

Master Project

Real-Time Enhancement of E-Larynx Speech

using an Android Application

Daniel Emilio Pellicer García

————————————–

Signal Processing and Speech Communication Laboratory

Faculty of Electrical and Information Engineering

Graz University of Technology, Austria

Advisors:

Martin Hagmüller, Graz University of Technology, Austria

Anna Katharina Fuchs, Graz University of Technology, Austria

Graz, September 2012

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 2

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..

 (Unterschrift)

(Englische Fassung für den Fall, dass die Diplomarbeit in Englisch verfasst wird –

es ist nur eine Sprachversion zu verwenden, die andere daher löschen):

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources.

…………………………… ………………………………………………..

 date (signature)

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 3

Abstract

People who have lost their larynx have three possibilities of talking. These

include using Esophageal Speech, Artificial Larynx or Tracheoesophageal Puncture.

Of those three the most used is the artificial larynx. This method uses an external

device called electrolarynx. The electrolarynx produces a buzz at a specific

frequency which the person uses for articulating words. The problem with the

electrolarynx is that it produces a flat frequency tone and it generates strong

background noise.

This master project aims to improve the characteristics of the sound produced

by an electrolarynx speaker adjusting the frequency contour of the electrolarynx

depending on the prosodic information of the voice. For this purpose an android

application will be created.

This android application would take the sound that comes out of the

electrolarynx, apply some processing and then it will generate pulses using the

synthesized frequency. These pulses will do the electrolarynx vibrate in the desired

frequency producing a more natural fundamental frequency contour.

The main advantages of using an android application are the increase of

portability of the algorithm and the fact that you don’t need additional hardware for

the signal processing (It’s assumed that everybody has a mobile phone)

The resulting program has resulted to work properly. It works well used in

conjunction with an electro-larynx and the sound is subjectively better. The results in

the f0 contour shows that even if the correlation with an original healthy speech was

not perfect, the contour generated its similar to the contour of the f0 of a human

speech

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 4

Contents

1 Introduction 8

1.1 Motivation .. 8

1.2 Introduction to Speech Prosody ... 9

1.3 Perceived Pitch and Speech Spectrum ... 9

1.4 Pitch Contour Generation ... 10

1.5 Conclusion.. 12

2 Working with the Android Environment 14

2.1 Android Introduction .. 14

2.2 Eclipse and the Android SDK .. 14

2.3 Signal processing applications in Android ... 16

2.4 The Native Development Kit (NDK) ... 18

2.5 The OpenSL ES Library ... 19

2.5.1 Overview ... 19
2.5.2 Important Objects in the Architecture ... 20

2.5.3 Objects and Interfaces used ... 21

2.6 Porting the C Code to the NDK ... 22

2.7 The Android Emulator ... 23

2.8 The Java and XML Code ... 25
2.8.1 User permissions ... 26

2.8.2 Interface, Input Parameters and Java Code ... 27

2.9 Conclusion.. 28

3 Testing 29

3.1 Test in Real Device .. 29

3.2 Results and Comparisons ... 29

3.3 Conclusion and Future Developments ... 31

4 Conclusions 32

A Appendix: Code Explanation 33

A.1 Software Block Diagram ... 33

A.2 The Java and XML Code ... 33

A.2.1 AudiotestActivity.java ... 33

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 5

A.2.2 AndroidManifest.xml ... 34

A.2.3 Main.xml .. 34

A.3 The Interface between Java and C. Swig and JNI Files .. 34
A.3.1 Java_interface_wrap.cpp .. 34

A.3.1 Opensl_example.java and opensl_exampleJNI.java .. 34

A.4 The Speech Processing in C .. 35
Opensl_example.c .. 35

A.5 The use of the OpenSL ES library. .. 36
A.5.1 OpenSL_IO.c ... 36

A.6 The modules of the main algorithm .. 38
A.6.1 Centroid .. 38

A.6.2 Comp .. 38
A.6.3 Config.h ... 38
A.6.4 F0detection ... 38
A.6.5 F0synthesis ... 38
A.6.6 FFT ... 39

A.6.7 FFT library, kissfft ... 39
A.6.8 FIR ... 39

A.6.9 Fxdetection ... 39
A.6.10 Helpers ... 39

A.6.11 Iir .. 39
A.6.12 Linsmoothfilter .. 40
A.6.13 LPC .. 40

A.6.14 Markerlist ... 40

A.6.15 Medianfilter .. 40
A.6.16 Normalize ... 40
A.6.17 Padding .. 40

A.6.18 Percentile .. 40
A.6.19 Pitchmarking .. 40

A.6.20 Polyroots .. 41
A.6.21 Pulsegenerator .. 41
A.6.22 Spectralsubtraction ... 41

A.6.23 Vad ... 41
A.6.24 Vuv ... 41

A.6.25 Window .. 41
A.6.26 Coeffs folder .. 41

Bibliography 43

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 6

List of figures

Figure 1.1 Image of an electrolarynx in its charging device. It uses a battery that usually lasts

between 1-3 days. ... 8

Figure 1.2: Spectrogram of a musical scale sung by a female person 10

Figure 1.3 Main block diagram of the pitch contour generator. .. 12

Figure 2.1 Eclipse IDE. In the left part of the image there is the Package Explorer. 15

