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Time-series forecasting is like
driving a car blindfolded by
following the instructions from
someone looking back through the
rear window



iv



v

Abstract

In this work we develop and study a framework for tracking and prediction of
multipath components for wireless MIMO channels. The proposed methodology is
a multi-stage procedure that relies on the concept of hypermodels, which capture
the dynamics for each multipath.

First the individual multipaths are resolved and extracted. In this work we also
develop a new estimation algorithm based on the Evidence Procedure and the SAGE
algorithm that allows to determine the number of multipath components. The
extracted components are then tracked and predicted over time using hypermodels,
which are build iteratively, as the tracking proceeds. For prediction we use linear as
well as nonlinear hypermodels.

We find that linear predictors are more efficient since they are adapted faster.
With only 3 coefficients we achieve prediction horizons up to 3 times the wavelength
λ for real-world measured data, as compared to 1.5λ reported so far in the literature.
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Zusammenfassung

In dieser Arbeit untersuchen und entwickeln wir ein System für das Verfolgen und
die Vorhersage von Komponenten der Mehrwegeausbreitung auf MIMO Funkkanälen.
Das vorgeschlagene System ist ein Mehrstufenverfahren, das sich auf das Hypermo-
dellkonzept stützt, um die Dynamik für jede Komponente zu repräsentieren.

Zuerst werden die individuellen Ausbreitungspfade geschätzt und extrahiert. Wir
entwickeln auch einen neuen Schätzalgorithmus, der auf dem Evidenzverfahren und
dem SAGE Algorithmus basiert, was auch erlaubt die Anzahl von Ausbreitungsp-
faden zu bestimmen. Die extrahierten Komponenten werden dann mittels Hyper-
modellen, die iterativ gelernt werden, verfolgt und vorhergesagt. Für die Vorhersage
verwenden wir lineare sowie nichtlineare Hypermodelle.

Es wurde festgestellt, dass die linearen Hypermodelle effizienter sind, weil sie
schneller angepaßt werden können. Mit nur 3 Modellkoeffizienten erreichen wir einen
Vorhersagehorizont von bis zum Dreichfachen der Wellenlänge λ für real gemessene
Daten im Vergleich zu 1.5λ, was bisher in der Literatur berichtet wurde.
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Chapter 1

Introduction

Today it is difficult to overestimate the importance of telecommunications in our
everyday life. The recent advances in many areas of computer science and electronics
technology, coupled with the current economic globalization trends, have stimulated
the booming increase of the global information production. It has been said that
information is the new “gold” of the XXI century. Thus, it is extremely important
to be able to access information at any given time, at any given place.

In comparison with other communication systems, mobile wireless communication
systems seem to outpace other means of information exchange mainly due to the
ubiquity of the electromagnetic waves and necessity to access information “anytime
and anywhere”. The new generations of wireless systems bring new requirements
[ZAB99, Oli99] to satisfy ever increasing consumer demands for high speed data
transfers (up to tens of Mbits/s), video, multimedia, as well as voice traffic to
mobile users. This all creates a need for more powerful and efficient algorithms for
modulation schemes, coding, power control, and detection techniques.

In the heart of any wireless communication systems lies the mobile channel – a
system that ultimately characterizes the properties of the transmission media, and
thus the achievable communication performance. The channel is both “a curse”
and “a blessing” of wireless communication. The “blessing” comes simply from
the ubiquitous nature of the transmission medium, that, in principle, allows the
reception in almost any place where the electromagnetic field can be detected. This
gives the user freedom of movement, and thus mobility. However the dear price paid
for that freedom is channel variability. Channel properties vary depending on where
the user is, putting more requirements on the design of the actual device. Mitigating
the effects of channel variability, also known as fading, is the major concern in the
present work.

1.1 Fading phenomena in wireless channels

The mobile channel places some fundamental limitations on the performance of the
wireless communication systems. In a modern urban environment, a transmission
path between the transmitter and the receiver may vary from a simple line-of-sight
scenario, to a path completely obstructed by buildings, natural objects, or foliage.
To put it shortly, the channel is constituted of all the objects that directly or in-
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2 1. Introduction

directly interact with the electromagnetic field created by the transmitter (see Fig.
1.1). The mechanisms behind electromagnetic wave propagation are diverse, but
can generally be attributed to reflection, diffraction, and scattering [Rap02].

mobile
receiver

Reflector

Reflector

TX

RX

base station

Scatterer

Diffraction

Line−of−Sight

Figure 1.1: Multipath propagation of electromagnetic waves.

Due to the motion of either the transmitter/receiver or the objects that interact
with the emitted signal, the electromagnetic waves travel along different paths of
varying length. Interaction between all these waves causes the received power at a
certain location to vary. These variations are called fading. Depending on the phases
and amplitudes of the interacting waves, their total effect could be constructive
(i.e., they sum up so that the total power increases), or destructive, when their
interaction results in the drop of power. The difficulty in dealing with fading is
its nonstationary behavior that strongly depends on the actual environment, i.e.,
the geometrical distribution of the interacting objects. The latter is itself subject
to time variation, especially in mobile communications. This in turns means very
complex and nonstationary behavior of the corresponding channel.

It is convenient to distinguish fading caused by slowly changing factors, such as
moving away from the transmitter, causes slow power drop, and those that vary
fast on top of them, mostly caused by the phase variations of multipath components
arriving via different paths. These two types of fading are known as large-scale
fading and small-scale fading, respectively.

1.1.1 Large-scale fading

The name of this type of fading speaks for itself. It describes the variations of
the received power over relatively large distances, usually from tens to thousands
of meters. Large-scale fading effects are mainly caused by the particularities of
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the terrain profiles, e.g., suburban areas, mountain areas, cities, etc. A significant
amount of efforts has been invested in the development of propagation models that
accurately reflect the variation of the received power over large distances, which
is an important factor in the design of the cellular networks [Rap02]. Large-scale
propagation models are constructed to predict the mean power for an arbitrary
transmitter-receiver separation and to estimate the coverage area of a transmitter
in a certain environment. However, a particular model might include some additional
constraints regulating the RX-TX separations over which it can be used. In Figure
1.2 one can see the variation of the instantaneous power of a measured wireless
mobile channel over a distance of several tens of meters. The dashed line on the
plot shows a more gradual power variation corresponding to the large-scale fading.
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Figure 1.2: Large-scale fading in an outdoor environment.

It can be seen that as the instantaneous received power varies fast, the large-scale
fading evolves at much lower rate.

1.1.2 Small-scale fading

Small-scale fading, on the other hand, stems from the rapid fluctuations of the phases
of a radio signal over very short distances (on the order of several wavelengths, i.e.,
centimeter scale for a typical wireless communication system operating in the GHz
frequency range). The cause of such rapid fluctuations is the interference between
the multipath waves that arrive at the receiver at slightly different times. As the
result, depending on the phases of the incoming wavefronts, the resulting power is
either increased (maxima of the resulting interference pattern), or reduced (minima
of the interference pattern). It is the movement through this pattern that creates
the small-scale fading (see Fig. 1.3).

There are several physical factors in the radio propagation channel that influence
small-scale fading. Some of the most dominant factors are:
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Figure 1.3: Small-scale fading of the received power as the mobile moves a distance
of several wavelengths in an outdoor environment. In this example, the
wavelength λ ≈ 0.15m.

