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Abstract

We present a simultaneous localization and mapping (SLAM) algorithm that is based on radio

signals and the association of specular multipath components (MPCs) with geometric features. Especially

in indoor scenarios, robust localization from radio signals is challenging due to diffuse multipath

propagation, unknown MPC-feature association, and limited visibility of features. In our approach,

specular reflections at flat surfaces are described in terms of virtual anchors (VAs) that are mirror

images of the physical anchors (PAs). The positions of these VAs and possibly also of the PAs are

unknown. We develop a Bayesian model of the SLAM problem and represent it by a factor graph,

which enables the use of belief propagation (BP) for efficient marginalization of the joint posterior

distribution. The resulting BP-based SLAM algorithm detects the VAs associated with the PAs and

estimates jointly the time-varying position of the mobile agent and the positions of the VAs and possibly

also of the PAs, thereby leveraging the MPCs in the radio signal for improved accuracy and robustness

of agent localization. The algorithm has a low computational complexity and scales well in all relevant

system parameters. Experimental results using both synthetic measurements and real ultra-wideband

radio signals demonstrate the excellent performance of the algorithm in challenging indoor environments.

Index Terms

Simultaneous localization and mapping, SLAM, multipath channel, data association, factor graph,

message passing, sum-product algorithm.

I. INTRODUCTION

The goal of simultaneous localization and mapping (SLAM) [1], [2] is to estimate the time-

varying pose of a mobile agent—including the agent’s position—and a map of the surrounding
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environment, from measurements provided by one or multiple sensors. SLAM is important in

many fields including robotics [1], autonomous driving [3], location-aware communication [4],

and robust indoor localization [5]–[9]. Achieving a required level of accuracy robustly is still

elusive in indoor environments characterized by harsh multipath channel conditions. Therefore,

most existing systems supporting multipath channels either use sensing technologies that mitigate

multipath effects [10] or fuse multiple information sources [11], [12].

In multipath-assisted indoor localization [5], [13], [14], the relation of multipath components

(MPCs) with the local geometry potentially turns multipath propagation from an impairment

into an advantage. This paper presents a SLAM algorithm for robust indoor localization based

on radio signals. The radio signals are transmitted from a mobile agent to base stations, called

physical anchors (PAs). MPCs due to specular reflections are modeled by virtual anchors (VAs),

which are mirror images of the PAs [15]. Our algorithm detects the VAs associated with the PAs

and estimates the VA positions and possibly also the PA positions jointly with the time-varying

position of the mobile agent. The algorithm is designed to cope with harsh multipath channel

conditions, which tend to lead to measurements with a high level of false alarms and missed

detections. While MPCs can be generated by various propagation phenomena such as specular

reflections, scattering, and diffraction, our model focuses on PA/VA-related MPCs; all the other

MPCs are treated as interference, even if they contain geometric information. We note that MPCs

associated with scatter points are also considered in the feature model used in [13].

A. Feature-based SLAM

The proposed algorithm follows the feature-based approach to SLAM [2], [16], [17]. The

map is represented by an unknown number of features with unknown spatial positions, whose

states are estimated in a sequential (time-recursive) way. In our model, the features are given by

the PAs and VAs. Prominent feature-based SLAM algorithms are extended Kalman filter SLAM

(EKF-SLAM) [16], Rao-Blackwellized (RB)-SLAM (dubbed FastSLAM) [2], [18], variational-

inference-based SLAM [19], [20], and set-based SLAM [17], [21], [22]. Recently, feature-based

SLAM methods that exploit position-related information in radio signals were introduced [13],

[23], [24]. Most of these methods operate on estimated parameters related to MPCs, such as

distances (which are proportional to delays), angles-of-arrival (AoAs), or angles-of-departure

(AoDs) [25]–[29]. These parameters are estimated from the signal in a preprocessing stage

and are considered as “measurements” by the SLAM method. An important aspect is the data
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association (DA) between these measurements and the PAs or VAs.

Feature-based SLAM is closely related to multitarget tracking (MTT), and MTT methods have

been adapted to feature-based SLAM [17], [21], [30]. MTT methods that are applicable to SLAM

include the joint probabilistic DA (JPDA) filter [31] and the joint integrated probabilistic DA

(JIPDA) filter [32]. An approach similar to the JIPDA filter is taken by the methods presented

in [33], [34]. More recently, the use of belief propagation (BP) [35], [36] was introduced for

probabilistic DA within MTT in [37] and for multisensor MTT in [38]–[40]. In particular, the

BP algorithms in [39], [40] are based on a factor graph representation of the multisensor MTT

problem and have a computational complexity that scales only quadratically with the number

of objects (targets) and linearly with the number of sensors. MTT methods that are based on

random finite sets and embed a BP algorithm for probabilistic DA were presented in [41], [42].

We finally note that our approach to feature-based SLAM is also related to multisensor target

tracking with uncertain sensor locations using Bayesian methods [43].

B. Contributions and Organization of the Paper

Here, we propose a BP-based, Bayesian detection and estimation algorithm for SLAM using

radio signals. Our algorithm jointly performs probabilistic DA and sequential estimation of the

states of a mobile agent and of “potential features” (PFs) characterizing the map. We use a

probabilistic model for feature existence where each PF state is augmented by a binary existence

variable and associated with a probability of existence, which is also estimated. The proposed

algorithm is inspired by the BP algorithms for multisensor MTT presented in [39], [40], and

will hence be briefly referred to as BP-SLAM algorithm. Probabilistic DA and state estimation

are performed by running BP on a factor graph [35], [36] representing the statistical structure of

the SLAM problem. The BP approach leverages conditional statistical independencies to achieve

low complexity and high scalability. In fact, in contrast to conventional SLAM algorithms such

as EKF-SLAM and RB-SLAM, the proposed BP-SLAM algorithm assumes that in each time

step the agent state and all the feature states are a priori independent.

Our probabilistic model for DA and feature existence uncertainty allows the BP-SLAM algo-

rithm to succeed in the particularly challenging range-only SLAM problem [44], which cannot

be addressed straightforwardly by established SLAM techniques [1], [2]. Performing SLAM

only from range measurements is challenging because (i) when new features are initialized, the

probability distributions of the PAs/VAs are annularly shaped and thus cannot be well represented
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by a Gaussian distribution; and (ii) DA is more difficult compared to classical SLAM problems

in robotics since PAs/VAs at widely different positions can generate almost identical range

measurements. In particular, the algorithm of [44] is able to cope with a range-only measurement

model, but not with DA uncertainty. To the best of our knowledge, our algorithm—along with

a preliminary version presented in [30]—is the first BP algorithm for feature-based SLAM with

probabilistic DA that is also suitable for range-based SLAM.

Key innovative contributions of this paper include the following:

• We establish a Bayesian model for feature-based SLAM that uses MPC parameters extracted

from radio signals as input measurements and models probabilistically the appearance and

disappearance of PAs/VAs as well as the DA uncertainty.

• Based on a factor graph representation of this model, we develop a scalable BP algorithm

that estimates the state of the mobile agent and the numbers and positions of PAs/VAs.

• We evaluate the performance of the proposed algorithm on synthetic and real data. Our

experimental results demonstrate the algorithm’s high accuracy and robustness.

We apply the proposed BP-SLAM algorithm to the challenging setup of a range-only measure-

ment model. However, bearing information (AoA and AoD of MPCs) or information derived from

inertial measurement unit sensors can be easily incorporated in the BP-SLAM algorithm, and this

would lead to a significant performance gain. For simplicity, we assume time synchronization

between the PAs and the mobile agent. However, the BP-SLAM algorithm can be extended

to nonsynchronized PA-agent links along the lines of [13] (based on the fact that the relevant

geometric information is also contained in the time differences of the MPCs [14]) or to joint

SLAM and synchronization along the lines of [45]. Furthermore, we assume that the probabilities

with which the preliminary signal analysis stage (producing measurements) detects features in the

radio signals are known; however, an adaptive extension to unknown and time-varying detection

probabilities can be obtained along the lines of [30], [40], [46].

This paper advances over our conference paper [30] in that it replaces the heuristic used

therein for determining the initial distribution of new PFs by an improved Bayesian technique.

Furthermore, the factor graph and BP algorithm of [30] are extended by the introduction of

“new PFs,” i.e., features that generate measurements for the first time. The remainder of this

paper is organized as follows. Section II considers the received radio signals and the MPC

parameters. Section III describes the system model and provides a statistical formulation of the
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SLAM problem. The posterior distribution of all states and the corresponding factor graph are

derived in Section IV. In Section V, the proposed BP-SLAM algorithm is described. The results

of numerical experiments are reported in Section VI. Section VII concludes the paper.

II. RADIO SIGNAL AND MPC PARAMETERS

Radio signal based SLAM [5], [13], [23], [24] associates specular MPC parameters estimated

from the received radio signals with “geometrically expected” parameters, such as distances

(corresponding to delays), AoAs, and AoDs. These parameters are modeled in terms of the

positions of the mobile agent and of the PAs or VAs. The VA positions are mirror images of the

PA positions that are induced by reflections at flat surfaces (typically walls) and thus depend on

the surrounding environment (floor plan) [15]. For each reflection path, the length from the PA

(via the flat surface) to the mobile agent is equal to the length from the VA to the mobile agent.

Even though the mobile agent moves, the VAs remain static as long as the PAs and the flat

surfaces (floor plan) are static. Note that the VA positions are unknown because the floor plan is

unknown. An example is shown in Fig. 1, which depicts two PAs and some of the corresponding

first-order VAs belonging to some larger flat surfaces. Also shown are two reflection paths (for

the two PAs) for mobile agent position p350.

We consider a mobile agent with unknown time-varying position pn ∈ R
2 and J PAs with

possibly unknown positions a
(j)
1,n∈R

2, j = 1, . . . , J , where J is assumed to be known. Associated

with the jth PA, there are L
(j)
n −1 VAs at unknown positions a

(j)
l,n∈R

2, l= 2, . . . , L
(j)
n . The PAs

and VAs will also be referred to as features. The number of features, L
(j)
n , is unknown and

time-varying, and it depends on the agent position pn. We note that the PA and VA positions are

allowed to be time-varying for the sake of generality; in an indoor scenario, they are typically

static. In each discrete time slot n, the mobile agent transmits a radio signal s(t) and the PAs

act as receivers. However the proposed algorithm can be easily reformulated for the case where

the PAs act as transmitters and the mobile agent acts as a receiver.

The baseband signal received by the jth PA is modeled as [14]

r(j)n (t) =

L
(j)
n
∑

l=1

α
(j)
l,n s
(

t− τ
(j)
l,n

)

+ d(j)n (t) + w(t). (1)

Here, the first term on the right-hand side describes the contribution of L
(j)
n specular MPCs with

complex amplitudes α
(j)
l,n and delays τ

(j)
l,n , where l ∈ L(j)

n ,
{

1, . . . , L
(j)
n

}

. These MPCs potentially

correspond to features (PAs or VAs). The delays τ
(j)
l,n are proportional to the distances (ranges)
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Fig. 1: Example of an environment map (floor plan). The PAs at fixed positions a
(1)
1,n (PA 1) and a

(2)
1,n (PA 2)

are indicated by, respectively, a red bullet and a blue box within the floor plan. The magenta dashed-dotted line

represents the trajectory of the mobile agent. The starting position of the mobile agent, p1, and the position p350

(at discrete time n=350) are indicated by a black and a green bullet, respectively. The red circles and blue squares

outside the floor plan indicate some of the geometrically expected VAs associated with PA 1 and PA 2, respectively.