Figure 2.2 Notepad++. ... 16

Figure 2.3 Software Block Diagram .. 17

Figure 2.4 Image of Cygwin. ... 18

Figure 2.5 Audio player architecture using the OpenSL ES library. 21

Figure 2.6 Audio recorder architecture using the OpenSL ES library 22

Figure 2.7 Creating a emulator in eclipse .. 24

Figure 2.8 DDMS window in Eclipse .. 25

Figure 2.9 Android permissions ... 26

Figure 2.10 Main.xml graphic interface window ... 27

Figure 2.11 Android Emulator ... 28

Figure 3.1 F2 shape of a segment of healthy speech .. 30

Figure 3.2 f0 contour ... 31

Figure A-0.1 Overall diagram of operation .. 33

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 7

Notation

API Application Programming Interface

DDMS Dalvik Debug Monitor Server

DREL Direct Radiated Electronic Larynx (noise)

DSP Digital Signal Processor

EL Electronic Larynx

f0 Fundamental Frequency

F1 First Formant

F2 Second Formant

FFT Fast Fourier Transform

IDE Interface Development Environment

JNI Java Native Interface

LPC Linear Predictive Code

NDK Native Development Kit

OS Operative System

SDK Software Development Kit

T0 Fundamental Period

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 8

1 Introduction

In this chapter we are going to expose the idea of enhancement of e-larynx speech and

its roots. First we will talk about the motivation of the project. Then we will speak about

speech prosody and perceived speech. To finish we will talk about the generation of a pitch

contour. All this chapter serves as an introduction of what is done later in the android

application and why. The main idea of the whole chapter comes from the chapter 6 of Martin

Hagmüller Doctoral Thesis. [Hag09]

1.1 Motivation

People who have lost their larynx because of cancer normally choose to use an electro

larynx to speak. The electro larynx produces a buzz at a specific flat frequency that the person

uses to articulate words. The main problems of the electro larynx approach are that it

produces a totally flat frequency contour and introduces in the system a strong background

noise.

Figure 1.1 Image of an electrolarynx in its charging device. It uses a battery that usually lasts between 1-3

days.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 9

In the figure 1.1 we can see the aspect of an electro larynx. The head of the

electrolarynx would be put in the throat of the speaker and the buttons are used to activate the

buzzing.

This master project aims to improve the characteristics of the sound produced by an

electrolarynx. For this purpose the developing of an application in a mobile device is studied.

1.2 Introduction to Speech Prosody

Prosody in speech describes the relationships of amplitude, duration and fundamental

frequency in speech. It helps the communication by introducing hints of how the sentences are

build and it helps to improve the exact meaning of the information as well as including

implicit data in the communication. The most important features of prosody are intonation,

rhythm, rate, accentuation and timbre.

The fundamental feature in this project is the fundamental frequency f0. It’s also the

better studied because it’s easier to measure than other features. The f0 movement

characterizes for example the declination of a sentence. It’s already been studied that flat f0

contours lower the intelligibility of the speech [Hag09]. Even if the viability of other

possibilities of improving the sound of e-larynx speech could be contemplated the easier and

more noticeable way to follow would be to synthesize a fundamental frequency contour for

improving the prosodic quality of e-larynx speech.

1.3 Perceived Pitch and Speech Spectrum

When using whispered sounds and electro larynx sounds there is some prosodic

information hidden in the speech spectrum. In previous studies it has been demonstrated that,

when no fundamental frequency is heard, subjects chose the formant frequency F2 as the

perceived pitch. Other studies have shown that formants F1 and F2 move depending on the

intended pitch.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 10

As it’s shown in the figure 1.2 when the alaryngeal singing was analyzed, it showed

that with some training the subjects were able to use formants one and two to create some

kind of musicality.

1.4 Pitch Contour Generation

The intention is to calculate an artificial pitch contour using the analysis of the speech.

Based on the influence of the formants on the perception of prosody, the formants are the

chosen parameters to create a pitch contour.

Figure 1.2: Spectrogram of a musical scale sung by a female person, with superimposed tracks of the

formants F1 and F2. Top left: Laryngeal. Top right: Whispered. Bottom: Electro-Larynx (from

[Hag09])

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 11

The difference between normal speech production and EL speech is that the voicing

source is produced outside the human body. Due to imperfect coupling only a part of the

energy is transferred in the neck and interacts with the vocal tract. The other part of the

energy goes directly to the listener through the air and this is what we call DREL.

Because the electrolarynx produces DREL sound and this is doing less distinct the

formants, first we use a separation method to reduce the noise. This method is called spectral

subtraction.

The spectral subtraction method is based on estimating the noise power spectrum and

then subtracting this spectrum from the signal power spectrum. The noise is calculated during

non-speech intervals. The Spectral subtraction makes the processing of the speech signal

easier.

Even after spectral subtraction, formant tracking is not easy. There are still ongoing

research questions. In the case we are treating is not a big problem because the formants are

important only for speech units that the speaker emphasizes and to convey prosodic

information.

For the format tracking a linear predictive code (LPC) is used. This algorithm tries to

create a function that matches as good as possible the original input speech signal. Once this

function is created the poles and zeroes are calculated. Using the information of the poles and

zeroes the formants of the speech can be obtained.

For calculating the f0 components we use the formants and we calculate f0 samples

block by block. Then these f0 components are used to create a train of pulses that it’s used to

generate the output for the excitation of the electro larynx.

The artificial pitch it’s only used in case of voiced sounds, so during pauses or

unvoiced sounds a default f0 frequency would be produced. The EL activity is detected just

using an energy detector. For unvoiced sounds the decision is made using the frequency

components of the speech and their centroid. The threshold values have to be adjusted to be

adapted to the concrete circumstances.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 12

Figure 1.3 Main block diagram of the pitch contour generator. (Modified from [Noist11])

As seen in the figure 1.3, the speech signal is created in the sound source block with

the appropriate f0 driving the shaker. The f0 calculation and the pulse generation it’s done in

the sound processing block. The signal with contour works as final output of the system as

well as input for the new processing block in order to do the formant tracking and f0

generation continuously.

