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Signal Processing and Speech Communication Laboratory—Prof. G. Kubin
Graz University of Technology

Exam Adaptive Systems on 2010/12/17

Name MatrNr. StudKennz.

Exam duration: 3 hours
Maximum points: 100
Allowed material: mathematical formulary, calculator
You have to return this document after the exam. Good luck!

Problem 1 (34 Points)
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Consider the T

2
-fractionally-spaced equalizer illustrated above where the incoming signal is

sampled at a rate twice the symbol rate. The decision device is synchronized with the even-
indexed samples. The discrete-time FIR description of the communication channel for the high
sampling rate is

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 = 1/2 + 1 z−1 + 1/2 z−2 + 1/4 z−3.

(Note, the unit delay z−1 corresponds to T

2
here.)

(a) Assume the transmitted symbols to be ±1 and consider the receiver without the equalizer
(replace it by a straight line). For the given channel, can the open-eye condition be met? Hint:
which samples of the channel’s impulse response influence the transmitted, T -spaced symbols?

(b) Calculate the 3 coefficients of the T

2
-fractionally-spaced equalizer

C(z) = c0 + c1z
−1 + c2z

−2

such that the cascade of the given channel and the equalizer is (or approximates) H(z)C(z) = 1,
i.e., enables a delay-free and ISI-free transmission.

(c) Calculate the 3 coefficients of the T

2
-fractionally-spaced equalizer such that the cascade is

(or approximates) a delay of 1 symbol.

(d) Calculate the 3 coefficients of the T

2
-fractionally-spaced equalizer such that the cascade is

(or approximates) a delay of 2 symbols.

(e) Consider the channel to be noisy. Compute the noise gains of the three equalizers of the
previous tasks. Which one of the three equalizers should be chosen?
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Problem 2 (32 Points)

Consider the following linear filtering problem:

x[n] ∈ R y[n]

d[n]

e[n]
c[n] =







c0[n]
...
cN−1[n]







The auto-correlation sequence of x[n] and the cross-correlations between x[n−k] and d[n] are
assumed to be known (we can build the auto-correlation matrix R

xx
and the cross-correlation

vector p). The following adaptation rule (coefficient-leakage gradient search) is used to adapt
c[n]

c[n] = (1 − µα)c[n − 1] + µ(p − R
xx

c[n − 1]),

where α is the leakage parameter (0 < α ≪ 1) and µ is the step-size parameter.

(a) Assume convergence. Where does this algorithm converge to?

(b) Transform the given adaptation rule in a way such that it adapts the misalignment vector
(defined as v[n] = c[n] − c∞). Hint: substitute for p using the result from (a).

(c) Decouple the adaptation rule of (b) into a set of scalar adaptation expressions by using a
unitary transform q[n] = QHv[n].

(d) Write the decoupled equation from (c) as individual exponential sequences and derive a
condition on µ to ensure convergence towards c∞, i.e., specify the range µmin < µ < µmax

(assume α to be given).

(e) Compute the worst-case convergence time constant τmax.
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Problem 3 (34 Points)

Consider the system identification problem shown below. Note, the states of the switches
are not optimized but given: we either use them both opened or both closed. The LTI system
to be identified has the following impulse response vector h = [h0, h1, h2, h3]

T.

z−1 z−1z−1

x[n] e[n]

c0 c2

s1 s3

h[n]

(a) Both switches are open. Determine the MinMSE solution for the two coefficients c =
[c0, c2]

T for a general auto-correlation sequence rxx[k].

(b) Both switches are closed now. Determine the MinMSE solution for the two coefficients for
this scenario.

(c) Now, the input signal is a sinusoidal: x[n] = cos(θn + ϕ) with ϕ a uniformly distributed
random phase. Derive the auto-correlation sequence rxx[k]. Are there frequencies θ such that
the MinMSE solution is c0 = h0 and c2 = h2 (regardless the states of the switches)? If yes,
determine such a frequency.


