/σ2 increases, the argument ofQχ2

N

(.)
decreases and thusPD increases. The probability of detection
curves are illustrated in Fig. 5. The figure shows just the
qualitative run of the curves and represents an approximation
because the right tail probability of a chi-squared PDF is
difficult to compute. However, note that even signals with
lower variance than the noise variance (the signal-to-noise
ratio becomes negative) can be detected given a certainPFA.

C. Estimator-Correlator

After we assumed the signal to be a WGN process, we now
generalize it to signals with arbitrary covariance matrixCS .
Hence

x ∼
{

N (0, σ2
I) under H0

N (0,CS + σ2
I) under H1

Using the explicit expressions for the PDFs (like the ones in
(13)), we get after some algebraic manipulations and using the

T (x)
N−1
∑

n=0

H0
Wiener

x[n]

ŝ[n]

> γ′′

< γ′′

filter

ŝ = CS(CS + σ2
I)−1

x

H1

Fig. 6: Estimator-correlator for the detection of a Gaussian
random signal in WGN

matrix inversion lemma

T (x) = x
T
ŝ =

N−1
∑

n=0

x[n]s[n] > γ′′ (15)

where

ŝ = CS(CS + σ2
I)−1

x

Since the detector correlates the received data vectorx with an
estimatês of the signal, it is denoted asestimator-correlator.
Note that the test statistic in (15) is a quadratic form in thedata
(i.e. an expression of the formxT

Ax whereA is a matrix)
and thus will not be a Gaussian random variable. Recall that
the energy detector was a scaledχ2

N random variable. Fig.
6 shows the implementation of the estimator-correlator. Note
further that the estimated signal is produced by filtering the
received data with a Wiener filter. Although not shown here,
ŝ is therefore called aWiener filter estimatorof the signal.

V. SUMMARY

We have introduced various methods for the optimum detec-
tion of deterministic and random signals in Gaussian noise.
All derivations of the detectors were based on the Neyman-
Pearson criterion. For deterministic signals, the replica-
correlator is an optimal detector in case of white Gaussian
noise. The matched filter is equivalent but simply represents
another implementation of the same test statistic. To detect
a known signal in colored Gaussian noise, the generalized
matched filter turned out to be the optimal one. For random
signals, the energy detector is an optimal detector for a
zero mean, white Gaussian signal in white Gaussian noise.
Generalization to signals with arbitrary covariance matrices led
to the estimator-correlator. The detection of a random signal
in colored Gaussian noise has not been considered here.
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