These algorithms have already been tried and they work perfectly well for improving

the subjective quality of the sound. Tests have been done and the results are that it doesn’t

improve the understanding of the speech but listeners prefer the sound of the enhanced

version. [Hag09]

1.5 Conclusion

In this chapter we have studied the problems of an electronic larynx the principles of

formants and speech and the possibility of implementing an algorithm that improves the

sound of the e-larynx using a new f0 contour. The EL speech with a new f0 superposed is

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 13

preferred to a flat tone EL speech. More information about speech theory could be found in

[SPOKEN]

The next step would be to make this algorithm available for everybody in a portable

way and easily accessible. In this master project the possibility of implementing it in an

android device is the main part of the study. In the next chapter we will talk about the Android

system and the implementation of the algorithm in the Android framework.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 14

2 Working with the Android Environment

In this chapter we will talk about the characteristics of developing an application in

Android and about the special characteristics of our application, the problems that this

generates and the solutions decided. Through the chapter we will talk about all the entities

that form the program.

2.1 Android Introduction

Android OS is a new operative system for smartphones that has highly increased its

popularity in the last years. Being it open source and easily manageable for everyone, the

number of copies sold and number of applications for this OS is also increasing year by year.

The fact that is a portable device that could be used for the signal processing part of the

application, his grow in market share, and the possibility of using a wireless microphone and

speaker for use in conjunction with the electronic larynx make this platform ideal for

developing the application. For these reasons we chose to do our app for Android [Android]

Android has also some problems. The latency of these devices is in mean highly

superior to the latency in its main competitor the iPhone. This could be a drawback because it

affects directly to the performance of real-time applications. In our case the latency measured

in Android device is low enough for the application to work correctly.

2.2 Eclipse and the Android SDK

The android SDK is a software development kit that allows developers to make

applications for android. The android SDK include sample projects, development tools, an

emulator and the required libraries to create Android apps.

 The applications are written using Java and run on Dalvik, a custom virtual machine

designed for embedded use which runs on top of a Linux kernel.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 15

 The officially supported integrated development environment is Eclipse using the

android development tools plugin. It’s also possible to use any text editor to create Java and

XML files and then use command line tools to create the application.

 The SDK supports new and old versions of the android platform in case the developer

would want to target his application to an older device. Development tools are downloadable

contents so different platforms are available. [AndADT]

 Eclipse IDE is free and open source software. As other IDEs, Eclipse is a software

application that provides easier facilities to programmers for developing software. It has a

source code editor, build automation tools and a debugger. It has a compiler and an interpreter

(for c or java code). Eclipse is used to maximize the programmer productivity by providing

components with similar user interfaces. [Eclipse]

Figure 2.1 Eclipse IDE. In the left part of the image there is the Package Explorer. We can observe there

the different directories of the project. The more important folders are the src which contains the main

java files, de jni which contains all the native program files, the res/layout that contains the graphical

interface and the AndroidManifest.xml file that contains the user permissions. In the middle of the screen

we can see the main window in which the programing is done. In the lower part there are different tabs.

The most important ones are the LogCat tab and the Console Tab. In the console tab we can watch the

flux of the program. In the LogCat tab we can see all the messages that the Emulator generates.

All the development could be done in eclipse (including the c code) but another text editor

was preferred to program the C code to separate the two parts of the project in an easier way

for the programmer.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 16

Figure 2.2 Notepad++.

A normal text editor with extended capabilities was used to program the C code. This

program called Notepad++ (see fig2.2) allows the user to use some capabilities of normal

IDEs but it’s a free and open source program. [Notepad++]

2.3 Signal processing applications in Android

At first it was thought to implement the program using only java, but we discovered

using some testing with the emulator that using java functions for audio management was

going to affect the performance of the program. With that in mind other possibilities were

studied.

The Android SDK is comprehensive and capable, but there may be times when an

application requires something more. As shown in [AndAct] chapters 13 and 19, other

possibilities apart from java are implementable in Android. The main alternatives are using an

application made completely using C or use a basic java code to wrap a more complex

application that uses native methods of Android. When programming applications using pure

C it doesn’t produce applications that are easily executed on consumer hardware. This design

approach requires an unlocked developer, or rooted, device and is arguably only applicable

for developers who are building custom Android builds—it’s not for the typical developer

looking to deploy applications to consumer-based handsets. The “approved” manner of

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 17

writing C code for the Android platform is with assistance from the Android Native

Developer Kit, or simply the NDK.

The NDK will not benefit most apps but good candidates for the NDK are CPU-

intensive operations such as signal processing, physics simulation, and so on. This program

requires intensive CPU operations as everything is about signal processing so is ideal for

using the NDK for it.

A general view of the program is shown in fig 2.3. Each part of the algorithm will be

explained in the next subchapters.

Figure 2.3 Software Block Diagram

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 18

2.4 The Native Development Kit (NDK)

 The Android NDK is a set of tools that allows Android application developers to

embed native machine code compiled from C and/or C++ source files into their application

packages. The android NDK allows an android application source code to call methods

implemented in native code through the JNI. This could be helpful because it would be

possible to reuse existing code libraries written in these languages and possibly increase the

performance. [AndNDK]

 To use these methods you have to declare them in java and then add a native shared

library that contains the implementation of these methods.

