Signal Processing and Speech Communication Laboratory—Prof. G. Kubin Graz University of Technology

Exam Adaptive Systems on 2010/12/17

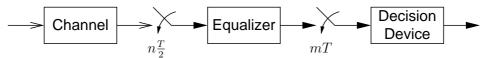
Name

MatrNr.

StudKennz.

Exam duration: 3 hours Maximum points: 100 Allowed material: mathematical formulary, calculator You have to return this document after the exam. Good luck!

Problem 1 (34 Points)



Consider the $\frac{T}{2}$ -fractionally-spaced equalizer illustrated above where the incoming signal is sampled at a rate twice the symbol rate. The decision device is synchronized with the even-indexed samples. The discrete-time FIR description of the communication channel for the high sampling rate is

$$H(z) = h_0 + h_1 z^{-1} + h_2 z^{-2} + h_3 z^{-3} = 1/2 + 1 z^{-1} + 1/2 z^{-2} + 1/4 z^{-3}.$$

(Note, the unit delay z^{-1} corresponds to $\frac{T}{2}$ here.)

(a) Assume the transmitted symbols to be ± 1 and consider the receiver without the equalizer (replace it by a straight line). For the given channel, can the open-eye condition be met? Hint: which samples of the channel's impulse response influence the transmitted, *T*-spaced symbols?

(b) Calculate the 3 coefficients of the $\frac{T}{2}$ -fractionally-spaced equalizer

$$C(z) = c_0 + c_1 z^{-1} + c_2 z^{-2}$$

such that the cascade of the given channel and the equalizer is (or approximates) H(z)C(z) = 1, i.e., enables a delay-free and ISI-free transmission.

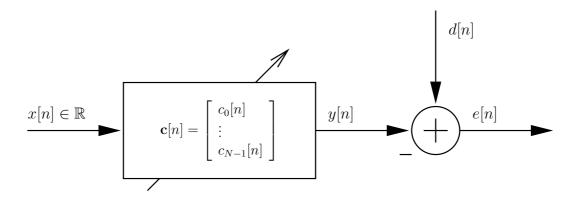
(c) Calculate the 3 coefficients of the $\frac{T}{2}$ -fractionally-spaced equalizer such that the cascade is (or approximates) a delay of 1 symbol.

(d) Calculate the 3 coefficients of the $\frac{T}{2}$ -fractionally-spaced equalizer such that the cascade is (or approximates) a delay of 2 symbols.

(e) Consider the channel to be noisy. Compute the noise gains of the three equalizers of the previous tasks. Which one of the three equalizers should be chosen?

Problem 2 (32 Points)

Consider the following linear filtering problem:



The auto-correlation sequence of x[n] and the cross-correlations between x[n-k] and d[n] are assumed to be known (we can build the auto-correlation matrix $\mathbf{R}_{\mathbf{xx}}$ and the cross-correlation vector \mathbf{p}). The following adaptation rule (*coefficient-leakage gradient search*) is used to adapt $\mathbf{c}[n]$

$$\mathbf{c}[n] = (1 - \mu\alpha)\mathbf{c}[n-1] + \mu(\mathbf{p} - \mathbf{R}_{\mathbf{xx}}\mathbf{c}[n-1]),$$

where α is the leakage parameter ($0 < \alpha \ll 1$) and μ is the step-size parameter.

(a) Assume convergence. Where does this algorithm converge to?

(b) Transform the given adaptation rule in a way such that it adapts the misalignment vector (defined as $\mathbf{v}[n] = \mathbf{c}[n] - \mathbf{c}_{\infty}$). Hint: substitute for \mathbf{p} using the result from (a).

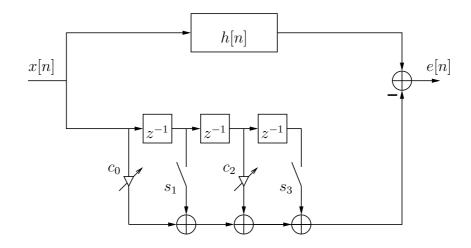
(c) Decouple the adaptation rule of (b) into a set of scalar adaptation expressions by using a unitary transform $\mathbf{q}[n] = \mathbf{Q}^H \mathbf{v}[n]$.

(d) Write the decoupled equation from (c) as individual exponential sequences and derive a condition on μ to ensure convergence towards \mathbf{c}_{∞} , i.e., specify the range $\mu_{min} < \mu < \mu_{max}$ (assume α to be given).

(e) Compute the worst-case convergence time constant τ_{max} .

Problem 3 (34 Points)

Consider the system identification problem shown below. Note, the states of the switches are not optimized but given: we either use them both opened or both closed. The LTI system to be identified has the following impulse response vector $\mathbf{h} = [h_0, h_1, h_2, h_3]^{\mathsf{T}}$.



(a) Both switches are open. Determine the MinMSE solution for the two coefficients $\mathbf{c} = [c_0, c_2]^{\mathsf{T}}$ for a general auto-correlation sequence $r_{xx}[k]$.

(b) Both switches are closed now. Determine the MinMSE solution for the two coefficients for this scenario.

(c) Now, the input signal is a sinusoidal: $x[n] = \cos(\theta n + \varphi)$ with φ a uniformly distributed random phase. Derive the auto-correlation sequence $r_{xx}[k]$. Are there frequencies θ such that the MinMSE solution is $c_0 = h_0$ and $c_2 = h_2$ (regardless the states of the switches)? If yes, determine such a frequency.