• Multipath propagation – The presence of reflecting and scattering objects
that spread the signal energy in the amplitude, phase and time. These effects
produce multiple copies of the transmitted signal that arrive at the receiving
antenna causing interference (see, for example, Fig. 1.1, where 3 paths of
different length are superimposed at the receiving antenna). Multipath prop-
agation causes delay spread – the time duration needed for all of the replicas
of the emitted signal, or in other words echoes, to die out. If we are talking
about multiple antennas, then in addition to the latter, the multipath propa-
gation also induces angular spread – the spread of the angles of the waves that
impinge on the antenna array at a certain instant of time t.

• Speed of the mobile – The motion of the transceiver through the interference
field pattern results is time-dependent phase variations. These variations cause
a specific modulation of the transmitted signal, also known as the Doppler
shift.

The large-scale effects are the key factors that govern the design and planning
of the cellular network. The small-scale fading, on the other hand, directly im-
pacts the design of the actual transceiver, since this is where the knowledge of the
instantaneous power is mostly needed.

1.2 Mitigating fading effects

Fading effects are among the most critical factors affecting the quality of the commu-
nication link. To ensure reliable communication the transceiver should take actions
to mitigate fading effects, and different strategies exist that try to accomplish this
task. In general, two main approaches can be taken – either try to come up with a
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clever coding scheme that allows a distribution of data bits that turns out to be very
robust against fading (typical examples include space-time codes [TSA98, PNG03]),
or try to construct a more intelligent transmitter that knows how to “invert” the
distortions introduced by the channel. The first approach is based mainly on infor-
mation theory and code design. The latter approach, on the other hand, relies on
the results of system theory and signal processing.

In the present work, we are mainly investigating the second approach, i.e., we
are trying to a find a system that, by exploiting knowledge about the state of the
propagation environment, tries to counteract fading.

The small-scale variations of a mobile radio channel can be directly observed
as the temporal variations of the impulse response of the channel. The channel
impulse response (IR) is the key characteristics of the wireless transmission medium,
and it contains all information about the local propagation environment necessary
to simulate or analyze any type of transmission through the channel. Thus, in
order to find methods counteracting fading, it is imperative to somehow observe
and represent the actual channel dynamics.

Here, again two concurrent approaches exist – one can endeavor a statistical ap-
proach that lies in finding statistical models that approximate channel behavior. For
instance, the channel parameters are treated as random variables described with the
appropriate density functions. This allows to describe the channel behavior in terms
of the statistical moments, which are further used to optimally design the commu-
nication system [KA00].

Alternatively, one can think of a deterministic approach, treating channel obser-
vations as samples from a certain multidimensional complex dynamical process that
can be learned and represented accurately with some deterministic models. Channel
prediction is a method that falls under this category and the one that we present in
this work. Below we discuss the specifics of this approach in more details.

1.2.1 Channel prediction and hypermodel idea

The study presented here relies on a deterministic approach to fading compensation.
In other words, we are looking for a model that deterministically represents the local
(i.e., over a certain time frame) dynamics of the mobile channel. The required model
should capture the evolution of the propagation environment during this frame as
closely as possible. We will call this model a hypermodel.

Let us consider the following example:

Example

The mobile transmitter, moving with a velocity of v = 30m/s emits a narrowband
signal with the center frequency fc = 2GHz. The corresponding wavelength is
λ ≈ 0.15m. The receiver is a fixed linear antenna array with sensors spaced at a
distance d = λ/2.

At the receiver, each sensor in the antenna array will receive an incident plane
wave with a delay ∆ = d/c = (λ/2)/3 · 108 = 0.5ns, which is equal to the time it
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takes for an electromagnetic wave to travel from one sensor to the neighboring one.
Here, c = 3 · 108m/s is the velocity of light.

Lets us further assume that multipath propagation occurs with the length of the
shortest (line of sight) and the longest propagation path being r1 = 1000m and
r2 = 10000m, respectively. Thus, we are expecting multipath components arriving
with delays varying from r1/c = 3.3 · 10−6 = 3.3µsec to r2/c = 33µsec.

Due to the motion, the incident waves will experience a Doppler shift. The
maximum Doppler shift induced by the moving transmitter in this case is
fc
v
c = 200Hz. We can further conclude that in this case the time interval over

which this channel might be considered time-invariant is upper bounded by
1/(2 · 200)Hz= 2.5msec.

From this example, we readily see that several different time scales are involved in
the channel dynamics. It is reasonable to assume that the propagation delay between
the sensors ∆ is much smaller than the arrival time differences between different
multipath components. Likewise, the time of multipath component arrivals are
much smaller than the variation time constraints induced by Doppler effects. This
temporal layering of the physics behind multipath propagation can be exploited in
modeling the dynamics of the channel.

Let us consider the diagram shown in Fig. 1.4. The lower level in Fig. 1.4 represents

Channel model

Transmitted
signal

Received
signal

Hypermodel
Channel
parameter

Forecasts

~ 1e-09..1e-06 sec

~ 1e-03 sec

Higher levels (hyper-hypermodels) 

~ 1 sec

Figure 1.4: Hypermodel approach to modeling the channel dynamics.

the transmission over the wireless channel. As we see from the example, this layer
finds itself in the nano and microsecond range. The variation of the channel due to
the motion (the source of the Doppler effects) happens on the millisecond time-scale.
Thus, there exists a factor of 103 more time to learn the dynamics of the arriving
reflections in order to use it for mitigating fading. This model that captures this
dynamics we call a hypermodel.

Clearly, the hypermodel itself is time-varying, since we aim at capturing the local
dynamics. The parameters of the hypermodel will also evolve with time. However,
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these variations will occur with an even lower rate. In theory, we could have sim-
ilarly introduced the “hyper-hypermodel”, that would govern the variations of the
hypermodel. This “hyper-hypermodel” would then reflect changes that happen on
the scale of seconds, e.g., when a car drives around a corner of a city block.

The hypermodel can be used to determine the channel state information (CSI)
– a set of parameters that characterize (up to an application-dependent accuracy)
an instantaneous wireless propagation environment. But how do we mitigate the
fading assuming we do have the hypermodel? Should the current CSI be known
in advance, the transceiver could re-allocate internal resources in a better way or
alter the transmission scheme in anticipation of the future conditions. This can be
accomplished by forecasting the mobile channel into the future.

Fading mitigation by means of channel prediction has been studied and proved vi-
able in a number of works [Sem03, DH00, HW98, EK99, Ekm02, EDHH98, AJJF99,
ADX02, VTR00]. These techniques are used to aid power control and resource
allocation [Ekm02, ADX02], downlink diversity and adaptive modulation [DH00,
HHDH99].

It is often assumed that fading can be modeled as a deterministic sum of sinusoidal
processes. The time variations of the process parameters can be captured with either
linear hypermodels (based on autoregressive models) [HW98, VTR00], or nonlinear
ones [EK99, Ekm02]. In the latter, the authors treat temporal variations of the CSI
as a nonlinear dynamical process.

Once the hypermodel is learned, the predictions are then made by propagating the
learned models into the future. These methods are studied for Single-Input-Single-
Output (SISO) narrow-band[EDHH98, HW98, HHDH99] as well as for wide-band
channels [DXL01, Sem03]. In [ADX02] it has recently been proposed to combine
different channels in a smart-antenna system for prediction of the downlink received
power. However, the authors only consider the narrowband case.

In general, the proposed strategies differ in the way the hypermodel is built, but
they all are very similar in the approach taken to channel prediction (Fig. 1.5).

The channel dynamics is learned from the successive channel observations. Usu-
ally, a sampled channel IR is observed for some period. The measured channel
IR coefficient sequence is then used to estimate the hypermodel parameters. The
diversity of the approaches varies with the structure of the models fitted to the ob-
servations of the channel. Once the hypermodel is found, it can be used to forecast
the channel taps into the future by simply extrapolating the captured dynamics
beyond the observation window. Note that, in mobile environments, the learned
hypermodel must be continuously updated.