 The android NDK is a complement to the normal android development kit to allow

the programmer to generate native ARM binaries (ARM is a family of microprocessors). A

Linux environment is required (The program called Cygwin is an option to do it in windows).

Figure 2.4 Image of Cygwin. This is a linux-like environment for windows. It allows windows user to

compile the c files using the NDK.

 Even if it’s a good way to create applications, the NDK should be used in

conjunction with the java programming language, to handle Android system events

appropriately. However it’s possible to write a sophisticated application in native code with a

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 19

small application part written in java used to start/stop it appropriately. This was the solution

implemented in our code. The C Code was in its biggest part already programed and it was

only necessary to adapt it to the android system so the best way to do it was doing little

changes in every part of the C code and using java to wrap the application.

 For using the NDK a good understanding of the JNI is recommended because many

operations in the environment require specific actions from the programmers and sometimes

they are not common knowledge.

 To include the native methods in the java project you need to use an interface

between Java and C. This interface consist on declaring the library in the java code and

declaring the native methods used in java and in C as well. The way to declare the methods in

the JNI is not straight forward as it needs to use a specific notation. At first it was thought that

the best way to do it was using SWIG. SWIG is a software development tool that connects

programs written in C and C++ with a variety of high-level programming languages. [SWIG]

 When the project advanced more we realized that actually the notation in the JNI

interface is not that difficult and the use of SWIG was not really necessary.

 To conclude and as shown in fig 2.3, to compile the files using NDK you need to

be in the root folder of your project (Where your application.mk is) and execute the ndk-build

program. It will compile the files and put them together in a .so file. This file is a packaged

library for the main java program to use. After that the developer only needs to build the

normal java project and the library will include the native methods as well.

 The NDK provides a set of system headers for stable native APIs that includes the

Open SL ES native audio library. This is the library that is going to manage all the input and

output of audio in our system. Using this library is the standard approach to manage audio

using NDK

2.5 The OpenSL ES Library

2.5.1 Overview

 The OpenSL ES API has an object-oriented approach. It uses two concepts, objects

and interfaces. An object is an abstraction of a number of resources that are assigned for a

specific set of tasks. And object has a type and this type sets the tasks that an object can do. It

works similar to a class in C++. An interface is an abstraction of a number of features that an

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 20

object provides. An interface has a set of methods or functions and a type. An interface can be

defined as a combination of type and object to which is linked.

One object can have many interfaces but an interface only works for exactly one

object. The application controls the object using interfaces.

An object has three states: unrealized, realized and suspended. Depending on the

resources allocated and if after realized it loses resources the object will be in a different state.

Normally for accessing the properties of an object getters and setters are used.

As it’s possible to infer from above, an object has no actual representation in the code.

The library refers to an object via its SLOBjectItf interface. Each interface is a C structure

where all the fields are method-pointers. This interface structure are always managed using

reference and never by value.

Every object has the SLObjectItf interface and this interface is used for all the basic

operations on the object and for getting new interfaces for the object.

Other important entities in the architecture are the engine object and the SLEngineItf

Interface. These are the entry-point of the API. The applications start the OpenSL ES session

creating an engine object. After creating the engine object is possible to obtain the

SLEngineItf of this object. With this interface is possible to create all the other object types in

the API.

It’s important to know that the exact amount of resources available on an Open SL ES

implementation may vary. As a consequence, when using the library an app should be always

prepared to handle failure in object realization or dynamic interface additions.

2.5.2 Important Objects in the Architecture

The different kinds of objects that exist in the architecture are: Engine object, media

objects, metadata extractor objects, audio output mix objects.

Engine objects have been already mentioned so we will proceed with the others.

Media objects implement usually players and recorders. They operate on audio data. A

media object is defined by the operation it performs, the inputs it draws data from and the

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 21

outputs it sends data to. With data sources and sink structures it’s possible to indicate the

origin and destiny of the data used by the media object. A data source at the same time is

defined by the data locator and the data format.

Metadata Extractor object reads the metadata without allocating resources for

playback. It only needs a source and not a sink

Audio output mix object allows routing the audio to different audio outputs.

2.5.3 Objects and Interfaces used

An audio player is used for sampled audio playback. It’s possible to use the library

using file-based and in-memory data sources, as well as buffer queues. The API supports data

encoded in many formats.

An audio recorder is used for capturing audio data. It’s not always possible to record

in every device.

Pan control, advanced 3D effects, reverb etc. The different effects are introduced using

interface exposed on an object. Important kinds of effects are: bass boost, equalization,

virtualization and reverberation.

Figure 2.5 Audio player architecture using the OpenSL ES library. (from [OpenSLES])

In the fig 2.4 an example of audio player architecture could be contemplated. Here an

audio player is created using the interface of the engine object. When you create the audio

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 22

player you associate it with an Output Mix. The Output Mix is also created with the engine

object. The data source is also set during the audio player creation and the output mix is by

default associated to the default output device.

Figure 2.6 Audio recorder architecture using the OpenSL ES library. (from [OpenSLES])

In the fig 2.5 an example of audio recorder architecture is shown. The audio recorder

is created using the engine object. When creating it we associate it to a data source (in this

case a microphone) and the data sink could be a URI pointing to an audio file or it could be

recorded in a buffer for later processing.

In our project these two architectures are connected in the middle by the main processing of

the audio.

 If more information is needed, the manual of OpenSL ES library could be consulted

[OpenSLES]

2.6 Porting the C Code to the NDK

If there is already a code that could be used in the NDK it can be easily ported

following a few steps.