Two exemplary reflection paths between the mobile agent at position p350 and two VAs associated with the two

PAs are shown by red and blue lines.

between the agent and either the jth PA (for l=1) or the associated VAs (for l ∈ {2, . . . , L(j)
n }).

That is, τ
(j)
l,n =

∥

∥pn− a
(j)
l,n

∥

∥

/

c, where c is the speed of light. The second term in (1), d
(j)
n (t),

represents the diffuse multipath, which interferes with the MPC term. The third term in (1),

w(t), is additive white Gaussian noise. We note that expression (1) presupposes a common

time reference at the mobile agent and at the PAs. However, our algorithm can be extended

to an unsynchronized system along the lines of [13], [47], exploiting the fact that the relevant

geometric information is preserved in the time differences of the MPC delays [14]. Furthermore,

our algorithm can also be extended to the case where the MPC parameters include AoAs and/or

AoDs in addition to the delays τ
(j)
l,n . An extension that uses the complex MPC amplitudes to

directly estimate the detection probability of each feature has been proposed in [46].

In each time slot n and for each PA j ∈ {1, . . . , J}, a parametric radio channel estimator [25]–

[29], [48] processes the radio signals r
(j)
n (t) and produces M

(j)
n MPC parameter estimates along
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with estimates of the corresponding complex amplitudes α̂
(j)
m,n , with m ∈M(j)

n , {1, . . . ,M (j)
n }.

The set of estimated MPC parameters M(j)
n is related to the set of specular MPCs L(j)

n as follows.

It is possible that some specular MPCs are not “detected” by the radio channel estimator and thus

do not produce an MPC parameter estimate, and it is also possible that some estimates do not

correspond to MPCs. Accordingly, M
(j)
n =

∣

∣M(j)
n

∣

∣ may be smaller than, equal to, or larger than

L
(j)
n =

∣

∣L(j)
n

∣

∣. (Here, |·| denotes the cardinality of a set.) Note also that M
(j)
n depends on the agent

position pn and on the environment. The amplitude estimates are used to calculate estimates of

the MPC parameter variances σ̂
(j)2
m,n , if such estimates are not provided by the channel estimator

(cf. Section VI-C). We denote by z
(j)
m,n with m ∈ M(j)

n the estimated parameters of the mth

MPC of PA j. The stacked vectors z
(j)
n ,

[

z
(j)T
1,n · · · z(j)T

M
(j)
n ,n

]T
are used as noisy “measurements”

by the proposed BP-SLAM algorithm.

III. SYSTEM MODEL AND STATISTICAL FORMULATION

A. Agent State and PF States

The state of the mobile agent at time n is xn, [pT
n vT

n]
T, where vn is the agent’s velocity. The

PFs are indexed by the tuple (j, k), where j ∈ {1, . . . , J} and k ∈ K(j)
n , {1, . . . , K(j)

n } (recall

that there are K
(j)
n PFs for each PA j). The number of PAs J is known, but the number of PFs

K
(j)
n (for PA j) is unknown and random. The existence of the (j, k)th PF as an actual feature is

indicated by the variable r
(j)
k,n∈ {0, 1}, where r

(j)
k,n= 0 (r

(j)
k,n=1) means that the PF does not exist

(exists) at time n. The state of PF (j, k) is the PF’s position a
(j)
k,n , and the augmented state is

y
(j)
k,n,

[

a
(j)T
k,n r

(j)
k,n

]T
[39]. We also define y

(j)
n ,

[

y
(j)T
1,n · · · y(j)T

K
(j)
n ,n

]T
and yn,

[

y
(1)T
n · · · y(J)T

n

]T
. We

will formally consider PF states also for the nonexisting PFs (case r
(j)
k,n= 0); however, their values

are obviously irrelevant. Therefore, the probability density function (pdf) of an augmented state,

f
(

y
(j)
k,n

)

= f
(

a
(j)
k,n , r

(j)
k,n

)

, is such that for r
(j)
k,n= 0, f

(

a
(j)
k,n , 0

)

= f
(j)
k,nfD

(

a
(j)
k,n

)

, where fD

(

a
(j)
k,n

)

is

an arbitrary “dummy pdf” and f
(j)
k,n > 0 can be interpreted as the probability of PF nonexistence

[39]. We note that the joint augmented PF state, described here by the random vector y
(j)
n , can

also be modeled by a multi-Bernoulli random finite set [41]. However, the unordered nature of

random finite sets would complicate the development of a factor graph and a BP algorithm.

At any time n, each PF is either a legacy PF, which was already established in the past, or a

new PF, which is established for the first time. The augmented states of legacy PFs and new PFs

for PA j will be denoted by ỹ
(j)
k,n,

[

ã
(j)T
k,n r̃

(j)
k,n

]T
, k∈K(j)

n−1 and y̆
(j)
m,n,

[

ă
(j)T
m,n r̆

(j)
m,n

]T
, m∈M(j)

n ,
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respectively. Thus, the number of new PFs equals the number of measurements, M
(j)
n . The set

and number of legacy PFs are updated according to

K(j)
n = K(j)

n−1∪M(j)
n , K(j)

n = K
(j)
n−1 +M (j)

n , (2)

where the first relation is understood to include a suitable reindexing of the elements of M(j)
n .

(The number of PFs does not actually grow by M
(j)
n because the set of PFs is pruned as explained

in Section V-A.) We also define the following state-related vectors. For the legacy PFs for PA j,

ã
(j)
n ,

[

ã
(j)T
1,n · · · ã(j)T

K
(j)
n−1,n

]T
, r̃

(j)
n ,

[

r̃
(j)
1,n · · · r̃

(j)

K
(j)
n−1,n

]T
, and ỹ

(j)
n ,

[

ỹ
(j)T
1,n · · · ỹ(j)T

K
(j)
n−1,n

]T
. For the new

PFs for PA j, ă
(j)
n ,

[

ă
(j)T
1,n · · · ă(j)T

M
(j)
n ,n

]T
, r̆

(j)
n ,

[

r̆
(j)
1,n · · · r̆

(j)

M
(j)
n ,n

]T
, and y̆

(j)
n ,

[

y̆
(j)T
1,n · · · y̆(j)T

M
(j)
n ,n

]T
.

For the combination of legacy PFs and new PFs for PA j, y
(j)
n ,

[

ỹ
(j)T
n y̆

(j)T
n

]T
; note that the

vector entries (subvectors) of y
(j)
n are given by y

(j)
k,n for k ∈ K(j)

n = K(j)
n−1 ∪ M(j)

n . For all the

legacy PFs, ỹn,
[

ỹ
(1)T
n · · · ỹ(J)T

n

]T
, and for all the new PFs, y̆n,

[

y̆
(1)T
n · · · y̆(J)T

n

]T
.

The number of new PFs at time n is known only after the current measurements have been

observed. Features that are observed for the first time will be referred to as newly detected

features. Before the current measurements are observed, only prior information about the newly

detected features is available (namely, their prior distribution and mean number). After the current

measurements are observed, newly detected features are represented by new PFs.

The agent state xn and the augmented states of the legacy PFs, ỹ
(j)
k,n, are assumed to evolve

independently according to Markovian state dynamics, i.e.,

f
(

xn, ỹn|xn−1,yn−1

)

= f(xn|xn−1)f(ỹn|yn−1) = f(xn|xn−1)
J
∏

j=1

K
(j)
n−1
∏

k=1

f
(

ỹ
(j)
k,n

∣

∣y
(j)
k,n−1

)

, (3)

where f(xn|xn−1) and f
(

ỹ
(j)
k,n

∣

∣y
(j)
k,n−1

)

are the state-transition pdfs of the agent and of legacy PF

(j, k), respectively. Note that ỹ
(j)
k,n depends on both ỹ

(j)
k,n−1 and y̆

(j)
m,n−1. If PF (j, k) exists at time

n−1, i.e., r
(j)
k,n−1=1, it either dies, i.e., r̃

(j)
k,n= 0, or survives, i.e., r̃

(j)
k,n=1; in the latter case, it

becomes a legacy PF at time n. The probability of survival is denoted by Ps. If the PF survives,

its new state ã
(j)
k,n is distributed according to the state-transition pdf f

(

ã
(j)
k,n

∣

∣a
(j)
k,n−1

)

. Therefore,

f
(

ỹ
(j)
k,n

∣

∣y
(j)
k,n−1

)

= f
(

ã
(j)
k,n, r̃

(j)
k,n

∣

∣a
(j)
k,n−1, r

(j)
k,n−1

)

in (3) is given for r
(j)
k,n−1 = 1 by

f
(

ã
(j)
k,n, r̃

(j)
k,n

∣

∣a
(j)
k,n−1, r

(j)
k,n−1 = 1

)

=











(1−Ps)fD

(

ã
(j)
k,n

)

, r̃
(j)
k,n= 0

Psf
(

ã
(j)
k,n

∣

∣a
(j)
k,n−1

)

, r̃
(j)
k,n=1.

(4)

If PF (j, k) does not exist at time n−1, i.e., r
(j)
k,n−1=0, it cannot exist as a legacy PF at time n

either. Therefore,
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f
(

ã
(j)
k,n, r̃

(j)
k,n

∣

∣a
(j)
k,n−1, r

(j)
k,n−1 = 0

)

=











fD

(

ã
(j)
k,n

)

, r̃
(j)
k,n= 0

0, r̃
(j)
k,n=1.

(5)

B. Association Vectors

For each PA j, the measurements (MPC parameter estimates) z
(j)
m,n , m ∈ M(j)

n described

in Section II are subject to a measurement origin uncertainty, also known as DA uncertainty.

That is, it is not known which measurement z
(j)
m,n is associated with which PF k∈K(j)

n , or if a

measurement z
(j)
m,n did not originate from any PF (this is known as a false alarm or clutter), or if

a PF did not give rise to any measurement (this is known as a missed detection). The probability

that a PF is “detected” in the sense that it generates a measurement z
(j)
m,n in the MPC parameter

estimation stage is denoted by P
(j)
d

(

xn,a
(j)
k,n

)

. The distribution of false alarm measurements is

described by the pdf fFA

(

z
(j)
m,n

)

. The functions P
(j)
d

(

xn,a
(j)
k,n

)

∈ (0, 1] and fFA

(

z
(j)
m,n

)

≥ 0 are

supposed known. Following [31], we assume that at any time n, each PF can generate at most

one measurement, and each measurement can be generated by at most one PF.