1.2.2 What can MIMO channels offer?

The approaches considered in the literature so far mostly focus on the analysis of
the Single-Input-Single-Output (SISO) channels, thus omitting aspects arising when
multiple-sensor antennas are employed. SISO channels are “blind” to directional
information. In case of Multiple-Input-Multiple-Output (MIMO) mobile channels,
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Figure 1.5: Predicting the impulse responses of the wireless channel.

the impulse response contains information about the angular distribution of the
incoming and emitted wavefronts. This gives additional degrees of freedom in dealing
with channel prediction.

In principle, the MIMO system with F transmitting and P receiving antennas,
consists of F × P SISO channels1. Thus, the additional degrees of freedom come at
the price of higher dimensional data.

Of course, we can exploit the extra data we gain due to the increased dimensional-
ity of the problem to better estimate the hypermodel parameters. But such approach
would completely ignore the rich internal structure offered by MIMO channels. Con-
sider this: in case of a SISO channel, two multipath components can be separated
by either their delays or their Doppler frequencies. In the case of a MIMO channel,
we can separate the components not only by their delays and Doppler shifts, but
also by their Direction-of-Arrival (DoA) and Direction-of-Departure (DoD). Why
would we want to do that?

It is known that time-, frequency- and space-selective fading results from in-
terference and temporal variations of multipath components in the corresponding
domains. The statistical measures that assess the immunity to fading are known as
coherence parameters: coherence time Tcoh, coherence bandwidth Bcoh, and space
coherence Scoh [PNG03] and they tell us how long fading will not affect our system.
Increasing coherence parameters means decreasing the effect of fading. The question
is how this can be achieved?

1As a matter of fact, an F × P MIMO system is more than simply a collection of F × P SISO
channels, since these individual subchannels are usually dependent
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1.2.3 Multipath-based channel prediction

To find an answer to this question, we appeal to the well-known divide et impera
principle, which translates from Latin to “divide and conquer”. The multipath
channel contains information that describes how the waves are interfering with each
other. It then makes sense to extract the multipath components from the channel
and treat each individual multipath component as a separate transmission line.
What could that bring us in theory?

First of all, by separating the multipath components arriving at different time
instances (i.e., having different delays) we increase the coherence bandwidth Bcoh of
the resulting individual channels. Similarly, by separating the waves arriving from
different directions we decrease the angular spread of the resulting subchannels,
thus increasing the space coherence Scoh. The Doppler bandwidth for individual
channels is also decreased, since fewer waves are overlapping, meaning an increased
coherence time Tcoh. All in one, this approach creates parallel “multipath channels”,
each having better coherence characteristics than their mixture in the channel .

The description of the multipath channel in terms of the multipath components
has also one very important consequence. Since each multipath component can
be described by a relatively small set of parameters, such decomposition allows to
represent the channel very compactly.

In the light of what we propose, the paradigm of channel forecasting is reformu-
lated as follows:

Decompose the wireless channel in the contributing multipath components
and learn the dynamics of these components. Make prediction of the
channel evolution by extrapolating the dynamics of individual components
into the future.

This new paradigm fundamentally differs from the previous approaches. Instead
of modelling the dynamics of the measured channel coefficients, the hypermodel is
used to model the dynamics of the individual multipath components (Fig. 1.6).

The multipath parameter estimation block in Figure 1.6 plays the role of data
compression: the channels representation is reduced to the set of several contributing
multipath components, each determined by an N-tuple vector. Note also that this
approach can equally be applied to SISO channels as well.

Now, let us outline the channel prediction approach discussed in this thesis.

1.3 Outline of the thesis

The proposed multipath-based channel prediction requires several crucial steps that
we discuss in detail in the following chapters.
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Figure 1.6: Predicting multipath components in the impulse responses of the wireless
channel.

Understanding MIMO channels

In Chapter 2 we review some common models of the wireless MIMO channel im-
pulse response. These models will allow us to understand what physical parameters
are involved in shaping the dynamics of the multipath components. In order to do
so we study simplified scenarios in which the dynamics of the multipath compo-
nents can be easily analyzed as a function of the number of elements in the antenna
array, the velocity of the objects along the propagation path, their geometrical dis-
tribution, etc. This study allows to select the proper parametrization for multipath
components.

Multipath extraction

In a practical case, however, decomposition of a channel into its contributing wave-
fronts is not so straightforward. In this work we assume that channel information
is obtained using special measurement equipment, also known as channel sounding
equipment. The sounding equipment does not deliver any information on how many
components are present in the measured channel characteristic, nor does it estimate
the multipath components and their parameters. Thus, multipath components must
be estimated from the measured data using channel estimation algorithms.

The goal of channel estimation is to extract the multipath components (by es-
timating the corresponding parameters) from the measured data. In general, esti-
mation of multipath components requires multidimensional optimization, since each
component is described by a vector of parameters. In Chapter 3 and Chapter 4 we
consider two methods that solve this estimation task. Both methods are somewhat
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similar in spirit: they both exploit channel model to find multipath parameters.
The first method is known as the SAGE algorithm. The SAGE algorithm is an
approximation to the Maximum Likelihood method that allows to replace a mul-
tidimensional optimization procedure by a series of one-dimensional optimizations.
The SAGE algorithm, however, lacks the ability to find the number of components
present in the measurement data, and as a result might estimate wrong components.

The second algorithm considered here is known as the Evidence Procedure. The
Evidence Procedure was originally developed in Learning Theory for solving regres-
sion problems. We have extended it further to apply it to our problem. Similarly
to SAGE it relies on the channel model to solve the estimation problem, however,
unlike SAGE, it is developed within the Bayesian framework. The major advantage
of the Evidence Procedure is its ability to estimate the model order, i.e., the number
of present multipath components, along with the other multipath parameters.

Tracking multipath components

Once the parameters have been estimated, the next step is to reconstruct their
dynamical behavior. The used estimation algorithm outputs a set of parameter esti-
mates for each multipath component. Clearly, once we consider channels measured
at successive time intervals we obtain such estimates for each interval. However,
the estimation algorithm does not tell us how these successive estimates are to be
associated over time. In other words, which of the obtained successive estimates
correspond to the same physical multipath component. Thus, the estimates must
be ordered in time so as to correspond to their respective multipath components.

In Chapter 5 we propose a tracking algorithm that solves this association problem.
The algorithm exploits predictive properties of the hypermodel to anticipate the
possible track evolution. Dynamic Programming is used to assign the estimates to
the physical components to be tracked.

Hypermodel Learning

In Chapter 5 we also propose to associate two sub-hypermodels with each multi-
path: a structure hypermodel that is used for modeling the changes in the track
structure and assists tracking, and a gain hypermodel that reflect the variations of
the multipath gain. This is a simple split of one hypermodel into two sub-structures.
For structure hypermodels, which are simpler, we use linear models. To accurately
represent the gain hypermodels, we use linear as well as nonlinear structures.

The tracking algorithm we use relies on the existence of the learned hypermod-
els for individual multipath components. Since initially the hypermodels are not
available, we propose to estimate them recursively. In Chapter 5 we propose four
recursive algorithms that perform on-line estimation of the hypermodel parameters,
for both structure and gain hypermodels.
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Predicting multipath components

In Chapter 6 we consider an application of the described methodology to measured
wireless MIMO channels, as well as the results of using the learned hypermodels for
prediction. We discuss how to select some of the simulation parameters and what
effect they have on the resulting prediction performance.

