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Fundamentals and Preprocessing
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Speech Processing
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Fundamentals

■ Behavioral Biometrics - speakers identity can not be measured
directly

■ Speech carries 2 Informations:
◆ Meaning of the message
◆ Information about themselves as a person

■ Speaker specific characteristics in signal
◆ speaker’s anatomy
◆ physiology
◆ linguistic
◆ experience
◆ mental state

Individuality in the sound system
■ segmental component (e.g., mental lexicon, pronounced word)
■ supra-segmental component (e.g., timing, stress pattern and

intonation of a sequence)
■ number and identity of segments used in the sound inventory
taken from [6]
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Vocal Apparatus

adapted from [5]
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Problems in Speaker Recognition

■ Misspoken or misread prompted phrases
■ Extreme emotional states (e.g., stress or duress)
■ Time varying (intra- or intersession) microphone placement
■ Poor or inconsistent room acoustics (e.g., multipath and noise)
■ Channel mismatch (e.g., using different microphones for enrollment

and verification)
■ Sickness (e.g., head colds can alter the vocal tract)
■ Aging (the vocal tract can drift away from models with age)
taken from [5]
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Generic Speaker Verification
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Features - Preprocessing

■ Speech parameterization: Feature extraction from the speech signal
■ Voice activity detection
■ End point detection
■ Feature normalization
■ Dynamic information

Example Feature: Cepstral coefficients

Taken from [7]
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Pattern Matching Methods
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Template Models

Definition of template: x = 1
N

PN
i=1 x, with N training vectors. Then a

distance function can be defined as:

d(x, x) = (x − x)T
W (x − x),

where W defines the chosen distance function.
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Dynamic Time Warping

■ Time-dependent methods
■ Algorithm to compensate speaking rate variability
■ Piece wise linear mapping of the time axis to align 2 signals and

minimize z

■ Text- dependent
The asymmetric match score z is given as: z =

PT
t=1 d(xt, xj(t))
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Vector Quantization Source Modeling

■ Time-independent
■ Create a VQ code book as a collection of code words for each

speaker by clustering
■ No temporal information about the speaker used

The match score is defined as:

z =

T
X

t=1

min d(xt, x)
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Nearest Neighbors
■ Distance based classification by direct computation
■ No models or data reduction by clustering
■ Powerful method with high computational complexity

d(U,R) =
1

|U |

X

ui∈U

min
rj∈R

|ui − rj |
2 +

1

|R|

X

rj∈R

min
ui∈U

|ui − rj |
2

−
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|U |
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Performance

■ YOHO database with 186 Subjects
■ 9300 imposter trials
■ DTW: 0.2% FA / 4 % FR; EER ≈ 1.5%

■ NN: 0.1% FA / 1 % FR ; EER ≈ 0.5%
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Stochastic Models
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Hidden Markov Models

■ Model represents a sequence of specific words
■ Is a finite state machine, where each pdf p(X|si) is associated with

each state states are connected by a transition network with a given
state transition probability aij = p(si|sj)

p(x|λi) =
X

all state

sequences

T
Y

t=1

p(xt|st) p(st|st−1)

EER = 0.62% @ 2.5s (YOHO, Che and Lin, 1995)
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Gaussian Mixture Models

■ Definition of a Gaussian Distribution

px(µc, Σc) =
1

(2π)D/2|Σc|1/2
exp

ˆ

−
1

2
(x − µc)

T Σ−1
c (x − µc)

˜

■ Weighted sum of C Gaussians to model target distribution

p(x|λ) =

C
X

c=1

wc px(µc, Σc)
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GMM-UBM
■ Define a Universal Background Model (UBM)
■ Perform speaker adaptation
■ Tight coupling between SD and UBM model
■ UBM also used as cohort model
■ EER ≈ 10% (2048 components)

Speaker adaptation methods:
■ Weighted sum combining
■ Maximum a posteriori combining (MAP)

MAP adaptation:

ck,spkComb
= [βc

kck,spk + (1 − β
c
k)ck,ubm] ǫ

µk,spkComb
= β

µ
k µk,spk + (1 − β

µ
k )µk,ubm

Σk,spkComb
= β

Σ
k Σk,spk + (1 − β

Σ
k )(Σk,ubm + µ

2
k,ubm) − µ

2
k,spkComb

,

with β
ρ
k =

ck,spk

ck,spk+rρ

and rρ the relevance factor. taken from [7]
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Support Vector Machines

■ Well suited for SV because of its binary nature of decision
■ Construction of a boundary/hyperplane separating data sets
■ Found optimum plane is a linear combination of a set of vectors

(support vectors)
■ For enrollment speaker and imposter data must be available
■ Relaxation of linear separability condition to allow outliers
■ Results in an EER : 0.59 % on the YOHO database

Performance for combined SVM-GMM system with non-linear kernel:
EER = 6.39% (NIST 2006 SRE , 53966 tests, GMM-UBM baseline:
9.11%) [8]
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Air Traffic Control
System Presentation
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ATC System Presentation

■ Technical Requirements
◆ AM channel with poor quality → low SNR
◆ Narrow bandwidth in the region of 300 - 2500 Hz
◆ Real-time processing

■ Speech Communication Specification
◆ Speaker turns on average only 5 seconds
◆ Hypothesized interval of uniform speaker through AIT
◆ No offline speaker enrollment
◆ By definition, start with reference speaker
◆ Text-independent verification method used
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System Pattern Recognition Approach
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System Design
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Databases

SPEECHDAT-AT: noisy telephone recordings

■ Out of 100 speakers, 20 are marked as reference
■ 6 utterances each are compared to the reference speaker
■ 100∗ claimants ∗6 utterances each ∗20 reference = 12000 requests

WSJ0: almost clean database (Broadcast)
■ All speakers produce the same utterances
■ Out of 45 speakers, 24 are marked as reference
■ 12 randomly selected utterances each are compared to the

reference speaker
■ 45∗ claimants ∗12 utterances each ∗24 reference = 12960 requests
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Results

DET. . . Detection error tradeoff curve
FA. . . False acceptance rate
FR. . . False rejection rate

EER . . . Equal error rate (FA == FR)
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Conclusion

■ System to choose is application dependent
■ EER depends on test (database) condition
■ Most systems assume known end points
■ Text-idependent systems are still a challenge
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