Signal Processing and Speech Communication Laboratory—Prof. G. Kubin Graz University of Technology

Exam Adaptive Systems on 2011/3/25

Name

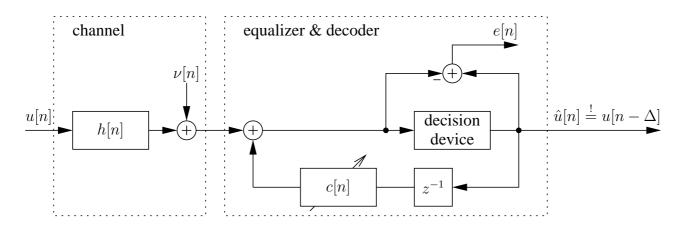
MatrNr.

StudKennz.

Exam duration: 3 hours Maximum points: 100 Allowed material: mathematical formulary, calculator You have to return this document after the exam. Good luck!

Problem 1 (33 Points)

Consider the given data transmission scenario over a channel with impulse response h[n] and additive noise $\nu[n]$. We use a decision-feedback equalizer (feedback only) in decision-directed operation mode.



The symbols to be transmitted are $u[n] \in \{-1, 1\}$, which occur with the same probability. Consecutive symbols can be assumed to be uncorrelated. Also the channel noise $\nu[n]$ is uncorrelated with the data u[n-k]. The decision device returns the sign of its input signal (zero is regarded as a positive number). The channel is given as

 $h[n] = -0.3\delta[n] + 1\delta[n-1] - 0.2\delta[n-2] + 0.6\delta[n-3].$

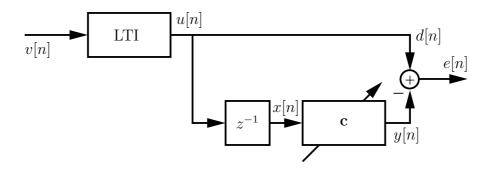
(a) Consider a transmission over the given channel *without* an equalizer (decision device only). What is the ideal delay Δ that minimizes ISI (Inter Symbol Interference)? For this delay Δ , calculate the worst-case ISI and answer whether the channel's eye is open or not.

(b) Find the optimum solution for an N-coefficient (N > 0) decision-feedback equalizer in the sense of a minimum mean-squared error (MinMSE) for a general delay Δ and a general channel impulse response.

(c) What is the best delay Δ for a decision-feedback equalizer with 2 coefficients $\mathbf{c} = [c_0, c_1]^T$ to minimize ISI? For this delay, give the optimum equalizer coefficients. Calculate the worst-case ISI and answer whether the equalizer can open the channel's eye or not.

Problem 2 (32 Points)

A prediction-error filter can be considered as a blind equalizer for AR processes.



The first 3 samples of the auto-correlation sequence of u[n] are given as $r_{uu}[0] = 1.0$, $r_{uu}[1] = 0.\overline{5} = \frac{5}{9}$, and $r_{uu}[2] = 0.3\overline{7} = \frac{17}{45}$ where the bars denote repeating decimals.

(a) For a predictor with N = 1 coefficient, find the MSE-optimal coefficient of the adaptive filter.

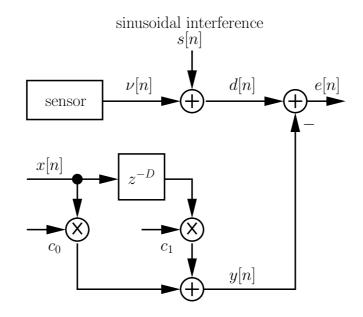
(b) For a predictor with N = 2 coefficients, find the MSE-optimal coefficient vector **c** of the adaptive filter.

(c) Assume, u[n] is an AR process of 2nd order. Write down the process-generator difference equation and calculate the variance σ_v^2 of the white-noise input v[n].

(d) Next, assume that the coefficient vector \mathbf{c} (N = 2) is updated constantly, such that it is MSE-optimal. Would the coefficients change if v[n] is not white? How would they change? What would happen to the coefficients if v[n] is white, but the LTI system is an FIR filter?

Problem 3 (34 Points)

Consider the following adaptive *sinusoidal-interference canceler*:



The input signal is given by

$$x[n] = \cos\left(2\pi \frac{f_{ac}}{f_s}n + \varphi\right).$$

The frequency $f_{ac} = 50$ Hz, and the sampling frequency $f_s = 8000$ Hz. The phase offset φ is considered as a random variable uniformly distributed over $(-\pi, \pi]$. The delay in the adaptive transversal filter is $D \in \mathbb{N}$. The sensor signal $\nu[n]$ is unknown, but it is uncorrelated with x[n]. The sinusoidal interference is

$$s[n] = \frac{1}{2} \cos\left(2\pi \frac{f_{ac}}{f_s}n + \varphi - \frac{\pi}{4}\right).$$

(a) Determine the auto-correlation sequence $r_{xx}[k]$ of the above given x[n] as well as the autocorrelation matrix $\mathbf{R}_{\mathbf{xx}}$ of the tap-input vector $\mathbf{x}[n] = [x[n], x[n-D]]^{\mathsf{T}}$. (Do not just give the final result for $r_{xx}[k]$, but carefully show how to find the result by means of integration.)

(b) Determine the eigenvalues λ_i of $\mathbf{R}_{\mathbf{xx}}$, and give the condition number $\kappa = \frac{\lambda_{max}}{\lambda_{min}}$. Find the (smallest) delay $D \in \mathbb{N}$ that minimizes κ . Explain, what theoretical and practical advantages such a selection of D can bring.

(c) Determine the cross-correlation vector \mathbf{p} between the signal d[n] and the tap-input vector $\mathbf{x}[n] = [x[n], x[n-D]]^{\mathsf{T}}$.

(d) Determine the Wiener-Hopf solution for the two coefficients c_0 and c_1 . (Take the *D* found before or use a general *D* if you have not found one before.)