We also discuss how to assess the prediction performance. The major challenge
here is the nonstationarity of the prediction error. As we will show, since the hy-
permodels are constructed on-line, we might expect some transient behavior. Also,
in realistic scenarios, multipath components have a finite life time, which means
they are constantly appearing and disappearing. This again constitutes a source of
nonstationarities in the prediction.

Discussion of the results and conclusions

Finally, in Chapter 7 we will discuss the presented approaches to the channel pre-
diction based on the multipath components and draw some conclusions regarding
the proposed approach.

In this chapter we also consider some open issues that should be addressed further
as well as possible applications of the proposed prediction methodology in the design
of future generations of wireless communication systems.

1.4 Work contributions

Let us list here the scientific contributions that appear in the presented work.

During the beginning of the research work a significant amount of efforts was
invested in the development of the channel clustering algorithms. These ideas are
reflected in the publications [SG04, Shu04b, Shu04a]. The main goal of these works
was to extract the clusters from the measured channel impulse responses for the
purpose of modeling and predicting the channel dynamics based on the clusters.
Although in the presented work these ideas were not exploited, we definitely think
that incorporating clusters in the whole framework is beneficial. Actually, one of the
conclusions we made after this work had been done, was that clusters can actually
resolve many problems in the tracking algorithms, and can in fact be beneficial for
multipath parameter estimation.

We also invested a lot of efforts into the research and development of the multi-
path estimation algorithms, namely Evidence Procedure and SAGE-RVM discussed
in Chapter 4. The development of these ideas were published in [SK04, SF05].
We also prepared and submitted a journal article that summarizes the results on
the application of the Evidence Procedure specifically to the estimation of wireless
channels [SKF].

Some intermediate tracking and prediction results were also presented at the
International Conference on Information, Communications and Signal Processing
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(ICICS’05). The paper [SG05], which appeared in the conference proceedings, re-
ceived the “Best Student Paper Award”. The extension of the obtained results,
which also summarizes the results we obtained in this work, was recently accepted
for publication in the proceedings of the VTC’07 conference.
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Chapter 2

Understanding MIMO channels

We begin this chapter with an overview of some common channel models used to
describe the terrestrial radio communication channels. In many cases such models
are based on the planar wave fronts assumption, constant vehicle velocities, and
propagation via LOS, reflectors, and scatterers. These simplifications, though quite
realistic, make the analysis of the channel structure analytically tractable. In the
following we analyze which physical parameters constitute the wireless channel, and
how these parameters vary with time. This analysis will help us understand which
parameters are needed to describe a multipath component.

Although propagation of the electormagnetic waves in space is perfectly described
by linear differential Maxwell’s equations, the dynamics of the channel variation
might be nonlinear (for instance in case of accelerated motion).

Linearizing this dynamics is often equivalent to taking the classical planar wave as-
sumption. It will be shown that in the case of planar wave fronts the channel can be
described as a weighted sum of the complex exponentials. From linear system theory
it is known that such representation can be perfectly extrapolated in time, provided
the number of components, as well as their weights and frequencies are known and
constant. In Sections 2.2 and 2.3 we derive the corresponding channel representa-
tion for Single-Input-Multiple-Output (SIMO) and Multiple-Input-Multiple-Output
(MIMO) wireless channels. It will be shown that in those cases each multipath com-
ponent can be described by a set of parameters that can be estimated and tracked
individually.

2.1 Wireless channel impulse response

The small-scale variations of a mobile radio channel can be directly related to the
variations of the impulse response of the channel. The multipath channel impulse
response (IR) is the key characteristics of the wireless transmission medium, and
it contains all information about the local propagation environment necessary to
simulate or analyze any type of transmission through the channel.

Generally, a signal y(t) received at an antenna can be modeled as a linear combi-

15
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nation of scaled and shifted versions of an arbitrary transmitted signal x(t), i.e.,

y(t) =

L∑

l=1

al(t)x(t− τl(t)). (2.1)

In principle, the validity of eq. (2.1) follows from the assumption that the atten-
uations al(t) and the propagation delays τl(t) are frequency-independent. It is a
reasonable to assume so when the bandwidth Bx of the transmitted signal is narrow
relative to the carrier frequency ωc.

The linearity of (2.1) allows to introduce the impulse response h(t, τ) that de-
scribes the response of the channel at time instant t to an impulse at instant t− τ :

h(t, τ) =
L∑

l=1

al(t)δ(τ − τl(t)), (2.2)

where

y(t) =

∫ ∞

0

h(t, τ)x(t− τ)dτ. (2.3)

Equation (2.2) is a classical passband model of a wireless multipath channel
[Mol05, ch. 6].

In a typical wireless application, information transmission occurs in a passband
[ωc − 0.5Bx, ωc + 0.5Bx] centered at a carrier frequency ωc. Bandlimitation occurs
due to multiple factors, such as finite bandwidth of the transceiver hardware, as
well as different legal restrictions. Most of the processing (e.g., coding/decoding,
modulation/demodulation, etc.) usually takes place at the baseband. Thus, from a
communication system design/analysis point of view, it is most useful to consider a
baseband equivalent description of the system.

It is known [Mol05, Pro95] that the transmitted signal x(t) is related to its base-
band description xb(t) as x(t) = Re{xb(t)ejωct}. Similarly, y(t) = Re{yb(t)ejωct},
where yb(t) is the baseband description of the received signal y(t). It then follows
that [Pro95, ch. 14]

yb(t) =
L∑

l=1

al(t)xb(t− τl(t))e
−jωcτl(t). (2.4)

The corresponding baseband equivalent description of the channel hb(t, τ) then fol-
lows directly from (2.4):

hb(t, τ) =

L∑

l=1

al(t)e
−jωcτl(t)δ(τ − τl(t)). (2.5)

Thus, the baseband channel is equivalent to the passband channel hp(t, τ) within
the bandwidth of the system. Further on we will always assume, unless stated
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otherwise, that we are working in the baseband. Thus, we will use h(t, τ) to denote
the baseband channel description.

Since the bandwidth of the system is finite, it is possible to sample the corre-
sponding channel representation. Let p(t) be a time invariant impulse response of
the concatenated system consisting of the pulse shaping filter, transceiver RF blocks,
and the receiver baseband (matched) filter. Also let the symbol interval be Tc. Then
a discrete-time channel impulse response can be described by an FIR-filter with the
kth time-varying tap given by [NCP97, Ekm02]

h(t, k) =

∫ KTc

0

p(Tck − τ)h(t, τ)dτ =

=
L∑

l=1

p(Tck − τl(t))al(t)e
−jωcτl(t),

(2.6)

where KTc covers the duration of the continuous-time impulse response in the delay
domain τ . However, assuming that p(·) has its effective support on the closed
interval [−∆Tc,∆Tc], the number of reflectors and scatterers contributing to the
kth tap will be limited to the path with delays in the interval [Tc(k−∆), Tc(k+∆)].
Note that L may be arbitrary large, but finite. A limited number of contributions
is, of course, an advantage when the channel tap is to be predicted – a finite number
of contributions allows to process them individually.

In an ideal noiseless and lossless environment the radio waves might interact with
objects forever, resulting in paths of unbounded delays, requiring an IIR description
of the channel. In practice we can, however, assume that the impulse response h(t, τ)
will be of finite length, as multipaths with large delays are sufficiently attenuated,
e.g., through propagation losses and losses at the reflecting/scattering surfaces, to
fall below the background noise level.