The associations between the measurements m ∈ M(j)
n and the legacy PF states (j, k),

k ∈ K(j)
n−1 at time n can be described by the K

(j)
n−1-dimensional feature-oriented DA vector

c
(j)
n =

[

c
(j)
1,n · · · c

(j)

K
(j)
n−1,n

]T
, whose kth entry is defined to be c

(j)
k,n , m ∈ M(j)

n if legacy PF

(j, k) generates measurement z
(j)
m,n, and c

(j)
k,n , 0 if it does not generate any measurement.

In addition, following [37], [39], we consider the M
(j)
n -dimensional measurement-oriented DA

vector b
(j)
n =

[

b
(j)
1,n · · · b

(j)

M
(j)
n ,n

]T
, whose mth entry is defined to be b

(j)
m,n, k∈K(j)

n−1 if measurement

z
(j)
m,n is generated by legacy PF (j, k), and b

(j)
m,n, 0 if it is not generated by any legacy PF We

also define cn ,
[

c
(1)T
n · · · c(J)Tn

]T
and bn ,

[

b
(1)T
n · · · b(J)Tn

]T
. The two DA vectors cn and bn

are unknown and modeled as random. They are equivalent since one can be determined from

the other. However, the redundant formulation of DA uncertainty in terms of both cn and bn is

key to obtaining the scalability properties of the BP algorithm to be presented in Section V-B.

Furthermore, as will be discussed in Section IV, it facilitates the establishment of a factor graph

for the problem of jointly inferring the agent state and the states of the legacy PFs and new PFs.

C. Prior Distributions

For a given PA j, there are M
(j)
n = |M(j)

n | new PFs at time n. The number of false alarms and

the number of newly detected features are assumed Poisson distributed with mean µ
(j)
FA and µ

(j)
n,n,

respectively [31], [49]. Then, one can derive the following expression of the joint conditional
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prior probability mass function (pmf) of the DA vector c
(j)
n , the vector of existence indicators of

new PFs, r̆
(j)
n , and the number of measurements or equivalently new PFs, M

(j)
n , given the state

of the mobile agent, xn, and the vector of augmented states of legacy PFs, ỹ
(j)
n (cf. [39])

p
(

c(j)n , r̆
(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

= χ
c
(j)
n , r̆

(j)
n ,M

(j)
n
ψ
(

c(j)n

)

(

∏

m∈N
r̆

(j)
n

Γ
c
(j)
n

(

r̆(j)m,n

)

)(

∏

k∈D
c

(j)
n ,r̃

(j)
n

P
(j)
d

(

xn,a
(j)
k,n

)

)

×
∏

k′∈D̄
c

(j)
n ,r̃

(j)
n

[

1
(

c
(j)
k′,n

)

− r̃
(j)
k′,nP

(j)
d

(

xn, ã
(j)
k′,n

)]

, (6)

with χ
c
(j)
n , r̆

(j)
n ,M

(j)
n

, e−(µ
(j)
FA +µ

(j)
n,n)(µ

(j)
n,n)

∣

∣N
r̆

(j)
n

∣

∣

(µ
(j)
FA)

M
(j)
n −
∣

∣D
c

(j)
n ,r̃

(j)
n

∣

∣−
∣

∣N
r̆

(j)
n

∣

∣

/M
(j)
n !. Here, N

r̆
(j)
n

denotes

the set of existing new PFs, i.e., N
r̆
(j)
n

,
{

m ∈ M(j)
n : r̆

(j)
m,n = 1

}

; D
c
(j)
n ,r̃

(j)
n

denotes the set of

existing legacy PFs for PA j, i.e., D
c
(j)
n ,r̃

(j)
n

,
{

k ∈ K(j)
n−1 : r̃

(j)
k,n = 1, c

(j)
k,n 6= 0

}

; and D̄
c
(j)
n ,r̃

(j)
n

, K(j)
n−1

∖

D
c
(j)
n ,r̃

(j)
n

. Furthermore, ψ
(

c
(j)
n

)

is defined to be 0 if there exist k, k′∈ K(j)
n−1 with k 6=k′

such that c
(j)
k,n= c

(j)
k′,n 6= 0, and to be 1 otherwise; and Γ

c
(j)
n

(

r̆
(j)
m,n

)

is defined to be 0 if r̆
(j)
m,n =1

and there exists k ∈ K(j)
n−1 such that c

(j)
k,n= m, and to be 1 otherwise. Finally, 1(c) denotes the

indicator function of the event c = 0 (i.e., 1(c) = 1 if c = 0 and 0 otherwise). The functions

ψ
(

c
(j)
n

)

and Γ
(j)
cn

(

r̆
(j)
m,n

)

enforce our DA assumption from Section III-B, i.e., ψ
(

c
(j)
n

)

enforces

p
(

c
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

= 0 if any measurement is associated with more than one legacy

PF, and Γ
(j)
cn

(

r̆
(j)
m,n

)

enforces p
(

c
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

= 0 if a new PF is associated with a

measurement m that is also associated with a legacy PF. At time n = 1, prior information on

PAs and VAs can be incorporated by introducing legacy PFs. In the opposite case, there are

no legacy PFs at n = 1, i.e., ỹ
(j)
1 is an empty vector, and thus p

(

c
(j)
1 , r̆

(j)
1 ,M

(j)
1

∣

∣x1, ỹ
(j)
1

)

=

p
(

c
(j)
1 , r̆

(j)
1 ,M

(j)
1

∣

∣x1

)

. An expression of this pmf can be obtained by replacing in (6) (for n=1)

all factors involving ỹ
(j)
1 (or, equivalently, ã

(j)
1 and r̃

(j)
1 ) by 1.

The states of newly detected features are assumed to be a priori independent and identically

distributed (iid) according to some pdf fn,n

(

ă
(j)
m,n

∣

∣xn

)

, which will be discussed in Section VI-A3.

The prior pdf of the states of new PFs for PA j, ă
(j)
n , conditioned on xn, r̆

(j)
n , and M

(j)
n is then

obtained as

f
(

ă(j)
n

∣

∣xn, r̆
(j)
n ,M

(j)
n

)

=

(

∏

m∈N
r̆

(j)
n

fn,n

(

ă(j)
m,n

∣

∣xn

)

)

∏

m′∈N̄
r̆

(j)
n

fD

(

ă(j)
m,n

)

, (7)

where N̄
r̆
(j)
n
,M(j)

n

∖

N
r̆
(j)
n

. Note that before the measurements are obtained, M
(j)
n and, thus, the

length of the vectors ă
(j)
n and r̆

(j)
n (which is M

(j)
n ) is random.
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We assume that for the agent state at time n=1, x1, an informative prior pdf f(x1) is available.

We also assume that the new PF state vector ă
(j)
n and the DA vectors c

(j)
n are conditionally

independent given the legacy PF state vector ã
(j)
n . Let us next consider xn′ , yn′ , cn′ , and mn′ ,

[

M
(1)
n′ · · ·M (J)

n′

]T
for all time steps n′ = 1, . . . , n, and accordingly define the vector x1:n ,

[

xT
1 · · · x

T
n

]T
and similarly y1:n , c1:n , and m1:n . We then obtain the joint prior pdf as

f
(

x1:n,y1:n, c1:n,m1:n

)

= f(x1)

(

J
∏

j′=1

p
(

c
(j′)
1 , r̆

(j′)
1 ,M

(j′)
1

∣

∣x1, ỹ
(j′)
1

)

)

n
∏

n′=2

f(xn′|xn′−1)

×
J
∏

j=1

f
(

ỹ
(j)
n′

∣

∣y
(j)
n′−1

)

f
(

ă
(j)
n′

∣

∣xn′, r̆
(j)
n′ ,M

(j)
n′

)

p
(

c
(j)
n′ , r̆

(j)
n′ ,M

(j)
n′

∣

∣xn′, ỹ
(j)
n′

)

,

(8)

where the last three factors are given by (4) and (5); (7); and (6), respectively.

D. Likelihood Function

The conditional pdf f
(

z
(j)
m,n

∣

∣xn,a
(j)
k,n

)

characterizing the statistical relation between the mea-

surements z
(j)
m,n and the states xn and a

(j)
k,n depends on the concrete measurement model; an

example will be considered in Section VI. This pdf is a central element in the conditional pdf of

the total measurement vector zn ,
[

z
(1)T
n · · · z(J)T

n

]T
given xn, ỹn, y̆n, cn, and mn. Assuming

that the z
(j)
n are conditionally independent across j given xn, ỹn, y̆n, cn, and mn [31], we

obtain f(zn|xn, ỹn, y̆n, cn,mn) =
∏J

j=1 f
(

z
(j)
n

∣

∣xn, ỹ
(j)
n , y̆

(j)
n , c

(j)
n ,M

(j)
n

)

, where [31]

f
(

z(j)
n

∣

∣xn, ỹ
(j)
n , y̆(j)

n , c(j)n ,M
(j)
n

)

=

(

M
(j)
n
∏

m=1

fFA

(

z(j)
m,n

)

)







∏

k∈D
c

(j)
n ,r̃

(j)
n

f
(

z
(j)

c
(j)
k,n

,n

∣

∣

∣
xn, ã

(j)
k,n

)

fFA

(

z
(j)

c
(j)
k,n

,n

)







×
∏

m′∈N
r̆

(j)
n

f
(

z
(j)
m′,n

∣

∣xn, ă
(j)
m′,n

)

fFA

(

z
(j)
m′,n

)
. (9)

In particular, at n =1, f
(

z
(j)
1

∣

∣x1, ỹ
(j)
1 , y̆

(j)
1 , c

(j)
1 ,M

(j)
1

)

= f
(

z
(j)
1

∣

∣x1, y̆
(j)
1 , c

(j)
1 ,M

(j)
1

)

. An expres-

sion of this pdf can be obtained by replacing in (9) (for n = 1) all factors involving ỹ
(j)
1 (or,

equivalently, ã
(j)
1 and r̃

(j)
1 ) by 1.

Let us consider f
(

z
(j)
n

∣

∣xn, ỹ
(j)
n , y̆

(j)
n , c

(j)
n ,M

(j)
n

)

as a likelihood function, i.e., a function of xn,

ỹ
(j)
n , y̆

(j)
n , c

(j)
n , and M

(j)
n , for observed z

(j)
n . If z

(j)
n is observed and therefore fixed, also M

(j)
n is

fixed, and we can rewrite (9), up to a constant normalization factor, as

f
(

z(j)
n

∣

∣xn, ỹ
(j)
n , y̆(j)

n , c
(j)
n ,M

(j)
n

)

∝

(

K
(j)
n
∏

k=1

g1
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

)

∏

m∈N
r̆

(j)
n

f
(

z
(j)
m,n

∣

∣xn, ă
(j)
m,n

)

fFA

(

z
(j)
m,n

)
.