 First it’s necessary to include all the files in the application.mk file of the android

project. However it’s also possible to include the main one and use the directive #include to

add all the other files. The JNI accepts C or C++ files. In this case all the files were written

previously for a DSP device so they all were in C. [Noist11]

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 23

 Because all the files were written for the DSP there were a few functions that had to be

added and others had to be modified. The functions that had to be added were the ones that

were specifically designed for the DSP and the functions that had to be modified were the

functions that required new parameters.

 Also in the original problem, the overlap and add function was implemented in an

interruption function and here it’s in the same line of flow as the main program.

 When the code in C is ready and is time to compile a Linux environment is necessary.

A possibility in Windows would be to use Cygwin. In this case the developer has to download

all the components of Cygwin necessary to compile a file in C and then call the NDK

application through the Cygwin shell. Because it’s compiling using a Linux environment, all

the #include entries have to be done using ‘/’ instead of ‘\’. This is necessary to change if you

are using files that were compiled with windows.

 For debugging the code there are also two ways. The first one is to use the debugger

that is included in the NDK and use it in conjunction with Cygwin. For people who don’t

have a high understanding of Linux maybe is not a trivial work. The second way would be to

use the LogCat of Android and Eclipse. Only including a new line in the c code you could use

a function to write text and variables from the emulator to the eclipse IDE. In this way you

could know the value of the variables in specific moments of time and then correct the

problems.

 If everything is done correctly the NDK will package together the functions in java

and the native functions in C into a .apk file. This file then can be used to install the program

in a smartphone.

2.7 The Android Emulator

The android emulator included in the SDK of android is not perfect. The performance

of it is worse than the performance in a mobile phone and it only accepts a concrete set of

parameters. In this case the emulator was going to be used to check the recording and the

playback in real time, the latency and to check if the program was working properly.

 The tools that are going to be necessary for the emulator have to be decided before

creating it. In this case we have to add Audio playback support and audio record support in

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 24

the hardware properties of the Emulator in the moment of its creation. In our case it was

important to do some tests using files. We needed to open files and use them in the program

and also to record the output samples in a file. If this is necessary the emulator has to include

an SD card.

Figure 2.7 Creating a emulator in eclipse. Using this tool the developer can select the android

version, capacity for a SD card, and additional hardware properties. The most important ones

for this project are the audio playback support and the audio recording support

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 25

After the creation of the emulator, the developer can try the applications directly in the

computer without using a mobile phone. This allows him to try the application in different

versions of android etc.

 The developer needs to have in mind that some of the configuration options are not

possible in the emulator. For example in our case the only sampling rate that works in the

emulator is 8000 Hz.

 When testing the program we realized that the latency was much higher than the

latency in a mobile phone. Subjectively could be said that at least 3 times more latency.

It was necessary then to check the written files to look for missing samples. None of

the samples were lost so for this reason some of the tests were done better recording the

output in a file and then comparing results in Matlab.

 To push and pull files from the android environment and then use them in Matlab, the

DDMS window of Eclipse is used. (See fig 2.7)

Figure 2.8 DDMS window in Eclipse. It’s used for pushing and pulling files from the device. In our project

it was used to introduce audio files to be read by the program and do some testings, and also to extract

files that were created by the program as an output.

2.8 The Java and XML Code

Once the program is done, it needs an interface to communicate with the user and it needs to

add the correct user permissions.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 26

2.8.1 User permissions

 Each application is separated by Linux from each other and from the system.

Additional finer-grained security features are provided using these user permissions. The user

permissions is a mechanism that enforces restrictions on the specific operations that a

particular process can perform.

 A central design point of the Android security architecture is that no application, by

default, has permission to perform any operations that would impact in other applications, the

operating system, or the user. Because Android sandboxes applications from each other, this

applications have to declare the permissions they require and the android system then asks if

the user consents the installation of the concrete application with those concrete permissions.

Android doesn’t have a mechanism to grant permissions dynamically.

 The permissions that are necessary in our program are MODIFY_AUDIO_SETTINGS,

RECORD_AUDIO and WRITE_EXTERNAL_STORAGE. (showed in fig 2.8)

Figure 2.9 Android permissions. Opening the AndroidManifest.xml file you can chose between different

tabs. When chosing the androidmanifest.xml tab you can introduce the permissions manually or chose the

permissions tab and add them using the interface.

 Modify audio settings allow the program to change the normal settings of android to

adapt it to its requirements. Record audio allows the program to take audio samples from the

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 27

microphone of the device (or other audio source) Write external storage allows the program to

write data into files of the sd card. These permissions are written in the android_manifest.xml

file and will be asked to the user in the installation time

2.8.2 Interface, Input Parameters and Java Code

 The interface to communicate with the users is done normally in java or in xml. In this

case it’s been made in xml. It’s possible to create a layout graphically with eclipse and then

adjust each part of it in detail.

 In this case in the interface we are using edit text boxes, buttons and text views.

(Interface shown in fig 2.9) The edit text boxes are for writing the input parameters (they have

some default values written when starting the program), the buttons are used for starting and

stopping the program and the text views show the user the meaning of each value.

Figure 2.10 Main.xml graphic interface window. For creating the graphic interface there are two

possibilities. You could do it all in the main.xml tab of the main.xml file or create it first in the graphical

layout interface and then do the fine tuning in the xml view.

 Once the xml is created it needs to be loaded in the main java code.

 The main java code in our case is very simple. It’s used basically to wrap the native

code, show the interface to the user and send the parameters to the Native methods.