As we shortly mentioned before, Doppler effects influence the rate of the channel
variation. From (2.6) or (2.2) the Doppler effects are not yet explicitly visible. In
fact they are ‘hidden’ in the time-varying delay τl(t) = rl(t)/c, where c = 3×108m/s
is the speed of light and rl(t) is the distance traveled by the wave generating the
multipath component. Clearly, in the mobile environment the variation of rl(t) is
related to the displacement of the mobile terminal. The latter is exactly the source
of the Doppler effects. Later in this chapter, we will see in more details how the
velocity of the mobile transceiver influences the variation of the distance rl(t).

What is missing in the presented channel description is the MIMO aspect. Let us
illustrate the impact of multiple antennas based on the SIMO system. We assume a
communication system with a single transmit antenna and a receiving antenna array
with P elements. Thus, there will be P SISO links between the transmit and the
receive antennas, each having an impulse response similar to eq. (2.2). However,
each receive antenna will see the impinging waves with a slightly different delay
τl,p(t), p = 0, . . . , P − 1, thus making the impulse response sensor-dependent.

The physical distance from the wave source to each of the antenna sensors can
be represented with respect to a reference sensor as rl,p(t) = rl,0(t) + ∆rl,p(t) (Fig.
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2.1). Then, the time-varying impulse response hp(t, τ) of the pth baseband channel

0

p

rl,0(t)

rl,p(t)

∆rl,p(t)

Position of the
reference element

Position of the
  th element.p

Wave
source

Figure 2.1: The physical distance with a reference sensor.

can be described as:

hp(t, τ) =

L∑

l=1

al(t)e
(−jωcτl,0(t)−jωc∆τl,p(t))δ(τ − τl,0(t) − ∆τl,p(t)), (2.7)

where τl,p(t) = rl,p(t)/c = τl,0(t)+∆τl,p(t) is the corresponding path delay. The term
∆τl,p(t) = ∆rl,p(t)/c in (2.7) stands for the propagation delay between the reference
sensor and the sensor p.

For many practical systems the term ∆rl,p(t)/c appearing in (2.7) in the argument
of the δ(·) function is sufficiently small and can be safely neglected. This is equivalent
to assuming that the wave front reaches all the sensors simultaneously and that all
sensors “see” the same received signal. The following example illustrates why such
an approximation is reasonable.

Example

Let us consider a signal with an absolute bandwidth of 200MHz. The passband
signal is formed by modulating the baseband representation with the carrier
frequency fc = ωc/(2π) = 2GHz.

The fastest variation of the passband signal will occur with the period of the
highest harmonics of the baseband representation, i.e., 1/100MHz= 10nsec.

Let us further assume an antenna array with the spacing between the sensors to be
λ/2, where λ = 0.15m for the assumed carrier frequency. From simple geometrical
considerations it follows that ∆rl,p(t) ≤ λ/2. Thus, the maximum propagation
delay between sensors is upper-bounded as ∆τl,p(t) ≤ 0.25nsec. In other words the
propagation time between the sensors is several orders of magnitude smaller than
the fastest frequency variation of the transmitted signal.

From this example we readily see that we can safely neglect ∆τl,p(t) as long as
the bandwidth of the transmitted signal is small compared to the carrier frequency.
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Neglecting the ∆rl,p(t)/c term in (2.7) results in

hp(t, τ) =

L∑

l=1

al(t)e
(−jωcτl,0(t)−jωc∆τl,p(t))δ(τ − τl,0(t)). (2.8)

Effective source

Let us now consider a single lth multipath component in the representation (2.8).
If we base our modeling on ray optics and omit the effects of diffraction and Fresnel
optics, a scatterer can be modeled as an effective source induced by a wave front,
whereas a reflector generates an effective source as the mirror image of the emitting
source [Ekm02]. Thus both scatterers and the mirror source can be viewed as
effective sources emitting spherical or cylindrical wavefronts. This enables us to
simplify the expression (2.8) by separating “time-invariant” and “time-dependent”
factors.

Reflector

mobile
receiver TX

base station

RX
τBSl = rBSl /c

τMS
l,p (t) = rMS

l,p (t)/c

Figure 2.2: Decomposition of the path delay into time-varying and time-invariant
parts.

The path delay τl,p(t) can be decomposed into the sum of a time-varying delay from
the effective source to the mobile τMS

l,p (t) and a time-invariant and sensor-invariant
delay from the base station to the effective source, τBSl :

τl,p(t) = τMS
l,p (t) + τBSl , and

τMS
l,p (t) = τMS

l,0 (t) + ∆τMS
l,p (t)

(2.9)

For a reflector, the secondary source is the mirrored image of the primary source.
Thus, in general τBSl will stay almost time invariant, or will vary significantly slower
as compared to the change in the path delay from the effective source to the mobile
station τMS

l,p (t). This allows to separate factors changing on different time scales,
namely changes due to the fast fading and those attributed to slow fading.

Let us now define

αl(t, τ) = al(t)e
−jwcτBS

l δ(τ − τl,0(t)), (2.10)
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and

ζl,p(t) = −wc(τMS
l,0 (t) + ∆τMS

l,p (t)) = −κrMS
l,p (t) = −κ‖rMS

l,p (t)‖ (2.11)

In (2.11) rMS
l (t) is a vector in space pointing from the lth effective source to the pth

sensor of the mobile antenna and κ = ωc/c is the wave number. The term κ‖rMS
l,p (t)‖

is also known as the electrical distance [Ekm02]. Now, by combining (2.8) with (2.9),
and making use of (2.10) and (2.11), we arrive at the resulting bandpass channel
impulse response

hp(t, τ) =

L∑

l=1

αl(t, τ)e
jζl,p(t). (2.12)

Splitting parameters in this way exemplifies different time-scales of the parameter
variations. The major variations of the first term αl(t, τ) are attributed to the
variations of the magnitude of al(t), and thus it accounts for the large-scale fading.
The phase term ζl,p(t), on the other hand, varies much faster. In fact, the change of
rMS
l,p (t) by as much as one wavelength causes ζl,p(t) to undergo a phase rotation of

2π. As the result, the superposition of the components in (2.12) causes the channel
to undergo a small-scale fading.

To gain a deeper understanding of the source of the small-scale fading, we analyze
the electrical distance term −κ‖rMS

l,p (t)‖ in more detail as the receiving sensor array
moves.

2.2 SIMO channel

Let us consider more closely the electrical distance term −κ‖rMS
l,p (t)‖ that enters

the phase in eq. (2.12). In the sequel we drop the superscript notation (·)MS for
simplicity. To simplify the derivations we also restrict ourselves to a single effective
source and consider a linear sensor array D(P ) with P sensors. The extension to
other array geometries is straight-forward. We will further assume that the effective
source is mobile while the sensor array is fixed1.