(10)
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Here, the factors g1
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

are defined as

g1
(

xn, ã
(j)
k,n, 1, c

(j)
k,n; z

(j)
n

)

,















f
(

z
(j)
m,n

∣

∣xn, ã
(j)
k,n

)

fFA

(

z
(j)
m,n

)
, c

(j)
k,n∈M(j)

n

1, c
(j)
k,n= 0

(11)

and g1
(

xn, ã
(j)
k,n, 0, c

(j)
k,n; z

(j)
n

)

, 1. Finally, the likelihood function for z1:n,
[

zT
1 · · · z

T
n

]T
, involv-

ing the measurements z
(j)
m,n′ of all PAs j = 1, . . . , J and all time steps n′ = 1, . . . , n, can be

derived similarly to (8); one obtains

f(z1:n|x1:n,y1:n,c1:n,m1:n)∝
J
∏

j=1

(

∏

m∈N
r̆

(j)
1

f
(

z
(j)
m,1

∣

∣x1, ă
(j)
m,1

)

fFA

(

z
(j)
m,1

)

)

n
∏

n′=2

(

∏

m′∈N
r̆

(j)
n

f
(

z
(j)
m′,n′

∣

∣xn′, ă
(j)
m′,n′

)

fFA

(

z
(j)
m′,n′

)

)

×

K
(j)

n′

∏

k=1

g1
(

xn′, ã
(j)
k,n′ , r̃

(j)
k,n′ , c

(j)
k,n′ ; z

(j)
n′

)

. (12)

IV. JOINT POSTERIOR PDF AND FACTOR GRAPH

A. Redundant Formulation of the Exclusion Constraint

The proposed BP algorithm is based on a redundant formulation of probabilistic DA in terms

of the vectors c
(j)
n and b

(j)
n [37], [39]. To obtain a probabilistic description and, in turn, a factor

graph, we formally replace the exclusion constraint factor ψ
(

c
(j)
n

)

involved in the prior pmf in

(6) by

ψ
(

c(j)n , b
(j)
n

)

,

K
(j)
n
∏

k=1

M
(j)
n
∏

m=1

ψ
(

c
(j)
k,n , b

(j)
m,n

)

, (13)

where ψ
(

c
(j)
k,n , b

(j)
m,n

)

is defined to be 0 if either c
(j)
k,n=m and b

(j)
m,n 6= k or b

(j)
m,n= k and c

(j)
k,n 6=m,

and 1 otherwise. The resulting modified prior pmf p
(

c
(j)
n , b

(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

is related to

the original prior pmf p
(

c
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

in (6) acording to p
(

c
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

=
∑

b
(j)
n
p
(

c
(j)
n , b

(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

, where the summation is over all b
(j)
n ∈

{

0, 1, . . . , K
(j)
n

}M
(j)
n

.

Let us now consider the product of the likelihood function f
(

z
(j)
n

∣

∣xn, ỹ
(j)
n , y̆

(j)
n , c

(j)
n ,M

(j)
n

)

in

(10), the prior pdf of the new PF states f
(

ă
(j)
n

∣

∣xn, r̆
(j)
n ,M

(j)
n

)

in (7), and the modified prior pmf

p
(

c
(j)
n , b

(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

. We obtain

f
(

z(j)
n

∣

∣xn, ỹ
(j)
n , y̆(j)

n , c(j)n ,M
(j)
n

)

f
(

ă(j)
n

∣

∣xn, r̆
(j)
n ,M

(j)
n ) p

(

c(j)n , b
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

∝ ψ
(

c(j)n , b(j)n

)

(

K
(j)
n
∏

k=1

g
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

)(

∏

m′∈N̄
r̆

(j)
n

fD

(

ă
(j)
m′,n

)

)
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×
∏

m∈N
r̆

(j)
n

µ
(j)
n,nfn,n

(

ă
(j)
m,n

∣

∣xn

)

Γ
c
(j)
n

(

r̆
(j)
m,n

)

f
(

z
(j)
m,n

∣

∣xn, ă
(j)
m,n

)

fFA

(

z
(j)
m,n

)
. (14)

Here, g
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

,g1
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

g2
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n;M

(j)
n

)

, where

g1
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

was defined in Section III-D and g2
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n;M

(j)
n

)

is de-

fined as

g2
(

xn, ã
(j)
k,n, 1, c

(j)
k,n;M

(j)
n

)

,



















P
(j)
d

(

xn, ã
(j)
k,n

)

µ
(j)
FA

, c
(j)
k,n∈M(j)

n

1−P
(j)
d

(

xn, ã
(j)
k,n

)

, c
(j)
k,n= 0

and g2
(

xn, ã
(j)
k,n, 0, c

(j)
k,n;M

(j)
n

)

, 1
(

c
(j)
k,n

)

. One thus obtains for g
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

g
(

xn, ã
(j)
k,n, 1, c

(j)
k,n; z

(j)
n

)

=



















P
(j)
d

(

xn, ã
(j)
k,n

)

f
(

z
(j)
m,n

∣

∣xn, ã
(j)
k,n

)

µ
(j)
FA fFA

(

z
(j)
m,n

)
, c

(j)
k,n∈M(j)

n

1−P
(j)
d

(

xn, ã
(j)
k,n

)

, c
(j)
k,n= 0

and g
(

xn, ã
(j)
k,n, 0, c

(j)
k,n; z

(j)
n

)

= 1
(

c
(j)
k,n

)

. For a choice of c
(j)
n and b

(j)
n that is valid in the sense that

p
(

c
(j)
n , b

(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

6= 0, the exclusion constraint expressed by Γ
c
(j)
n

(

r̆
(j)
m,n

)

is satisfied,

i.e., Γ
c
(j)
n

(

r̆
(j)
m,n

)

= 1, if and only if both b
(j)
m,n = 0 and r̆

(j)
m,n = 1. Therefore, in (14), we can

summarize the products over all m∈N
r̆
(j)
n

and over all m′∈N̄
r̆
(j)
n

by a product over all m ∈M(j)
n

= {1, . . . ,M (j)
n }. More specifically, we can rewrite (14) as

f
(

z(j)
n

∣

∣xn, ỹ
(j)
n , y̆

(j)
n , c(j)n ,M

(j)
n

)

f
(

ă(j)
n

∣

∣xn, r̆
(j)
n ,M

(j)
n ) p

(

c(j)n , b
(j)
n , r̆

(j)
n ,M

(j)
n

∣

∣xn, ỹ
(j)
n

)

∝ ψ
(

c(j)n , b(j)n

)

(

K
(j)
n
∏

k=1

g
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

)

M
(j)
n
∏

m=1

h
(

xn, ă
(j)
m,n, r̆

(j)
m,n, b

(j)
m,n; z

(j)
n

)

, (15)

where h
(

xn, ă
(j)
m,n, r̆

(j)
m,n, b

(j)
m,n; z

(j)
n

)

is defined as

h
(

xn, ă
(j)
m,n, 1, b

(j)
m,n; z

(j)
n

)

,















0, b
(j)
m,n∈K(j)

n

µ
(j)
n,nfn,n

(

ă
(j)
m,n

∣

∣xn

)

f
(

z
(j)
m,n

∣

∣xn, ă
(j)
m,n

)

µ
(j)
FA fFA

(

z
(j)
m,n

)
, b

(j)
m,n = 0

and h
(

xn, ă
(j)
m,n, 0, b

(j)
m,n; z

(j)
n

)

, fD

(

ă
(j)
m,n

)

. The mean number µ
(j)
n,n and conditional pdf fn,n

(

a
(j)
m,n

∣

∣xn

)

of newly detected features can either be pre-specified (e.g., constant with respect to time n and

with a spatial distribution that is uniform in a
(j)
m,n) or inferred online by means of a probability

hypothesis density (PHD) filter, as described in [34].
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B. Joint Posterior pdf

Using Bayes’ rule and independence assumptions related to the state-transition pdfs (see

Section III-A), the prior pdfs (see Section III-C), and the likelihood model (see Section III-D),

the joint posterior pdf of xn′ , ỹn′ , y̆n′ , cn′ , and bn′ for all n′ = 1, . . . , n is obtained as

f(x1:n,y1:n, c1:n, b1:n,m1:n|z1:n)

∝ f(z1:n|x1:n,y1:n, c1:n,m1:n)f(x1:n,y1:n, c1:n,m1:n)

= f(x1)

(

J
∏

j′=1

f
(

z
(j′)
1

∣

∣x1, y̆
(j′)
1 , c

(j′)
1 ,M

(j′)
1

)

f
(

y̆
(j′)
1 , c

(j′)
1 ,M

(j′)
1

)

)

n
∏

n′=2

f(xn′|xn′−1)

J
∏

j=1

f
(

ỹ
(j)
n′

∣

∣y
(j)
n′−1

)

× f
(

z
(j)
n′

∣

∣xn′, ỹ
(j)
n′ , y̆

(j)
n′ , c

(j)
n′ ,M

(j)
n′

)

f
(

ă
(j)
n′

∣

∣xn′, r̆
(j)
n′ ,M

(j)
n′

)

p
(

c
(j)
n′ , b

(j)
n′ , r̆

(j)
n′ ,M

(j)
n′

∣

∣xn′, ỹ
(j)
n′

)

. (16)

Inserting expression (15) yields

f(x1:n,y1:n, c1:n, b1:n,m1:n|z1:n)

∝ f(x1)

(

J
∏

j′=1

M
(j′)
1
∏

m′=1

h
(

x1, ă
(j′)
m′,1, r̆

(j′)
m′,1, b

(j′)
m′,1; z

(j′)
1

)

)

n
∏

n′=2

f(xn′|xn′−1)
J
∏

j=1

ψ
(

c
(j)
n′ , b

(j)
n′

)

×

(M
(j)

n′

∏

m=1

h
(

xn′, ă
(j)
m,n′, r̆

(j)
m,n′, b

(j)
m,n′ ; z

(j)
n′

)

)K
(j)

n′
−1

∏

k=1

f
(

ỹ
(j)
k,n′

∣

∣y
(j)
k,n′−1

)

g
(

xn′, ã
(j)
k,n′, r̃

(j)
k,n′, c

(j)
k,n′; z

(j)
n′

)

.

(17)

This factorization of the joint posterior pdf is represented by the factor graph [35], [36] shown

in Fig. 2.

V. THE BP-SLAM ALGORITHM

The proposed BP-SLAM algorithm performs Bayesian detection and estimation of the relevant

states from all the measurements acquired so far. The posterior distributions required for detection

and estimation are calculated in an efficient, time-recursive manner by using BP message passing

[36] on the factor graph in Fig. 2.

