Signal Processing and Speech Communication Laboratory—Prof. G. Kubin Graz University of Technology

Exam Adaptive Systems on 2007/7/3

Name

MatrNr.

StudKennz.

Exam duration: 120 minutes Maximum points: 100 Allowed material: mathematical formulary, calculator **You have to return this document after the exam! Good luck!**

Problem 1 (33 Points)

Consider the following identification problem:

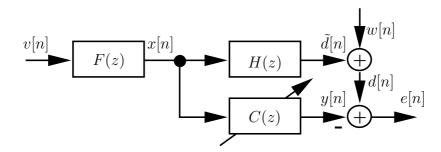


Figure 1: Adaptive system with correlated and uncorrelated white noise.

The white Gaussian noise process v[n] with zero mean and variance $\sigma_v^2 = 1$ is filtered by the FIR filter F(z), which has an impulse response of $f[n] = -0.25\delta[n] + 1\delta[n-1]$ (moving average (MA) process). The resulting output x[n] is used to identify the system H(z), which has an impulse response of $h[n] = 0.25\delta[n-1]$, by the adaptive filter C(z) with 3 coefficients, i.e., $\mathbf{c} = [c_0, c_1, c_2]^T$. The desired output d[n] is corrupted by the additive white Gaussian noise w[n] with zero mean and variance $\sigma_w^2 = 0.05$.

(a) Determine the values of the auto-correlation matrix $\mathbf{R} = E \{ \mathbf{x}[n] \mathbf{x}[n]^T \}$.

(b) Determine the values of the cross-correlation vector $\mathbf{p} = E\{d[n]\mathbf{x}[n]\}$.

(c) Determine the optimal coefficient vector \mathbf{c}_{opt} for the filter C(z) in the sense of the Wiener solution.

(d) Determine the minimum mean-squared error (MMSE) J_{min} of the system.

Problem 2 (33 Points)

The Gradient Method

$$\mathbf{c}[n] = \mathbf{c}[n-1] + \mu \ (\mathbf{p} - \mathbf{R}\mathbf{c}[n-1])$$

should be used to adapt the coefficients of an adaptive filter.

(a) Simplify the adaptation algorithm by substituting **p**. Additionally, introduce the misalignment vector $\mathbf{v}[n]$.

(b) Assume that the autocorrelation function is given by $r_{xx}[k] = -0.5\delta[k+1] + \delta[k] - 0.5\delta[k-1]$. Determine the autocorrelation matrix \mathbf{R}_{xx} of the system.

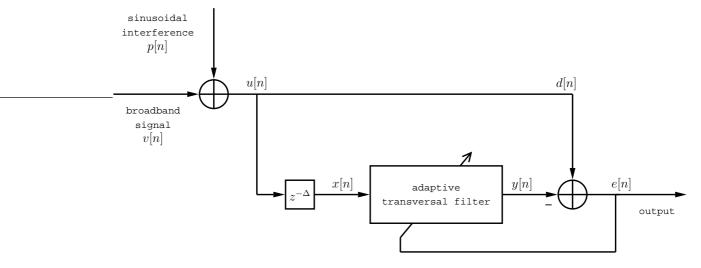
(c) The eigenvectors of the autocorrelation matrix \mathbf{R}_{xx} are given by $\mathbf{q}_1 = \left[-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]^T$ and $\mathbf{q}_2 = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^T$. Determine the eigenvalues λ_1 and λ_2 of the autocorrelation matrix \mathbf{R}_{xx} .

(d) Determine the stability bounds (the concrete values) of the stepsize parameter μ .

(e) Assume that the stepsize parameter is $\mu = 0.1$. Determine the convergence time constants (the concrete values) τ_1 and τ_2 .

Problem 3 (34 Points)

Consider the following adaptive system to attenuate a sinusoidal interference:



The broadband signal v[n] has the following autocorrelation sequence

$$r_{vv}[k] = \frac{1}{2}\delta[k+1] + \delta[k] + \frac{1}{2}\delta[k-1]$$

and the statistically independent interference is known as

$$p[n] = \sin\left(-\frac{\pi}{3}n + \varphi\right)$$

with φ a random variable uniformly distributed between $-\pi$ and π . The adaptive transversal filter has 2 coefficients (c_0 and c_1) and the predictor delay is $\Delta = 3$, i.e., x[n] = u[n-3].

(a) Determine $r_{uu}[k]$, i.e., the autocorrelation sequence of u[n] (Hint: You may find the relation $\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$ useful).

(b) Calculate the optimum coefficients \mathbf{c}_{opt} of the adaptive filter in the sense of a minimum mean-square error (Hint: $\mathbf{R} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\mathbf{R}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$).

(c) Determine and sketch the pole/zero diagram of the prediction error filter $H_e(z)$ (i.e., the system with input u[n] and output e[n]) when the filter operates in its optimum.