The distance from the lth effective source to the mobile can be defined as (see
Figure 2.3):

rl,p(t) = rl,p(0) − x = rl,0(0) + dp − x,

where x is the displacement of the effective source relative to the origin O and
the fixed sensor array. The subscript indices (·)l,p refer to the lth multipath ray
received by the pth sensor in the antenna array, respectively. Vector dp points from
a reference sensor p = 0 to another sensor p in the array. Using straight-forward

1The roles of transmitter and receiver in this setup could always be interchanged due to the
reciprocity of the channel.
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P−1

D(P)

0

O

X

1

rl,0(0)

rl,1(0)

rl,0(t)

rl,P−1(t)

θl

φl

φ′
l

x

rl,1(t)

dp

Figure 2.3: Geometrical situation considered in the SIMO case with the moving
effective source and P -sensor array D(P ).

geometrical rules, the length of the lth path rl,p(t) can be expressed in the following
way:

‖rl,p(t)‖ =
[

‖rl,0(0)‖2 + ‖dp‖2 + ‖x‖2−

− 2〈rl,0(0),dp〉 − 2〈rl,0(0),x〉 − 2〈dp,x〉
]1/2

.
(2.13)

Now, let us consider eq. (2.13) in more details. To simplify the analysis of the
term ‖rl,p(t)‖ that governs the variation of the electrical distance, we expand the
square root of the right-hand side of (2.13) into a second order Taylor series around
zero. For the case of linear antenna array this term is given as:

‖rl,p(t)‖ ≈ ‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl)−

− 1

2

‖dp − x‖2 − (‖dp‖ sin(φl) − ‖x‖ cos(θl))
2

‖rl,0(0)‖ −

− 1

2

‖dp − x‖2(‖dp‖ sin(φl) − ‖x‖ cos(θl))

‖rl,0(0)‖2
− 1

8

‖dp − x‖4

‖rl,0(0)‖3
.

(2.14)

The details of this expansion are summarized in Appendix A. In (2.14) φl is the
angle of incidence (Direction-of-Arrival), and θl is the direction of the effective source
movement, as shown in Fig. 2.3.

There are several important observations that can be made based on (2.14). First
of all, we see that ‖rl,p(t)‖ depends nonlinearly on the displacement vector x. In par-
ticular, the higher order terms in the expansion exemplify the dependency of ‖rl,p(t)‖
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on different setup parameters, like angles, displacement vector x, etc. However, the
linear terms in the expansion are straightforward to analyze.

If the initial distance ‖rl,0(0)‖ is much larger than the antenna array dimension
(represented by ‖dp‖) and the traveled distance ‖x‖, then higher-order terms in the
Taylor approximation can be safely discarded. This assumption will culminate in
the widely used plane wave assumption, since all vectors rl,p(t) for p = 0 . . . P − 1
can then be assumed to be co-linear. Thus, the simplified expression for the path
distance is then computed as

‖rl,p(t)‖ ≈ ‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl).

The latter expression allows us to approximate the phase term ζl,p(t) in (2.12) as

ζl,p(t) ≈ −κ
(

‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl)
)

. (2.15)

To make this result a bit more pictorial, we assume that the wave source is moving
with a constant velocity v m/s, and thus ‖x‖ = vt. Also, for a linear sensor array
‖dp‖ = pd, where d is the distance between sensors. By noting that κ = ωc/c =
2π/λ, (2.15) can be represented as

ζl,p(t) ≈ −2π

λ
‖rl,0(0)‖ − 2π

λ
pd sin(φl) +

2π

λ
vt cos(θl). (2.16)

The complete linearized representation of the multipath channel can be thus repre-
sented as

hp(t, τ) =
L∑

l=1

αl(t, τ)e
−j 2π

λ
‖rl,0(0)‖e−j2π

d
λ
p sin(φl)ej2πνlt, (2.17)

where νl = v cos(θl)/λ is the Doppler shift induced by the lth moving source. Notice
that 2π

λ
pd sin(φl) is a phase shift across sensors due to the nonzero angle of incidence.

It is clear, that in the ideal case (where the plane wave assumption is valid, i.e.,
(2.17) holds), and the Doppler shifts as well as the corresponding angles of incidence
are known, channel prediction is equivalent to the extrapolation of (2.17) into the
future.

2.3 MIMO channel representation

Similarly, the analysis done for SIMO systems in Section 2.2 can be performed for
MIMO systems. The corresponding propagation scenario is depicted in Figure 2.4.
Let M denote the number of transmit elements. Generally, a MIMO scenario is
equivalent to M individual SIMO (MISO) cases. The lower indices l,m, p refer
to the lth wave travelling between the mth element of the transmit array F (M),
m = 0 . . .M − 1, and pth element of the receive array D(P ), p = 0 . . . P − 1,
respectively.
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P−1
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l

Figure 2.4: Geometrical situation considered in the MIMO case with the moving
effective source.

The corresponding distances between sensors are expressed as

rl,0,0(t) = rl,0,0(0) − x,

rl,0,p(t) = rl,0,p(0) − x = rl,0,0(0) + dp − x,

rl,m,p(t) = rl,m,p(0) − x = rl,m,0(0) + dp − x = rl,0,0(0) − fm + dp − x.

Similarly to the SIMO case, we consider the expansion of the ‖rl,m,p(t)‖ into the
Taylor series to make the analysis of the resulting electrical distance tractable. For
the details of computing the Taylor expansion in this case the reader is referred to
Appendix B. The final expression is given as

‖rl,m,p(t)‖ ≈‖rl,0,0(0)‖
(

1 +
〈rl,0,0(0),dp〉
‖rl,0,0(0)‖2

+
‖dp‖2

2‖rl,0,0(0)‖2
+

‖x‖2

2‖rl,0,0(0)‖2
+

+
‖fm‖2

2‖rl,0,0(0)‖2
+

〈x,fm〉
‖rl,0,0(0)‖2

− 〈rl,0,0(0),fm〉
‖rl,0,0(0)‖2

− 〈rl,0,0(0),x〉
‖rl,0,0(0)‖2

−

− 〈fm,dp〉
‖rl,0,0(0)‖2

− 〈x,dp〉
‖rl,0,0(0)‖2

)

.

(2.18)

As compared to (2.14) we see a lot of similarities. Here again ‖rl,m,p(t)‖ depends
nonlinearly on the angles and array parameters (see (B.3) in Appendix B). As the
initial separation ‖rl,0,0(0)‖ between the antenna arrays grows, it drives the higher



24 2. Understanding MIMO channels

order terms of the Taylor expansion to zero, thus culminating in the plane wave
scenario. In the limit, as ‖rl,0,0(0)‖ → ∞, all the paths between F (M) and D(P )
become parallel to each other, and the resulting linear approximation takes the form

‖rl,m,p(t)‖ = ‖rl,0,0(0)‖ + ‖dp‖ sin(φl) − ‖fm‖ sin(ψl) − ‖x‖ cos(θl).

Here ψl is the Direction-of-Departure (DoD), and φl and θl are again the DoA and
the direction of array movement, respectively.

Consequently, the corresponding electrical distance ζl,m,p(t), which now depends
on both on the transmit sensor m and the receive sensor p, can be approximated as

ζl,m,p(t) ≈ −κ(‖rl,0,0(0)‖ + ‖dp‖ sin(φl) − ‖fm‖ sin(ψl) − ‖x‖ cos(θl)). (2.19)

Again, assuming a constant velocity v m/s for the mobile terminal and movements
without rotation or acceleration, we write ‖x‖ = vt. Also, for a linear sensor array
‖dp‖ = pd, and ‖fm‖ = mf , where d and f are the distances between neighboring
elements in the receive and transmit arrays, respectively. By noting, that κ = 2π/λ
we rewrite ζl,m,p(t) as

ζl,m,p(t) ≈ −2π

λ
‖rl,0,0(0)‖ − 2π

λ
pd sin(φl) +

2π

λ
mf sin(ψl) +

2π

λ
vt cos(θl), (2.20)

The complete linearized representation of the MIMO channel with linear sensor
arrays on both sides can thus be approximated as

hm,p(t, τ) =
L∑

l=1

αl(t)e
−j 2π

λ
‖rl,0,0(0)‖e−jp2π

d
λ

sin(φl)ejm2π f

λ
sin(ψl)ej2πνlt, (2.21)

where v cos(θl)/λ = νl is Doppler shift induced by the lth moving source, and
2π
λ
pd sin(φl) and 2π

λ
mf sin(ψl) are phase shifts across sensors due to the nonzero

angle of incidence and angle of departure, respectively. Again, should we know all the
required parameters, the dynamics of the channel can be accordingly extrapolated
into the future, at least as long as the plane wave assumption holds.