A. Detection and Estimation

Our goal is to estimate the agent state xn and to detect and estimate the PF states a
(j)
k,n from

the total measurement vector z1:n. For estimating xn, we will develop an approximate calculation

of the minimum mean-square error (MMSE) estimator [50]

x̂MMSE
n ,

∫

xnf(xn|z1:n)dxn . (18)
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Fig. 2: Factor graph representing the factorization of the joint posterior pdf in (17). The subgraphs corresponding

to individual PAs are indicated by boxes with light yellow background color. All the factor nodes, variable nodes,

and messages related to the agent state are represented in red boldface style, those related to the legacy PF states

are represented by the blue parts contained in dashed boxes, those related to the new PF states are represented

by the magenta parts contained in dotted boxes, and those related to loopy BP DA are represented by the green

parts contained in dashed-dotted boxes. The following short notations are used: K , K
(j)
n , M , M

(j)
n , x ,

xn, ỹk , ỹ
(j)
k,n, y̆m , y̆

(j)
m,n, bm , b

(j)
m,n, ck , c

(j)
k,n, ψk,m , ψ

(

c
(j)
k,n, b

(j)
m,n

)

, gk , g
(

xn, ã
(j)
k,n, r̃

(j)
k,n, c

(j)
k,n; z

(j)
n

)

,

hm , h
(

xn, ă
(j)
m,n, r̆

(j)
m,n, b

(j)
m,n; z

(j)
n

)

, f , f(xn|xn−1), fk , f
(

ỹ
(j)
k,n

∣

∣y
(j)
k,n−1

)

, α , α(xn), αk , αk

(

ã
(j)
k,n, r̃

(j)
k,n

)

,

q− , q(xn−1), q , q(xn), q̃
−

k , q̃
(

ã
(j)
k,n−1, r̃

(j)
k,n−1

)

, q̃k , q̃
(

ã
(j)
k,n, r̃

(j)
k,n

)

, q̆m , q̆
(

ă
(j)
m,n, r̆

(j)
m,n

)

, βk , β
(

c
(j)
k,n

)

,

ξm , ξ
(

b
(j)
m,n

)

, ηk , η
(

c
(j)
k,n

)

, ςm , ς
(

b
(j)
m,n

)

, νm,k , ν
(p)
m→k

(

c
(j)
k,n

)

, ζk,m , ζ
(p)
k→m

(

b
(j)
m,n

)

, γjk , γ
(j)
k (xn), γk ,

γ
(

ã
(j)
k,n, r̃

(j)
k,n

)

, and φm , φ
(

ă
(j)
m,n, r̆

(j)
m,n

)

.

This estimator involves the posterior pdf f(xn|z1:n). Furthermore, detecting (i.e., determining

the existence of) PF k ∈ K(j)
n at time n is based on the posterior existence probability p

(

r
(j)
k,n=

1
∣

∣z1:n

)

. This probability can be obtained from the posterior pdf of the augmented PF state,

f
(

y
(j)
k,n

∣

∣z1:n

)

= f
(

a
(j)
k,n , r

(j)
k,n

∣

∣z1:n

)

, by a marginalization, i.e.,

p
(

r
(j)
k,n=1

∣

∣z1:n

)

=

∫

f
(

a
(j)
k,n , r

(j)
k,n=1

∣

∣z1:n

)

da
(j)
k,n . (19)

Then PF k is defined to be detected at time n if p
(

r
(j)
k,n=1

∣

∣z1:n

)

>Pdet, where Pdet is a detection

threshold. The states a
(j)
k,n of the detected PFs are finally estimated as
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â
(j)MMSE

k,n ,

∫

a
(j)
k,n f

(

a
(j)
k,n

∣

∣r
(j)
k,n=1, z1:n

)

da
(j)
k,n , (20)

where

f
(

a
(j)
k,n

∣

∣r
(j)
k,n=1, z1:n

)

=
f
(

a
(j)
k,n , r

(j)
k,n=1

∣

∣z1:n

)

p
(

r
(j)
k,n=1

∣

∣z1:n

)
. (21)

The posterior existence probabilities p
(

r
(j)
k,n = 1

∣

∣z1:n

)

in (19) are also used in a different

context. To prevent an indefinite increase of the total number of PFs for PA j due to (2), i.e.,

K
(j)
n =K

(j)
n−1+M

(j)
n , a pruning of the PFs is employed. More specifically, PF k is retained only

if p
(

r
(j)
k,n=1

∣

∣z1:n

)

exceeds a suitably chosen pruning threshold Pprun.

B. Message Passing Algorithm

The posterior pdfs f(xn|z1:n) and f
(

a
(j)
k,n , r

(j)
k,n

∣

∣z1:n

)

involved in (18)–(21) are marginal pdfs of

the joint posterior pdf f(x1:n,y1:n, c1:n, b1:n,m1:n|z1:n) in (17). Because direct marginalization

of the joint posterior pdf is infeasible, we calculate approximations of the marginal pdfs by using

loopy (iterative) BP message passing [36] on the factor graph in Fig. 2. Since the factor graph

contains loops, the resulting beliefs are only approximations of the respective posterior pdfs, and

there is no canonical order in which the messages should be computed [36]. In our method, we

choose the order according to the following rules: (i) Messages are not passed backward in time;

(ii) iterative message passing is only performed for DA, and only for each time step and for

each PA separately (i.e., in particular, for the loops connecting different PAs, we only perform

a single message passing iteration); (iii) along an edge connecting an agent state variable node

and a new PF state variable node, messages are only sent from the former to the latter. The

resulting BP message passing algorithm is presented in what follows; cf. also the underlying

factor graph in Fig. 2. Similarly to the “dummy pdfs” introduced in Section III-A, we consider

BP messages φ
(

y
(j)
k,n

)

= φ
(

a
(j)
k,n , r

(j)
k,n

)

also for the non-existing PF states, i.e., for r
(j)
k,n= 0. We

define these messages by setting φ
(

a
(j)
k,n , 0

)

= φ
(j)
k,n (note that these BP messages are not pdfs

and thus are not required to integrate to 1).

First, a prediction step is performed. The prediction message for the agent state is obtained

as

α(xn) =

∫

f(xn|xn−1)q(xn−1)dxn−1 , (22)

and the prediction message for the legacy PFs is obtained as

αk

(

ã
(j)
k,n , r̃

(j)
k,n

)

=
∑

r
(j)
k,n−1∈{0,1}

∫

f
(

ã
(j)
k,n , r̃

(j)
k,n

∣

∣a
(j)
k,n−1 , r

(j)
k,n−1

)

q̃
(

a
(j)
k,n−1 , r

(j)
k,n−1

)

da
(j)
k,n−1 , (23)
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where the beliefs of the mobile agent state, q(xn−1), and of the PF states, q̃
(

a
(j)
k,n−1 , 1

)

, were

calculated at the preceding time n−1. Inserting (4) and (5) for f
(

ã
(j)
k,n , r̃

(j)
k,n

∣

∣a
(j)
k,n−1 , r

(j)
k,n−1 = 1

)

and f
(

ã
(j)
k,n , r̃

(j)
k,n

∣

∣a
(j)
k,n−1 , r

(j)
k,n−1 = 0

)

, respectively, we obtain for r
(j)
k,n=1

αk

(

ã
(j)
k,n , 1

)

= Ps

∫

f
(

ã
(j)
k,n

∣

∣a
(j)
k,n−1

)

q̃
(

a
(j)
k,n−1 , 1

)

da
(j)
k,n−1 , (24)

and for r
(j)
k,n= 0

α
(j)
k,n = (1−Ps

)

∫

q̃
(

a
(j)
k,n−1 , 1

)

da
(j)
k,n−1 + q̃

(j)
k,n−1 , (25)

where α
(j)
k,n ,

∫

αk

(

a
(j)
k,n , 0

)

da
(j)
k,n and q̃

(j)
k,n−1 ,

∫

q̃
(

a
(j)
k,n−1 , 0

)

da
(j)
k,n−1 .

After the prediction step, the following calculations are performed for all legacy PFs k∈K(j)
n−1

and for all new PFs m∈M(j)
n for all PAs j ∈ {1, . . . , J} in parallel:

1) Measurement evaluation for legacy PFs: The messages β
(

c
(j)
k,n

)

passed to the variable nodes

corresponding to the feature-oriented DA variables c
(j)
k,n (cf. Fig. 2) are calculated as

β
(

c
(j)
k,n

)

=

∫ ∫

αk

(

ã
(j)
k,n, 1

)

α(xn)g
(

xn, ã
(j)
k,n, 1, c

(j)
k,n; z

(j)
n

)

dxndã
(j)
k,n + 1

(

c
(j)
k,n

)

α
(j)
k,n . (26)

2) Measurement evaluation for new PFs: The messages ξ
(

b
(j)
m,n

)

passed to the variable nodes

corresponding to the measurement-oriented DA variables b
(j)
m,n are calculated as

ξ
(

b(j)m,n

)

=
∑

r̆
(j)
m,n∈{0,1}

∫ ∫

h
(

xn, ă
(j)
m,n, r̆

(j)
m,n, b

(j)
m,n; z

(j)
n

)

α(xn) dxndă
(j)
m,n . (27)

Using the expression of h
(

xn, ă
(j)
m,n, r̆

(j)
m,n, b

(j)
m,n; z

(j)
n

)

found in Section IV-A, Eq. (27) is

easily seen to simplify to ξ
(

b
(j)
m,n

)

=1 for b
(j)
m,n∈K(j)

n−1, and for b
(j)
m,n= 0 it becomes

ξ
(

b(j)m,n

)

= 1 +
µ
(j)
n,n

µ
(j)
FA fFA

(

z
(j)
m,n

)

∫ ∫

α(xn)f
(

z(j)
m,n

∣

∣xn, ă
(j)
m,n

)

fn,n

(

ă(j)
n

∣

∣xn

)

dxndă
(j)
m,n . (28)

3) Iterative data association: Next, from β
(

c
(j)
k,n

)

and ξ
(

b
(j)
m,n

)

, messages η
(

c
(j)
k,n

)

and ς
(

b
(j)
m,n

)

are obtained by means of loopy (iterative) BP. First, for each measurement m ∈ M(j)
n ,

messages ν
(p)
m→k

(

c
(j)
k,n

)

and ζ
(p)
k→m

(

b
(j)
m,n

)

are calculated iteratively according to [37], [40]

ν
(p)
m→k

(

c
(j)
k,n

)

=

K
(j)
n−1
∑

b
(j)
m,n=0

ξ
(

b(j)m,n

)

ψ
(

c
(j)
k,n, b

(j)
m,n

)

∏

k′∈K
(j)
n−1\{k}

ζ
(p−1)
k′→m

(

b(j)m,n

)

(29)

ζ
(p)
k→m

(

b(j)m,n

)

=

M
(j)
n
∑

c
(j)
k,n

=0

β
(

c
(j)
k,n

)

ψ
(

c
(j)
k,n, b

(j)
m,n

)

∏

m′∈M
(j)
n \{m}

ν
(p)
m′→k

(

c
(j)
k,n

)

, (30)
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for k = 1, . . . , K
(j)
n−1, m= 1, . . . ,M

(j)
n , and iteration index p= 1, . . . , P . The recursion de-

fined by (29) and (30) is initialized (for p=0) by ζ
(0)
k→m

(

b
(j)
m,n

)

=
∑M

(j)
n

c
(j)
k,n

=0
β
(

c
(j)
k,n

)

ψ
(

c
(j)
k,n, b

(j)
m,n

)

.