 For this purpose it first loads the main.xml file which contains the graphical interface,

then it reads the variables and it prepares the main thread that is going to execute the native

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 28

method. After that it idles. When the user pushes start the main thread starts to run and the

java code don’t do anything else until the user press stop. In this case this will stop the thread

and free the memory. When pushing start again, the new parameters will be loaded and the

main thread will be created again. (fig 2.10)

Figure 2.11 Android Emulator. This is the interface of the program as it shows when running it in the

emulator. The emulator allows the user to do all the functions of a normal phone but has limits in

performance and resources. Here we see the different configurable parameters of the program and the

buttons for starting and stopping the algorithm

2.9 Conclusion

In this chapter we have explored the possibility of implementing a f0 contour generator

application in Android. We have explored the problems and solutions and we have explained

the different parts that were used to create the application.

In the next chapter the tests on a real device and different plot comparisons would be

showed to understand the capabilities of the application.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 29

3 Testing

In the last chapter we talked about the characteristics of the different parts of the

Android framework that were necessary to implement the f0 contour generator application.

In this chapter we will show the differences between working with the emulator and a

real device and we will analyze the performance of the application and the results obtained

with it.

3.1 Test in Real Device

When the application is finished or nearly finished is time to test it in the device. The

first thing we realized in the tests was that the input gain was too high and it was getting the

noise of himself and therefore changing the frequency randomly. This was solved using

headphones or adjusting the input gain.

The next thing was when using an electro larynx. In the spectral subtraction every

periodic noise would be lowered and “musical noise” would be added. When using the electro

larynx at first we realized that it was also changing the frequency randomly and this was due

to the fact that the musical noise was too big in amplitude. The solution was to separate

progressively the electro larynx from the mobile phone or also adjusting the input gain.

3.2 Results and Comparisons

When first testing the program we realized that the smoothing that was already done

was not smoothing the signal enough. For this reason we decided to do some smoothing also

after the generation of each f0 in each block. This additional smoothing only was to do a

weighted average between the actual value and the previous value. The weight of each value

can be decided by the user interface. By default 0.7 and 0.3 is now chosen and it seems it

works correctly.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 30

 Also we decided to be able to modify other parameters that affect the f0 generation to

test them and try to adjust them as better as possible.

 The values that are involved in the f0 generation are the F2 formant, the mean of the f0,

the range amplitude from one extreme to the other, the upper and lower thresholds for the f0

and the default f0.

 When measuring the F2 formant (see plot in fig 3.1) we realized that actually it

follows quite accurately the F2 formant of the signal (measured with other more precise

methods) so the problem for the f0 was not there.

Figure 3.1 F2 shape of a segment of healthy speech. In the left we see the result obtained using a formant

tracking function in matlab and in the right the formant obtained in the android program. Even if the

correlation is not perfect, there is a big similarity between the two plots.

 It was necessary to increase the f0 mean and the f0 range as how it was originally to

make a nicer contour. The results are all objective because even if the f0 is correlated with the

original one, it’s not possible with this method to create a totally reproduction of the original

f0. Only a f0 contour that resembles the one of a human being. (showed in fig 3.2)

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 31

Figure 3.2 f0 contour. In the left the f0 contour calculated using a f0 pitch tracker algorithm. In the right

the f0 generated using the formants of the original speech sample.

3.3 Conclusion and Future Developments

 Right now the output of the program is just a succession of deltas separated by a

distance T0 that is calculated in the f0 generation function. This is used for the excitation of

the e-larynx and then the f0 will change in real time.

 A possible future development would be to be able to choose between different pulses

in the output. In this way maybe it’s possible to improve the sound of the e-larynx.

 As we have seen the algorithm creates an f0 contour that simulates a contour of a

human being. However the algorithm is not perfect and better possibilities have been already

explored. For the purpose of this project it’s enough but in the future it could be improved

using other techniques as for example the GMM approach [Reyn08]

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 32

4 Conclusions

There are a lot of people in the world who use E-larynx and that could benefit of this

program. In this master project we have done a little intro in prosodic information in the voice

and e-larynx problems. Then we have explained that other programs have been already

implemented that works but we wanted to make something portable and more easily

accessible for the people. The advantage of using an android device is that we assume that

everybody have a mobile phone nowadays so the people who want to use this device doesn’t

have to carry with him another additional device.

 After that we have commented the characteristics of an android project and the parts

and necessities of this project. We have discussed the possibility of making a pure java

application and we have seen that it was better to work with the Java native interface. Even if

using the JNI is more difficult than just programming in java it is recommended for

applications with high processing needs as digital signal processing applications. It fits

perfectly in our work. Using the JNI it was possible to adapt a C code that was already

working just changing some parts of the code.

 After having adapted the code we have discussed the testing done and the adjusting of

the parameters. We have also commented the results. Even if the results are not adapted

totally to the original f0 the result is similar to a human f0 contour and the latency is ok for

the application.

 Using this application as a start it could be possible to improve it and launch it to the

android market for the people to be able to use it in the future and take advantage of its

portability and commodity.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 33

A Appendix: Code Explanation

A.1 Software Block Diagram

Figure A-0.1 Overall diagram of operation. The audio input is taken from the microphone and sended to

the speech processing part then, once processed, the output audio is sended to the library and then to the

e-larynx. The java code is used for showing the inteface and reading the parameters. Once the parameters

are read and the start button is pushed, the java code send the parameters to the native method and gives

the order to start

A.2 The Java and XML Code

A.2.1 AudiotestActivity.java

 This function loads the interface from the main.xml file. After pressing the button start

the java code read the parameters that are written in the edit text boxes and start the native

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 34

method thread using these parameters. When the button stop is pushed the native method

thread is stopped and all the memory is liberated.