2.4 Discussion

Let us summarize the results we obtained so far. The whole analysis we have pre-
sented here is based on a few fundamental concepts.

• First of all, it is assumed that the received signal y(t) is a linear combination
of the scaled and delayed versions of the transmitted signal x(t). It is exactly
this superposition that causes the received signal to undergo fading.

• The linear dependency between the input and the output of the channel allows
us to introduce a time-varying impulse response h(t, τ) that describes how the
copies of x(t) are dispersed in time and how they interfere.
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• A MIMO wireless channel impulse response is given by individual impulse
responses between each transmitting and each receiving sensor in the antenna
arrays.

The channel impulse response is thus a crucial concept in the whole analysis. It is
the key to counteracting fading, since it contains all the information of the arriving
multipath components and their variation. In order to study what constitutes the
dynamics of multipath components, we study a single component in a simplified
scenario, assuming linear antenna arrays, and straight-line motion. The following
observations can be made:

• The dynamics of a single multipath component is respresented by the interac-
tion between the induced Doppler shift, governed by the v cos(θl) term, DoA
and DoD, captured in the sin(φl) and sin(ψl) terms, respectively. In general
this interaction is nonlinear and, as the result, the above parameters con-
tribute nonlinearly into the change of the corresponding electrical distance
terms ζl,p(t) and ζl,m,p(t).

• A linear approximation to the multipath dynamics is possible, resulting in
the plane wave assumption. It naturally follows when the physical distance
between the transmit and receive arrays grows much larger than their charac-
teristic dimension and displacement length ‖x‖.

• In the linear approximation, the multipath parameters contribute linearly to
the change of the electrical distance ζl,m,p(t). This simplifies the dynamics of
the channel significantly and motivates the application of the linear models to
represent the channel dynamics.

• In general, all multipath parameters are functions of time. Basically, any
curved motion can be approximated by a series of linear displacements xi, as
shown in Fig. 2.5. Clearly, this makes DoA, DoD, as well as Doppler frequency

Effective source trajectory

x1(t)|t = t′

x2(t)|t = t′ + ∆

x3(t)|t = t′ + 2∆

x4(t)|t = t′ + 3∆

Figure 2.5: Approximation of the effective source trajectory by a sequence of linear
displacements.

to be a function of i, which immediately translates into their dependency on
time t as ∆ → 0. The rate of these variations depends on the proximity to
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the effective source, complexity of movement, i.e., curved/linear trajectory,
constant velocity or movement with acceleration, etc.

• It should be stressed that the linear approximation can also be used in the
non-plane wave case. However, by doing so we introduce an irreducible error
in the representation of the multipath component and, as the consequence,
in the true underlying dynamics of this component. We expect that such
errors might necessitate faster change of the hypermodel parametrization, thus
requiring hypermodels to be more agile.

Now, as we see how the multipath parameters influence the dynamics of the
multipath components, we can develop algorithms to estimate these parameters
from channel measurement data and, using hypermodels, to learn the underlying
dynamics.



Chapter 3

MIMO channel estimation

In the previous chapter we considered a model of a multipath wireless channel. Prior
to discussing how to estimate multipath components from the channel data, we need
to answer the question how these channels are to be measured.

To be able to verify the performance of the multipath-based prediction proposed
here, it would be best to use channel data collected with channel sounding equip-
ment. The major advantage of the resulting channel responses is their high reso-
lution. In Section 3.1 we give an overview of the most common channel sounding
approaches, namely sounding in the time and frequency domains.

The resulting channel representations are then used to estimate multipath param-
eters by exploiting channel models we considered in Chapter 2. In our work we use
two algorithms to estimate multipath parameters: the first one is known as Space-
Alternating Generalized Expectation-maximization (SAGE) algorithm, discussed in
Section 3.2. The other algorithm is known as the Evidence Procedure. Like SAGE
it is a model-based parameter estimation technique, but unlike SAGE, the Evidence
Procedure also allows to estimate the number of multipath components. We develop
and apply this algorithm to the estimation of multipath parameters in Chapter 4.

3.1 Channel sounding

The goals of channel sounding are manifold and include: obtaining high-resolution
channel characteristics for constructing realistic channel models, studying particular
propagation environments for positioning base-stations, etc. Channel sounding usu-
ally consists of two steps: 1) sending a specific sounding/training signal s(t) through
the channel, and 2) measuring the response y(t) at the other end of the transmission
line. Depending on the particular sounding method, the obtained signal y(t) might
also be filtered with a specific receive filter, or matched filter (MF). The output
signal (y(t), or MF output) is then later used as the input data for the multipath
parameter estimation algorithms.

In the sequel we give a short overview of the two sounding methods and the
corresponding signal models that are used to obtain the measured channel data we
exploit in our work. In [Mol05, ch. 8] an interested reader can find more details
on different channel sounding methods, including those we summarize here. For

27
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simplicity, we will consider SIMO setups. In case of MISO, as well as SISO and
MIMO systems, the concepts of channel sounding remain unchanged.

3.1.1 Channel sounding using pulse-compression techniques

Let us consider an equivalent baseband channel sounding scheme shown in Fig.
3.1. The transmitter (Tx) emits a sounding signal s(t) (Fig. 3.2) that consists of
periodically repeated burst waveforms u(t), i.e., s(t) =

∑I−1
i=0 u(t− iTf ), where u(t)

has duration Tu ≤ Tf and is formed as u(t) =
∑M−1

m=0 bmp(t −mTp). The sequence
b0 . . . bM−1 is the known sounding sequence consisting of M chips, and p(t) is the
shaping pulse of duration Tp, MTp = Tu. Furthermore, we assume that the receiver

η(t)

u
∗(−t)

RxChannelTx

t = nTs
MF

y(t) z(t) z[n]

s(t)
h(t, τ) ≡ [hp(t, τ)]p=1...P

Figure 3.1: An equivalent baseband model of radio channel sounding with receiver
matched filter (MF) front-end.
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Figure 3.2: Sounding signal s(t).

(Rx) is equipped with a planar antenna array consisting of P sensors. Thus, there
are P SISO channels hp(t, τ), which we collect into a time-varying P -component
vector h(t, τ).

The received signal y(t) ∈ CP×1 is measured over the observation interval

O =
I−1⋃

i=0

Oi =
I−1⋃

i=0

[(

i− I − 1

2

)

Tf − Tu/2,
(

i− I − 1

2

)

Tf + Tu/2
]
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that consists of I periods of the burst waveform u(t). We will generally assume that
the multipath parametrization stays time-invariant over the observation window O.
For a single burst of duration Tu, the received signal y(t) is simply computed as

y(t) =

∫

h(t, τ)u(t− τ)dτ.

The receiver front-end consists of a matched filter (MF) matched to the transmitted
burst waveform u(t). The output z(t) ∈ CP×1 of the MF to a single burst input in
the interval Oi the is then given as

z(t) = u∗(−t) ?
∫

h(t, τ)u(t− τ)dτ =

∫ ∫

h(t+ t′, τ)u(t+ t′ − τ)u∗(t′)dt′dτ,

(3.1)

where ? denotes the convolution operation. If within the measurement interval Oi

it can be assumed that h(t+ t′, τ) = h(t, τ), then (3.1) simplifies to

z(t) =

∫

h(t, τ)

∫

u(t+ t′ − τ)u∗(t′)dt′dτ =
∫

h(t, τ)Ruu(t− τ)dτ,

(3.2)

where Ruu(t) =
∫
u∗(t′)u(t+ t′)dt′ is the autocorrelation function of the burst wave-

form u(t).
The sounding burst u(t) is specifically designed so as to make sure that Ruu(t)

closely approximates a delta pulse. This in turn ensures that (3.2) closely approxi-
mates the channel impulse response h(t, τ).