Then, after the last iteration p= P, the messages η
(

c
(j)
k,n

)

and ς
(

b
(j)
m,n

)

are calculated as

η
(

c
(j)
k,n

)

=
∏

m∈M
(j)
n

ν
(P )
m→k

(

c
(j)
k,n

)

, ς
(

b(j)m,n

)

=
∏

k∈K
(j)
n−1

ζ
(P )
k→m

(

b(j)m,n

)

. (31)

4) Measurement update for the agent: From η
(

c
(j)
k,n

)

, αk

(

ã
(j)
k,n, 1

)

, and α
(j)
k,n , the message

γ
(j)
k (xn) related to the agent is calculated as

γ
(j)
k (xn) =

M
(j)
n
∑

c
(j)
k,n

=0

η
(

c
(j)
k,n

)

∫

αk

(

ã
(j)
k,n, 1

)

g
(

xn, ã
(j)
k,n, 1, c

(j)
k,n; z

(j)
n

)

dã
(j)
k,n + η

(

c
(j)
k,n=0

)

α
(j)
k,n . (32)

5) Measurement update for legacy PFs: Similarly, the messages γ
(

ã
(j)
k,n, r̃

(j)
k,n

)

related to the

legacy PFs are calculated as

γ
(

ã
(j)
k,n, 1

)

=

M
(j)
n
∑

c
(j)
k,n

=0

η
(

c
(j)
k,n

)

∫

α(xn) g
(

xn, ã
(j)
k,n, 1, c

(j)
k,n; z

(j)
n

)

dxn (33)

γ
(j)
k,n , γ

(

ã
(j)
k,n, 0

)

= η
(

c
(j)
k,n=0

)

. (34)

6) Measurement update for new PFs: Finally, the messages φ
(

ă
(j)
m,n, r̆

(j)
m,n

)

related to the new

PFs are calculated as

φ
(

ă(j)
m,n, 1

)

= ς
(

b(j)m,n=0
)

∫

α(xn) h
(

xn, ă
(j)
m,n, 1, 0; z

(j)
n

)

dxn (35)

φ(j)
m,n , φ

(

ă
(j)
k,n, 0

)

=

K
(j)
n−1
∑

b
(j)
m,n=0

ς
(

b(j)m,n

)

. (36)

Once these messages are available, the beliefs approximating the desired marginal posterior

pdfs are obtained. The belief for the agent state is given, up to a normalization factor, by

q(xn) ∝ α(xn)

J
∏

j=1

∏

k∈K
(j)
n−1

γ
(j)
k (xn). (37)

This belief (after normalization) provides an approximation of the marginal posterior pdf

f(xn|z1:n), and it is used instead of f(xn|z1:n) in (18). Furthermore, the beliefs q̃
(

ã
(j)
k,n, r̃

(j)
k,n

)

for the augmented states of the legacy PFs, ỹ
(j)
k,n =

[

ã
(j)T

k,n r̃
(j)
k,n

]T
, are calculated as

q̃
(

ã
(j)
k,n, 1

)

∝ αk

(

ã
(j)
k,n, 1

)

γ
(

ã
(j)
k,n, 1

)

, q̃
(j)
k,n , q̃

(

ã
(j)
k,n, 0

)

∝ α
(j)
k,nγ

(j)
k,n , (38)
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and the beliefs q̆
(

ă
(j)
m,n, r̆

(j)
m,n

)

for the augmented states of the new PFs, y̆
(j)
m,n =

[

ă
(j)T
m,n r̆

(j)
m,n

]T
, as

q̆
(

ă(j)
m,n, 1

)

∝ φ
(

ă(j)
m,n, 1

)

, q̆(j)m,n , q̆
(

ă(j)
m,n, 0

)

∝ φ(j)
m,n . (39)

In particular, q̃
(

ã
(j)
k,n, 1

)

and q̆
(

ă
(j)
m,n, 1

)

approximate the marginal posterior pdf f
(

a
(j)
k′,n, r

(j)
k′,n =

1
∣

∣z1:n

)

, where k′∈ K(j)
n−1 ∪M(j)

n (assuming an appropriate index mapping between k and m on

the one hand and k′ on the other), and they are used in (19)–(21).

A summary of the overall proposed BP-SLAM algorithm is provided in Algorithm 1, and a

flowchart is available online at https://www2.spsc.tugraz.at/people/eriklei/BP-SLAM/. A compu-

tationally feasible approximate calculation of the various messages and beliefs can be based on

the sequential Monte Carlo (particle-based) implementation approach introduced in [39], [51].

In our case, the sequential Monte Carlo implementation uses a “stacked state” [51] comprising

the agent state and the PF states. The resulting complexity scales only linearly in the num-

ber of particles. MATLAB code for this particle-based implementation is available online at

https://www2.spsc.tugraz.at/people/eriklei/BP-SLAM/.

ALGORITHM 1: BP-SLAM

Initialization:

The recursive algorithm is initialized at time n=1 by f(x1) and K
(j)
1 = ∅, j ∈ {1, . . . , J}.

Step 1—Prediction:

Calculate α(xn) from q(xn−1) according to (22), and calculate αk

(

ã
(j)
k,n , 1

)

and α
(j)
k,n from q̃

(

a
(j)
k,n−1, r

(j)
k,n−1

)

,

k ∈K
(j)
n−1 , j ∈ {1, . . . , J} according to (24), (25).

Step 2—Measurement evaluation:

For legacy PFs: Calculate β
(

c
(j)
k,n

)

, k ∈K
(j)
n−1 , j ∈ {1, . . . , J} according to (26).

For new PFs: Calculate ξ
(

b
(j)
m,n

)

, m∈M
(j)
n , j ∈ {1, . . . , J} according to (27), (28).

Step 3—Iterative data association:

Calculate η
(

c
(j)
k,n

)

, k ∈K
(j)
n−1 , j ∈ {1, . . . , J} and ς

(

b
(j)
m,n

)

, m∈M
(j)
n , j ∈ {1, . . . , J} according to (29)–(31).

Step 4—Measurement update:

For the mobile agent: Calculate γ
(j)
k (xn), k ∈K

(j)
n−1 , j ∈ {1, . . . , J} according to (32).

For legacy PFs: Calculate γ
(

ã
(j)
k,n, 1

)

and γ
(j)
k,n, k ∈K

(j)
n−1 , j ∈ {1, . . . , J} according to (33), (34).

For new PFs: Calculate φ
(

ă
(j)
m,n, 1

)

and φ
(j)
m,n, m∈M

(j)
n , j ∈ {1, . . . , J} according to (35), (36).

Step 5—Belief calculation:

For the mobile agent: Calculate q(xn) according to (37).

For legacy PFs: Calculate q̃
(

ã
(j)
k,n, 1

)

and q̃
(j)
k,n, k ∈K

(j)
n−1, j ∈ {1, . . . , J} according to (38).

For new PFs: Calculate q̆
(

ă
(j)
m,n, 1

)

and q̆
(j)
m,n, m∈M

(j)
n , j ∈ {1, . . . , J} according to (39).

Step 6—Pruning:

Determine the set K̃
(j)
n = K

(j)
n−1 ∪M

(j)
n .
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For all j ∈ {1, . . . , J}, reinterpret/reindex the beliefs q̃
(

ã
(j)
k′,n, 1

)

and q̃
(j)
k′,n, k′∈ K̃

(j)
n−1 and the beliefs q̆

(

ă
(j)
m,n, 1

)

and q̆
(j)
m,n, m∈M

(j)
n as beliefs q̃

(

ã
(j)
k,n, 1

)

and q̃
(j)
k,n of the legacy PFs k ∈ K̃

(j)
n .

For all j ∈ {1, . . . , J}, calculate estimates p̂
(

r
(j)
k,n=1

∣

∣z1:n
)

of the existence probabilities p
(

r
(j)
k,n=1

∣

∣z1:n
)

, k ∈ K̃
(j)
n

according to (19) with f
(

a
(j)
k,n , r

(j)
k,n=1

∣

∣z1:n
)

replaced by q̃
(

ã
(j)
k,n, 1

)

or q̆
(

ă
(j)
m,n, 1

)

.

For all j ∈ {1, . . . , J}, determine the set K
(j)
n of legacy PFs k for which p̂

(

r
(j)
k,n=1

∣

∣z1:n
)

>Pprun.

Step 7—Detection and estimation:

Calculate an agent state estimate x̂n according to (18) with f(xn|z1:n) replaced by the normalized q(xn).

For all j ∈ {1, . . . , J}, determine the set K̂
(j)
n of PFs k for which p̂

(

r
(j)
k,n=1

∣

∣z1:n
)

>Pdet.

For all j ∈ {1, . . . , J} and k ∈ K̂
(j)
n , calculate a PF state estimate â

(j)
k,n according to (20) and (21).

VI. EXPERIMENTAL RESULTS

To analyze the performance of the proposed BP-SLAM algorithm, we apply it to synthetic

and real measurement data within two-dimensional (2-D) scenarios. The parameters involved in

the algorithm and those used to generate the synthetic measurements are listed in Table I.

A. Analysis Setup

1) State-Evolution Model: The agent’s state-transition pdf f(xn|xn−1), with xn = [pT
n vT

n]
T,

is defined by a linear, near constant-velocity motion model [52, Sec. 6.3.2], i.e.,

xn =









1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1









xn−1 +









∆T 2/2 0

0 ∆T 2/2

∆T 0

0 ∆T









wn . (40)

Here, ∆T = 1s and the driving process wn is independent across n, zero-mean, and Gaussian

with covariance matrix Qw = σ2
wI2, where I2 denotes the 2× 2 identity matrix. The PFs are

static, i.e., the state-transition pdfs are given by f
(

ã
(j)
k,n

∣

∣a
(j)
k,n−1

)

= δ
(

ã
(j)
k,n−a

(j)
k,n−1

)

, where δ(·)

is the Dirac delta function. However, in our implementation of the BP-SLAM algorithm, we

introduced a small driving process in the PF state-evolution model for the sake of numerical

stability. Accordingly, the state evolution is modeled as ã
(j)
k,n = a

(j)
k,n−1 + ω

(j)
k,n, where ω

(j)
k,n is

independent across k, n, and j, zero-mean, and Gaussian with covariance matrix Ω
(j)
k,n = σ2

aI2.

2) Measurement Model: In contrast to usual SLAM setups [1], our measurement model is

solely based on MPC ranges, i.e., it does not exploit bearing information or information derived

from inertial measurement unit sensors. The scalar range measurements z
(j)
m,n are modeled as

z(j)m,n =
∥

∥pn−a
(j)
k,n

∥

∥+ ν(j)m,n , (41)
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TABLE I: Simulation parameters.