After that new parameters could be loaded and a new thread could be started.

A.2.2 AndroidManifest.xml

 In this file the user permissions are written. In our case they are:

MODIFY_AUDIO_SETTINGS, RECORD_AUDIO and WRITE_EXTERNAL_STORAGE.

A.2.3 Main.xml

 In this file the user interface is created. It consists of 1 edit text box and 1 text view

strings for each configurable parameter and two buttons for starting and stopping the native

method thread.

A.3 The Interface between Java and C. Swig and JNI Files

A.3.1 Java_interface_wrap.cpp

This file defines the native methods using the spetial nomenclature of the JNI inside C.

It’s generated automatically by SWIG

A.3.1 Opensl_example.java and opensl_exampleJNI.java

 This two files are generated automatically by SWIG also. They declare the native

methods in java, and opensl_exampleJNI also loads the library created with the NDK and all

the c files.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 35

A.4 The Speech Processing in C

Opensl_example.c

This is the thread that starts when pushing the start button in the user interface. First it

loads all the necesary files using the directive #include. Then it defines a few parameters

using #define, like the blocksize the hopsize the sampling rate and the returning values of the

functions.

After that it creates all the structures and the variables necessary for the operation of

the program. Once the thread starts it initializes all the functions that the program is going to

use. When the initialization is finished the main loop start. This loop will continue working

until the thread is stopped using the user interface.

 Inside this loop, the program first reads the buffers of the input audio values using the

OpenSL ES library. Then it performs a window and a voice detector. After that it does the

FFT of the actual block of samples and it does the spectralsubtraction. When this is done, the

overlapp and add is performed and then it starts with the analysis of frequencies.

 First it measure the formant F2 in the fxdetection function and calculates the voiced

and unvoiced regions of the speech. Later it uses the information of the F2 and the input

parameters to calculate a f0 contour in the function f0synthesis.

 The last step is to use the pitchmarking for signaling the correct places to set deltas

(having in mind the correct separation that indicates the f0) and then it performs the

pulsegenerator (in this case it just put a 1 in each sample indicated before)

 If no frequency was read in the current block, a default frequency is built for the

output. This frequency is chosen from the input parameters.

 Once an output buffer is created, the OpenSL ES library is used again to send this to

the output of the device. After that the loop starts again

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 36

A.5 The use of the OpenSL ES library.

A.5.1 OpenSL_IO.c

This file contains different methods:

A.5.1.1 openSLCreateEngine

This method creates, realizes and gets the interface of the Engine object. This is

necessary for starting the session of OpenSL ES and creating further objects using the engine

interface.

A.5.1.2 openSLPlayOpen

It’s the function that creates all that is necessary to output audio. It realizes the output

mix object. Then it configures the audio player, and realizes and gets its interface. After that it

gets the buffer queue interface and register the callbacks on the buffer queue. In its last step it

sets the player to play. (If there is no buffer in the player there will be no sound until the

player it’s fed)

The play interface its used to control the playback state of an object and get callbacks

from the player.

The buffer queue interface is used for streaming audio data. It provides a method for

queueing buffers in a player and also provides a callback function that is called when a buffer

in the queue is completed. It’s possible to query the state of the buffer queue to know

playback status.

A.5.1.3 openSLRecOpen

It’s the function that creates all that is necessary to record the audio. First it configures

the source. Then it creates, realizes and gets the interface of the recorder object. Then it needs

to get the buffer queue interface and as last step it registers the callbacks of the buffer queue.

The record interface is used for controlling the recording state of an object. In this case

it puts the recorder object to record or stops it from doing it.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 37

A.5.1.4 openSLDestroyEngine

This function destroys all objects and interfaces that have been used.

A.5.1.5 android_OpenAudioDevice

This function calls the engine, record and play functions to create, realize and get

interfaces of all the objects that are going to be needed. For that purpose, it calls the functions

openSLCreateEngine, openSLPlayOpen and openSLRecOpen. After that it allocates the

memory for the input and output buffers

A.5.1.6 android_CloseAudioDevice

First it calls openSLDestroyEngine and then it destroys the threadlocks and frees the

memory

A.5.1.7 android_AudioIn

It gets a buffer of audio samples from the device input. It uses the method enqueue of

the buffer queue interface to do it.

A.5.1.8 android_AudioOut

It puts a buffer of audio samples to the output of the device. It uses the method

enqueue of the buffer queue interface to do it.

A.5.1.9 Threadlocks functions

They ensure synchrony between callbacks and processing code.

createThreadLock: It creates a threadlock

waitThreadLock : It synchronizes two threads

notifyThreadLock : It sends a signal to another thread when an event occurs

destroyThreadLock: It destroys a threadlock

(Look OpenSL ES document for more info) add that to the references.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 38

A.6 The modules of the main algorithm

 This modules are obtained from Noisternig Master Thesis and they have been slightly

modified for working in the Android framework [Noist11]

A.6.1 Centroid

It is used to calculate the centroid of the frequency of the samples in order to calculate

if the sounds are voiced or unvoiced. It’s used in the vuv function. It worked properly

A.6.2 Comp

Used for compressing elements if the optional label of compression is active.

