Signal Processing and Speech Communication Laboratory—Prof. G. Kubin Graz University of Technology

Exam Adaptive Systems on 2012/7/2

Name

MatrNr.

StudKennz.

Exam duration: 3 hours Maximum points: 100 Allowed material: mathematical formulary, calculator You have to return this document after the exam. Best wishes for a successful exam!

Problem 1 (32 Points)

The white-noise signal v[n] with zero mean and variance $\sigma_v^2 = 1$ is filtered by the FIR filter G(z) with impulse response

$$g[n] = \delta[n] - 0.4\delta[n-1].$$

The resulting signal x[n] is used to identify the system H(z) with impulse response

$$h[n] = 0.9\delta[n] + 0.3\delta[n-1]$$

by the adaptive filter C(z), which has order 1, i.e., N = 2 coefficients.

(a) Determine the autocorrelation matrix $\mathbf{R}_{xx} = E\{\mathbf{x}[n]\mathbf{x}[n]^T\}$ of the signal x[n] (Hint: Use the autocorrelation function $r_{xx}[k] = E\{x[n]x[n-k]\}$ to determine the entries of \mathbf{R}_{xx}).

(b) Determine the crosscorrelation vector $\mathbf{p} = E\{d[n]\mathbf{x}[n]\}$.

(c) Determine the Wiener solution \mathbf{c}_{opt} for the filter C(z).

(d) Can you determine the Wiener solution \mathbf{c}_{opt} without explicitly computing the entries of the autocorrelation matrix \mathbf{R}_{xx} and the cross-correlation vector \mathbf{p} ? If yes, show how. If no, explain why not.

Problem 2 (34 Points)

A prediction-error filter can be considered as a blind equalizer for AR processes.

The first 3 samples of the autocorrelation sequence of u[n] are given as $r_{uu}[0] = 1.0$, $r_{uu}[1] = 0.\overline{5} = \frac{5}{9}$, and $r_{uu}[2] = \frac{17}{45} = 0.3\overline{7}$, where the bar denotes repeating decimals.

(a) For a general autocorrelation sequence and a general predictor order N, find the MSE-optimal coefficient vector \mathbf{c} of the adaptive filter.

(b) For a predictor with N = 2 coefficients, find the MSE-optimal coefficient vector **c** of the adaptive filter.

(c) Assume that u[n] is a second-order AR process. Write down the process-generator difference equation and calculate the variance σ_v^2 of the white-noise input v[n].

(d) Given the difference equation from (c), compute the fourth sample of the autocorrelation sequence, $r_{uu}[3]$.

(e) Is the prediction error filter $P(z) = \frac{E(z)}{U(z)}$ a low-pass or a high-pass filter? Justify your answer! Hint: Plot the pole/zero diagram of P(z), and, if necessary, sketch the magnitude response.

(f) Given the difference equation from (c) and a second-order predictor filter (N = 2), write down the autocorrelation sequence of the prediction error signal e[n].

Problem 3 (34 Points)

Consider the following linear filtering problem:

The auto-correlation sequence of x[n] and the cross-correlations between x[n-k] and d[n] are assumed to be known (we can build the auto-correlation matrix \mathbf{R}_{xx} and the cross-correlation vector \mathbf{p}). The following adaptation rule (*coefficient-leakage gradient search*) is used to adapt the coefficient vector $\mathbf{c}[n]$:

$$\mathbf{c}[n] = (1 - \mu\alpha)\mathbf{c}[n-1] + \mu(\mathbf{p} - \mathbf{R}_{xx}\mathbf{c}[n-1])$$

where α is the leakage parameter ($0 < \alpha \ll 1$) and μ is the step-size parameter.

(a) Assume convergence. Where does this algorithm converge to?

(b) Transform the given adaptation rule in a way such that it adapts the misalignment vector (defined as $\mathbf{v}[n] = \mathbf{c}[n] - \mathbf{c}_{\infty}$). Hint: substitute for \mathbf{p} using the result from (a).

(c) Decouple the adaptation rule of (b) into a set of scalar adaptation expressions by using a unitary transform $\mathbf{q}[n] = \mathbf{Q}^H \mathbf{v}[n]$.

(d) Write the decoupled equation from (c) as individual exponential sequences and derive a condition on μ to ensure convergence towards \mathbf{c}_{∞} , i.e., specify the range $\mu_{min} < \mu < \mu_{max}$ (assume α to be given).

(e) Assume we use a fixed step-size parameter μ . Compute the worst-case convergence time constant τ_{max} .