Parameters involved in the proposed algorithm

σw σa σa,1 σm µ
(j)
FA µb µn,1 Ps Pd Pdet Pprun #particles #simu.runs

0.01m/s2 10
−4 m or 0.5 · 10−2 m 10

−3 m 0.15 m 1 or 2 10
−4

6 0.999 0.95 or 0.5 0.5 10
−4

10
5 or 3 ·104 100 or 30

Parameters used to generate the synthetic measurements

µ
(j)
FA Pd σ

(j)
m,n

1 or 2 0.95 or 0.5 0.1m

where the measurement noise ν
(j)
m,n is independent across m, n, and j, zero-mean, and Gaussian

with variance σ
(j)2
m,n. The measurement model (41) determines the likelihood function factors

f
(

z
(j)
m,n

∣

∣xn, ã
(j)
k,n

)

and f
(

z
(j)
m,n

∣

∣xn, ă
(j)
m,n

)

in (9). However, we emphasize that the BP-SLAM

algorithm can be extended to measurement models involving bearing measurements (AoAs and/or

AoDs) or measurements from inertial measurement unit sensors. Such an extension would further

improve the robustness of our approach.

3) Common Simulation Parameters: The following implementation parameters are used for

both synthetic and real measurements, see also Table I. (The other parameters will be described

in Sections VI-B and VI-C.) We use the floor plan shown in Fig. 1, with two static PAs at

positions a
(1)
1,n and a

(2)
1,n. The false alarm pdf fFA

(

z
(j)
m,n

)

is uniform on [0m, 30m]. The conditional

pdf fn,n

(

ă
(j)
m,n

∣

∣xn

)

and the mean number µn,n of newly detected features are inferred online by

a PHD filter using the birth pdf fb,n

(

ă
(j)
m,n

∣

∣xn

)

and the mean number of newborn features µb

(see [34]). The birth pdf is uniform on the region of interest (ROI), which is a circular disk of

radius 30m around the center of the floor plan shown in Fig. 1. At time n=1, newly detected

features are initialized by µ
(j)
n,1= 6 and an initial pdf fn,1

(

ă
(j)
m,1

∣

∣x1

)

that is uniform on the ROI.

The detection probability is set to a constant value for all PFs and PAs, i.e. P
(j)
d

(

xn,a
(j)
k,n

)

= Pd.

The values of the parameters µb, µ
(j)
n,1, σw, σa, Ps, Pdet, and Pprun are given in Table I.

Our implementation of the BP-SLAM algorithm uses a particle-based representation of mes-

sages and beliefs similarly to [39], [51]. The particles for the initial PA states are drawn from

the 2-D Gaussian distributions N
(

a
(j)
1,1, σ

2
a,1I2

)

, where a
(j)
1,1 is the position of PA j∈{1, 2} and

σa,1 = 0.001m. This highly informative prior implies that the initial PA positions are effectively

known. The particles for the initial agent state are drawn from a 4-D uniform distribution with

center x1 = [pT
1 0 0]T, where p1 is the starting position of the agent trajectory, and with the

support of each component about the respective center given by [−λ, λ]. Here, λ is 0.5 for
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our simulations based on synthetic data in Section VI-B1 and for our experiments using real

measurements in Section VI-C, while it is 0.1 for our simulations based on synthetic data in

Section VI-B2; the physical dimension of λ is m (position) or m/s (velocity). We note that the

BP-SLAM algorithm performs well even without any prior information about the initial states of

the mobile agent and the PAs. However, because only relative range measurements are used, the

estimated feature map and agent trajectory would then contain an arbitrary translation and rotation

relative to the true positions. Finally, the number P of message passing iterations for DA is

limited by the termination condition
[
∑

k∈K
(j)
n−1

∑

m∈M
(j)
n

(

ν
(p)
m→k(c

(j)
k,n)−ν

(p−1)
m→k (c

(j)
k,n)
)2]1/2

< 10−7

(cf. (29)) or by the maximum number Pmax=1000.

B. Results for Synthetic Measurements

For our simulations based on synthetic measurements, we used the common simulation pa-

rameters described above. The range measurements were generated with noise standard deviation

σ
(j)
m,n= 0.1m. However, for numerical robustness, the BP-SLAM algorithm used noise standard

deviation σm=1.5 ·σ(j)
m,n. The standard deviation of the driving process in the PF state-evolution

model was σa = 10−4 m. We performed 100 simulation runs. In each run, we generated with

detection probability Pd noisy ranges z
(j)
m,n according to (41). Evaluation of (41) was based on

the fixed PA positions a
(1)
1,n, a

(2)
1,n and the fixed VA positions a

(j)
l,n∈R

2, l = 2, . . . , L
(j)
n for j=1, 2

(shown in Fig. 1), where L
(1)
n = 6 and L

(2)
n = 5 are the numbers of features (PA plus VAs). In

addition, false alarm measurements z
(j)
m,n were generated as described below.

1) Comparison of Different Parameter Settings: We considered three different parameter

settings dubbed SLAM 1, SLAM 2, and SLAM 3. In SLAM 1 and SLAM 2, we used detection

probability Pd = 0.95 and mean number of false alarms µ
(j)
FA =1. The posterior pdfs of the agent

state, of the legacy PF states, and of the new PF states were each represented by 100.000 (SLAM

1) or by 30.000 (SLAM 2) particles.1 In SLAM 3, we used Pd = 0.5 and µ
(j)
FA = 2 to analyze

the robustness of the BP-SLAM algorithm to extremely poor radio signal conditions, i.e., to

scenarios characterized by a high probability that existing MPCs are not detected or nonexisting

MPCs are detected; furthermore, the agent state and the PF states were each represented by

100.000 particles. For one exemplary simulation run, Fig. 3 illustrates the convergence of the

1The number of particles could be strongly reduced if, e.g., the MPCs’ AoAs were used in addition to the range measurements,

since this would decrease the effective support regions of the posterior pdfs. The number of particles could also be reduced by

performing an adaptive adjustment of the detection probability Pd as in [30]. However, since the complexity of the BP-SLAM

algorithm scales only linearly with the number of particles, the runtime of a MATLAB implementation on an Intel i7-6820HQ

CPU is still below 0.4s per time step n even for the high numbers of particles we are using.
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Fig. 3: Particle convergence. Particles representing the posterior pdfs of the state of the mobile agent (gray) and of

the states of the detected PFs (red for PA 1, blue for PA 2) are shown at (a) n=30, (b) n=90, (c) n=300, and

(d) n=900. The positions of PA 1 and PA 2 are indicated by a red bullet and a blue box, respectively, and the

corresponding geometrically expected VA positions by red circles and blue squares. The green line represents the

MMSE estimates of the mobile agent position, and the green cross the MMSE estimate of the currently last mobile

agent position. The black crosses indicate the MMSE estimates of the positions of the detected PFs.

posterior pdfs of the PF positions to the true feature (PA and VA) positions by displaying the

respective particles at times n=30, 90, 300, 900. These results demonstrate that the BP-SLAM

algorithm is able to cope with highly multimodal distributions and with measurements conveying

only very limited information at each time step (since only range measurements are used).

Fig. 4 shows the root mean square error (RMSE) of the estimated time-varying agent position,

the average numbers of detected PFs for the two PAs, and the mean optimal subpattern assignment

(MOSPA)2 errors [53] for the two PAs and the associated VAs, all versus time n. These results

were obtained by averaging over the 100 simulation runs. The MOSPA errors are based on the

Euclidean metric and use cutoff parameter 5m and order 1 [53]. It can be seen in Fig. 4(a) that

the average agent position RMSE is mostly below 0.12m for all parameter settings and below

0.073m for SLAM 1 and SLAM 2. The average numbers of detected PFs in Figs. 4(b), (c) are

effectively equal to the respective true numbers of features L
(1)
n = 6 and L

(2)
n = 5 for SLAM 1

and SLAM 2. For SLAM 3, the average numbers are slightly below the true numbers, which

can be explained by the low detection probability Pd = 0.5 and the high mean number of false

alarms µ
(j)
FA = 2 relative to the true numbers of features. However, the performance of the BP-

SLAM algorithm is still good, which suggests that the algorithm has a high level of robustness.

The MOSPA errors for SLAM 1 are seen in Figs. 4(d), (e) to decrease with time until they are

2We remark that an alternative to the “classical” OSPA metric [53] is provided by the generalized OSPA metric proposed in

[54], which does not normalize the OSPA error by the cardinality of the larger set and penalizes the cardinality error differently.
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Fig. 4: Results for synthetic measurements: (a) Average agent position RMSE, (b) and (c) average number of

detected PFs associated with PA 1 and 2, respectively, (d) and (e) MOSPA error for, respectively, PA 1 and 2 and

the associated VAs. The curves labeled “known agent position” show the performance for the case where the agent

position is known. Note that in (b) and (c) the curves labeled “known agent position,” “SLAM 1,” and “SLAM 2”

coincide. The vertical dash-dotted lines indicate the times around which the mobile agent performs turns.

ultimately below 0.11m for both PAs. The position RMSEs of the individual PFs are at most

0.25m and in many cases around 0.05m. In general, the RMSE and MOSPA errors for SLAM

2 and SLAM 3 are slightly larger (ultimately 0.15m for SLAM 2 and 0.20m for SLAM 3).

As a performance benchmark for the accuracy of agent localization, we compare in Fig. 4(a)

the average agent position RMSE of the BP-SLAM algorithm to that of the algorithm in [9],

which also uses BP-based probabilistic DA but assumes knowledge of the feature map, i.e., of

the PA/VA positions. In addition, as a performance benchmark for the accuracy of feature map

estimation, we compare in Figs. 4(b)–(e) the average number of detected PFs and the MOSPA

errors to those that would be obtained for the SLAM 1 parameter setting if the agent position

was known at all times. These benchmarks provide bounds on the two main performance aspects

of SLAM, i.e., accuracy in localization and mapping.

Finally, we considered the use of measurement gating, which is commonly employed in

practical implementations to reduce computational complexity [31, Sec. 2.3.2]. With measure-

ment gating, DA is performed only on those measurements that fall into given “gates” around

predicted measurement values. We chose the gating threshold as γ=6.635, which implies that

the probability that feature-originated measurements are outside their corresponding gate is 10−2
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Fig. 5: Results for synthetic measurements; comparison between BP-SLAM and RB-SLAM [13]: (a) Average agent

position RMSE, (b) and (c) MOSPA error for, respectively, PA 1 and 2 and the associated VAs. The vertical

dash-dotted lines indicate the times around which the mobile agent performs turns.

[31, Table 2.3.2-1]. For SLAM 2, we measured the average runtime per time step n, averaged

over the 900 time steps and 100 simulation runs, as 0.0929s without measurement gating and

0.0735s with measurement gating. Thus, measurement gating yielded a reduction of the average

runtime by 20.1%, and this did not come at the cost of a noticeable performance loss in terms

of agent position RMSE or MOSPA error. These results were obtained by using a MATLAB

implementation on an Intel i5-4690 CPU. We note that besides measurement gating, another

potential means of reducing complexity is the use of geometric data structures such as kd-trees

[55]. For example, kd-trees were used in the RB-SLAM (FastSLAM) algorithm reported in [18].