A.6.3 Config.h

This file is used to include all the configuration names and labels and for easily

changing configurating options of the code. Here there are only included the configuration

options that are useful to our implementation of the code. The others were eliminated

A.6.4 F0detection

This piece of code detects the fundamental frequency of the voice. It is not totally

needed because the fundamental frequency of a electrolarynx sound is going to have always

the same f0 so a default f0 value could be used for the rest of the code.

A.6.5 F0synthesis

It takes the fxdetection output and calculates an f0 contour based on the F2 formant

and the input parameters. It performs a smoothing using a median filter a linear smoothing

and a jump eliminator. Because this seemed not to be enough after calculating the f0 sample of

each block another smoothing is done using a weighted average filter with two alfa

parameters that are also chosen by the user.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 39

A.6.6 FFT

This file has the algorithm of the FFT. It takes the initialization parameters and the

configuration options and sends them to the FFT library kissfft.

A.6.7 FFT library, kissfft

It takes the samples and perform a normal FFT. Because a library is used this file is

suposed to work properly and is not revised.

A.6.8 FIR

Not implemented in this version of the program. It could be included in a future

version to adapt the input of the microphone.

A.6.9 Fxdetection

This file uses a linear predictive code to calculate the formants of the input signal. It

calculates up to 6 formant but we only need the formant number two for the creation of the f0

contour.

A.6.10 Helpers

Functions that are used in a few different files are here grouped to have easier access

to them. Just including the helpers header in each of those functions instead of the whole

helping method makes the work easier.

A.6.11 Iir

Not implemented in this version of the program. In future versions the add of an Iir

filter for the input would be interesting to avoid some problems that could appear with low

frequencies. This file was creating a lot of problems in the android framework so it was not

used for this implementation.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 40

A.6.12 Linsmoothfilter

 It’s used in the creation of the f0 for smoothing the values from one block to the next

one

A.6.13 LPC

 This function is called inside the fxdetection.c file. It performs a linear predictive code

analysis to get a function simmilar to the input, then get the zeroes and poles analyze them

and using this information get the formants of the input.

A.6.14 Markerlist

 It’s used to add new entries to a list of patchmarks and to manage this entries.

A.6.15 Medianfilter

 It’s used inside the f0synthesis to smooth the array of f0 samples calculated. Consists

on using the median to filter the results.

A.6.16 Normalize

It’s an interface for channel-wise sample-by-sample processing

A.6.17 Padding

 It includes zeroes at the end of a buffer.

A.6.18 Percentile

 It calculated the percentile values for the spectral subtraction pins.

A.6.19 Pitchmarking

 It indicates the index of the buffer where there should be signal. It calculates the

correct indexes based on the f0contour. It calculates the distance between two values and then

put a one in these indexes. The pulse generator would be in charge later to transform this into

an excitation signal for the e-larynx

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 41

A.6.20 Polyroots

 It’s used inside the LPC file to calculate the roots of the function created.

A.6.21 Pulsegenerator

 It takes the information of the pitchmarking function and transform it into an

excitation signal for the e-larynx. Right now it’s only possible to use deltas as output, but it

would be interesting to add other kind of pulses and check if this improves the sound of the e-

larynx

A.6.22 Spectralsubtraction

 It estimates the noise power spectrum and then subtracts this spectrum from the signal

power spectrum. The noise is calculated during non-speech intervals. The Spectral subtraction

makes the processing of the speech signal easier.

A.6.23 Vad

 It calculates if in the actual block there is voice. It’s done with a basic power

threshold. This threshold could be adjustated in the config.h file.

A.6.24 Vuv

 It determines if the actual block is voiced or unvoiced. This is done using the centroid

of the frequencies of the block. If this centroid surpasses a threshold then is unvoiced, if not

then it’s voiced. This threshold could be adjustated in the config.h file as well.

A.6.25 Window

 A window is used to avoid the introduction of non-desired frequencies between

blocks. The coefficients from the window are read from the Coeffs folder.

A.6.26 Coeffs folder

It contains all the coefficients for the different filters. Because they are hard coded it

optimizates the processing time.

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 42

Master Project Real-Time Enhancement of E-Larynx Speech using an Android Application

 Signal Processing and Speech Communication Laboratory 43

Bibliography

[AndAct] W. Frank Ableson, Robi Sen, Chris King, C. Enrique Ortiz. Android in Action, 3
rd

edition, Chapters 13 and 19, Manning Publications Co. 2012

[AndADT] http://developer.android.com/tools/index.html (Last visited September 2012)

[AndNDK] http://developer.android.com/tools/sdk/ndk/index.html (Last visited September

2012)

[Android] http://www.android.com/about/ (Last visited September 2012)

[Eclipse] http://www.eclipse.org/org/ (Last visited September 2012)

[Hag09] Martin Hagmüller. Speech Enhancement for Disordered and Substitution Voices, Chapters 5

and 6, Graz, Austria, September 2009

[Noist11] Thomas Noisternig. Real-Time Enhancement of E-Larynx Speech Signals, Graz,

Austria, July 2011

[Notepad++] http://notepad-plus-plus.org/ (Last visited September 2012)

[OpenSLES] The Khronos Group. OpenSL ES specification version 1.0.1. September 2009

[Reyn08] Douglas Reynolds. Gaussian Mixture Models. February 2008

[SPOKEN] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon. Spoken Language Processing: A

Guide to Theory, Algorithm and System Development. May 2001

[SWIG] http://www.swig.org/ (Last visited September 2012)

http://developer.android.com/tools/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://www.android.com/about/
http://www.eclipse.org/org/
http://notepad-plus-plus.org/
http://www.swig.org/