However, in the particle-based implementation of the proposed BP-SLAM algorithm, due to the

necessity of performing probabilistic DA, the weights representing the agent state and the feature

states are updated by a weighted sum of measurements instead of a single measurement (as is

done in established particle-based RB-SLAM algorithms, even when Monte Carlo-based DA is

used [1], [18]). Due to this difference, to the best of our knowledge, geometric data structures

such as kd-trees [55] cannot be directly applied to SLAM with probabilistic DA.

2) Comparison with Rao-Blackwellized SLAM: Next, we compare the accuracy and com-

plexity (runtime) of our BP-SLAM algorithm with those of RB-SLAM [2], [18], which is an

important state-of-the-art method. This comparison is interesting also because it analyzes the

impact of neglecting the dependencies between the feature states and the dependencies between

the feature states and the agent state, which is done in BP-SLAM but not in RB-SLAM. We

note that RB-SLAM can be motivated by the idea of stacking the agent state and all the feature

states into one high-dimensional joint state and using a particle filter to track the joint state. A

direct implementation of this idea is typically infeasible due to the curse of dimensionality [1],

which is further exacerbated by our range-only measurement model. Indeed, even the 100.000
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particles used in simulation setup SLAM 1 would be totally insufficient to represent the joint

state vector. The RB-SLAM algorithm avoids the curse of dimensionality by exploiting the

conditional independencies between the agent state and the feature states and applying a Rao-

Blackwellization to the joint state [18].

Because our measurement model is highly nonlinear, we adopt the RB-SLAM implementation

proposed in [13], which employs particle filters instead of EKFs to estimate the feature states. As

is commonly done in classical RB-SLAM, we perform Monte Carlo-based DA for each particle

separately [2], [18]. The cassical RB-SLAM algorithm is very sensitive to missed detections

and clutter measurements, especially for our range-only measurement model, which implies a

strong DA uncertainty. Therefore, to avoid the risk of divergence in RB-SLAM, we assumed

in our simulation that there are no missed detections or false alarms, i.e., we chose Pd =1 and

µ
(j)
FA =0. In BP-SLAM, each posterior state pdf (for the agent state, each legacy PF state, and

each new PF state) was represented by 50.000, 10.000, or 5.000 particles. In RB-SLAM, the

posterior pdfs of the agent state and of each feature state were represented by 50 and 10.000

particles, respectively.3

Fig. 5 shows the RMSE of the estimated agent position and the MOSPA errors for the two PAs

and the associated VAs. It can be seen that the agent position RMSEs obtained with BP-SLAM

and with RB-SLAM are generally quite similar. Also, the number of particles used in BP-SLAM

(50.000, 10.000, or 5.000) does not influence the RMSE significantly. On the other hand, as may

be expected, the MOSPA error of BP-SLAM is smaller for a larger number of particles. The

MOSPA error of RB-SLAM is seen to be only slightly smaller than that of BP-SLAM using

10.000 particles (which is a good basis for a comparison, because also RB-SLAM uses 10.000

particles for each feature state). This is remarkable, in view of the fact that BP-SLAM assumes

a priori conditional independence of the agent state and all the feature states. BP-SLAM using

50.000 particles even has a significantly smaller MOSPA error than RB-SLAM.

Table II shows the average runtimes per time step n (averaged over 900 time steps and 100

simulation runs) of MATLAB implementations of the various algorithms on an Intel i7-6820HQ

CPU. It is seen that BP-SLAM is significantly less complex than RB-SLAM; in particular, the

3This choice of the number of particles differs significantly from that in [13]. Indeed, we used 10.000 particles—more than

in [13]—for each feature state because of the challenging range-only measurement model. On the other hand, we used only 50

particles for the agent state to avoid an excessive complexity. (We note that the complexity of particle-based RB-SLAM scales

linearly in the product of the number of agent particles and the total number of feature particles.) Our experimental results for

the agent position RMSE shown in Fig. 5(a) demonstrate that 50 particles for the agent state are sufficient for good results.
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TABLE II: Average runtimes of BP-SLAM and RB-SLAM per time step.

RB-SLAM BP-SLAM (50.000) BP-SLAM (10.000) BP-SLAM (5.000)

0.49s 0.146s 0.037s 0.028s

runtime of BP-SLAM using 10.000 particles—i.e., the same number of particles as in RB-SLAM,

leading to only slightly poorer performance as observed above—is smaller by a factor of more

than 10. The significantly higher complexity of RB-SLAM is due to the fact that RB-SLAM

calculates the distances of each agent state particle to each feature state particle. Consequently,

the complexity of RB-SLAM scales linearly in the product of the number of agent particles and

the total number of feature particles; by contrast, the complexity of BP-SLAM scales linearly

in the number of all particles. We can thus conclude that the slightly improved accuracy of RB-

SLAM relative to BP-SLAM (using 10.000 particles) comes at the expense of a significantly

increased computational complexity.

C. Results for Real Measurements

For an evaluation of the performance of the proposed BP-SLAM algorithm using real measure-

ments, we chose P
(j)
d

(

xn,a
(j)
k,n

)

= Pd = 0.6 and µ
(j)
FA = 2. This accounts for the lower detection

probability and higher false alarm probability exhibited by the preliminary signal analysis stage

due to the diffuse multipath existing in indoor environments. We no longer consider RB-SLAM

because, as noted above, it would perform poorly for such challenging values of Pd and µ
(j)
FA .

The measurements were taken from the seminar room scenario previously used in [30], [56].

They correspond to five closely spaced parallel trajectories each consisting of 900 agent positions

with a spacing of 0.01m, resulting in a total number of 4500 agent positions. The magenta line

in Fig. 1 represents one of the five trajectories. Note that in our simulations, each individual

trajectory is processed independently, i.e., the estimated PF positions of a trajectory are not used

as prior knowledge for another trajectory. More details about the measurements can be found in

[56]. At each agent position, the agent transmitted an ultra-wideband signal, which was received

by the two static PAs. This signal was measured using an M-sequence correlative channel sounder

with frequency range 3–10 GHz and antennas with an approximately uniform radiation pattern

in the azimuth plane and zeros in the floor and ceiling directions. Within the measured band,

the actual signal band was selected by a filter with raised-cosine impulse response s(t) with a

roll-off factor of 0.5, a two-sided 3-dB bandwidth of 2 GHz, and a center frequency of 7 GHz.
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Fig. 6: Results for real measurements: (a) Agent position RMSEs for the five individual trajectories and average

RMSE (averaged over the five trajectories), (b) empirical CDFs of the RMSEs for the five individual trajectories

and empirical CDF of the five RMSEs taken together.

From the measured signals, the range measurements z
(j)
m,n = cτ̂

(j)
m,n constituting the input to the

proposed algorithm were derived by means of a snapshot-based SISO SAGE algorithm [25] for

estimating the delays τ̂
(j)
m,n and complex amplitudes α̂

(j)
m,n of the MPCs (cf. (1)). In this method,

the maximum number of estimated MPCs for each PA j was defined as M
(j)
n,max = 20. Estimates

of the range variances σ̂
(j)2
m,n (cf. (41)) were determined from the estimated complex amplitudes as

described in [30], [56]. The standard deviation of the driving process in the PF state-evolution

model was σa = 0.5 · 10−2 m. We performed 30 simulation runs. The pdfs of the states were

represented by 30.000 particles each.

Fig. 6(a) shows the agent position RMSEs of BP-SLAM obtained individually for the five

trajectories versus time n, along with the overall RMSE averaged over the five trajectories.

Fig. 6(b) shows the empirical cumulative distribution function (CDF) of the individual RMSEs

and the empirical CDF of the five RMSEs taken together. It can be seen that the individual

CDFs are very close to 1 already at RMSE equal to 0.12m or even less. The maximum of all

the individual RMSEs is below 0.2m in all cases and below 0.083m in 90% of all cases.4

For an exemplary simulation run, Fig. 7 depicts the particles representing the posterior pdfs

of the mobile agent and detected PF states as well as the MMSE position estimates of the

detected PFs for the five trajectories. Almost all estimated PF positions can be associated with

geometrically expected VA positions. This shows that the BP-SLAM algorithm is able to leverage

position-related information contained in the radio signals for accurate and robust localization.

4The lower values of RMSE (below 0.072m in all cases and below 0.035m in 90% of all cases) obtained by the SLAM

algorithm in [30] is due to an adaptive adjustment of the detection probability Pd.
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Fig. 7: Results for real measurements: Particles representing the posterior pdfs of the states of the detected PFs

(red for PA 1, blue for PA 2). The positions of PA 1 and PA 2 are indicated by a red bullet and a blue box,

respectively, and the corresponding geometrically expected VA positions by red circles and blue squares. The green

line represents the MMSE estimates of the mobile agent position, and the green cross the MMSE estimate of the

currently last mobile agent position. The black crosses indicate the MMSE estimates of the positions of the detected

PFs. The dashed ellipses indicate PF positions that cannot be associated with geometrically expected VA positions.

VII. CONCLUSIONS AND FUTURE PERSPECTIVES

We proposed a radio signal based SLAM algorithm with probabilistic DA. The underlying

system model describes specular MPCs in terms of VAs with unknown and possibly time-

varying positions. To tackle the DA problem, i.e., the unknown association of MPCs with VAs,

we modeled the entire SLAM problem including probabilistic DA in a Bayesian framework. We

then represented the factorization of the joint posterior distribution by a factor graph and applied

BP for approximate marginalization of the joint posterior distribution. This approach allowed

the incorporation of an efficient BP algorithm for probabilistic DA that was originally proposed

for MTT [37], [39]. Our factor graph extends that of [30] by the states of new potential features.

Simulation results using synthetic data showed that the proposed BP-SLAM algorithm esti-

mates the time-varying agent position and the feature map with high accuracy and robustness,

even in conditions of strong clutter and low probability of detection. Moreover, an extensive
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experimental analysis using real ultra-wideband radio signals in an indoor environment showed

that the BP-SLAM algorithm performs similarly well in real-world scenarios; the agent position

error was observed to be below 0.2m for 100% and below 0.083m for 90% of all measurements.

A promising direction for future research is an extension of our BP-SLAM algorithm that

exploits further MPC parameters, such as AoAs and AoDs. Other possible extensions are to track

additional types of features, such as scatter points, and to redefine the features to be extended

objects. In the latter case, the BP-based DA needs to be adapted accordingly. Finally, operation

in an unsynchronized sensor network and a distributed (decentralized) mode of operation would

be theoretically and practically interesting.
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[54] A. S. Rahmathullah, Á. F. Garcı́a-Fernández, and L. Svensson, “Generalized optimal sub-pattern assignment metric,” in

Proc. FUSION-17, Xi’an, China, Jul. 2017, pp. 1–8.

[55] A. W. Moore, “Very fast EM-based mixture model clustering using multiresolution kd-trees,” in Proc. NIPS-98, Denver,

CO, USA, Dec. 1998, pp. 543–549.

[56] P. Meissner, E. Leitinger, and K. Witrisal, “UWB for robust indoor tracking: Weighting of multipath components for

efficient estimation,” IEEE Wireless Comm. Lett., vol. 3, no. 5, pp. 501–504, Oct. 2014.