Clearly, the longer the observation window O the better parameter estimates we
expect. However, due to the time-varying nature of the channel the interval O
can not be infinite. By the Sampling Theorem we known that 1/Tf must be at
least two times larger than the maximum occurring Doppler frequency. By setting
Tf > Tu we can also increase the observation span, and thus improve the Doppler
resolution, while in the same time limit the amount of measured data to be stored.
This is possible since the absolute Doppler frequency of the impinging waves is
considerably smaller than the inverse of the burst duration Tu (why is that we show
later in Section 3.1.3 when we talk about the resulting channel model). On the
other hand, I must be chosen in such a way that over the observation window O
the multipath parametrization stays time-invariant. The choice of I (for a fixed Tf)
essentially upperbounds the observation window O.

3.1.2 Frequency domain channel sounding

Due to the dual relationship between time and frequency it is possible to perform
similar channel measurement in the frequency domain [Rap02, Mol05].
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The difference between the frequency and time domain measurements lie in the
form of the burst signal u(t). In frequency domain sounding the main criterion for
its design is the that it has the flat power spectrum |U(jω)|2 over the frequency
band of interest [f0, f0 + ∆f ].

One method of frequency domain sounding is based on chipring. The transmit
waveform is given as [Mol05, ch. 8]

u(t) = exp
[

j2π
(

f0t+ ∆f
t2

2Tu

)]

, 0 ≤ t ≤ Tu.

The instantaneous frequency changes linearly with time, covering the whole band-
width of interest [f0, f0 + ∆f ]. The receiver filter is again a matched filter with the
frequency response U∗(jω). Thus, the frequency response of the MF output over
the frequency range [f0, f0 + ∆f ] for t ∈ Oi is readily given as

Z(jω) = Hp(t, jω)U(jω)U∗(jω) = Hp(t, jω) × const

This method is also known as the frequency domain correlation processing. Again,
it is assumed that the channel Hp(t, jω), p = 0 . . . P − 1 stays time-invariant over
the measurement window t ∈ Oi.

Since it makes sense to consider only the channel bandwith equal to or smaller
than that where |U(jω)|2 is constant, the MF output is bandlimited with a receive
filter R(jω), resulting in the signal

zp(t) = FT−1{Hp(t, jω)R(jω) × const} =

∫

hp(t, τ)r(t− τ)dτ

received at a single antenna element p. We see that r(t) is equivalent to the auto-
correlation function Ruu(t) of the burst waveform in equ. (3.2).

3.1.3 Signal model in a plane waves scenario

Now we are ready to introduce the model that is exploited in the parameter esti-
mation algorithms. To do that, we restrict ourselves to the SIMO case and review
the plane wave channel model (2.17) in the light of the channel sounding considered
above.

We will assume that the receiver (Rx) is equipped with an antenna array con-
sisting of P sensors located at x0, . . . ,xP−1 ∈ R

2 with respect an arbitrary ref-
erence point. We also assume this array to be linear, with the spacing between
the antenna elements equal d. Provided the electromagnetic coupling between the
antenna elements can be neglected, the components of the P -dimensional complex
vector c(φl) = [c0(φl), . . . , cP−1(φl)]

T , also known as the steering vector of the array,
are defined as

cp(φl) = fp(φl) exp(j2πλ−1〈e(φl),xp〉), (3.3)

with λ, e(φl) and fp(φl) denoting the wavelength, the unit vector in R2 pointing
in the direction determined by φl and the complex electric field pattern of the pth
sensor, respectively.
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Further, let us assume that h(t, τ) = h(τ) over the observation interval Oi. Now,
by combining (2.10) and (2.17), we note that

δ(τ − τl) ≡ δ(τ − τl,0(t)), (3.4)

ãl ≡ ale
−jωcτBS

l e−j
2π
λ
‖rl,0(0)‖, (3.5)

cp(φl) ≡ e−j2π
d
λ
p sin(φl), (3.6)

where (3.6) follows immediately for the linear antenna array and constant electric
field pattern1 fp(φl), i.e., for fp(φl) = const, ∀p, φl.

Under these assumptions, a model of the impulse response of the wireless SIMO
channel over the measurement interval Oi can be represented as

h(τ) =
L∑

l=1

ãlc(φl)e
j2πνltδ(τ − τl). (3.7)

Here, ãl, τl and νl are the compound complex gain as defined in (3.5), the delay,
and the Doppler shift of the lth multipath component, respectively. In the following
text we will denote the compound gain of the multipath component as al, rather
than ãl, to simplify the notations.

Note that although we explicitly specify the dependency on the Doppler shift νl,
it is reasonable to assume that for ej2πνlt = const for t ∈ Oi, which also follows
from the assumption of channel time-invariance. In many cases it is possible to
assume that the maximum absolute Doppler frequency of the impinging waves is
much smaller than the inverse of a single burst duration 1/Tu. Let us consider the
following example.

Example

Taking the pulse compression channel sounding as an example, let us assume that
the shaping pulse width equals Tp = 10nsec and that the burst waveform consists
of M = 512 pulses. Then, Tu = 5.12µsec, and thus 1/5.12µsec=195312.5Hz.

Assuming the carrier frequency fc = ωc/2π = 2GHz, we easily conclude that the
velocity of an object generating such a Doppler shift must be
195312.5Hz×3 · 108 m

s /2 · 109Hz≈ 29296m/s, which is more than two times larger
than the Earth escape velocity.

This low Doppler frequency assumption is equivalent to assuming that, within
a single observation window Oi we can safely neglect the influence of the Doppler
shifts.

1This is implicitly assumed in the Chapter 2, since the sensor field pattern is consumed in the
factor al(t) in (2.10), which is “sensor and direction independent”, or, equivalently, constant
for all sensors and directions φ. Accounting for this factor explicitly leads to the definition of
the steering vector given in (3.3)
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The resulting received signal y(t) ∈ CP×1 is then given in the time domain as
[FTH+99]

y(t) =

L∑

l=1

alc(φl)e
j2πνltu(t− τl) + η(t). (3.8)

The additive term η(t) ∈ CP×1 is a vector-valued complex white Gaussian noise
process, i.e., the components of η(t) are independent complex Gaussian processes
with double-sided spectral density N0.

The low Doppler frequency assumption, however, does not prohibit the estimation
of the Doppler frequencies. Assuming that 1/Tf > 2 maxl{νl}, which is dictated by
the Sampling Theorem, we can approximate the Doppler shift over the observation
interval O consisting of I periods of the sounding signal u(t) as

exp(j2πνlt) ≈ exp

(

j2π(i− I − 1

2
)νlTf

)

(3.9)

for t in the time interval Oi ⊂ O, i = 0 . . . I − 1. Taking approximation (3.9) into
account, the signal z(t) at the output of the MF for the time t ∈ Oi is computed as

z(t)|t∈Oi
=

L∑

l=1

alc(φl) exp

(

j2π(i− I − 1

2
)νlTf

)

Ruu(t− τl) + ξ(t), (3.10)

where ξ(t) =
∫

η∗(t′)u(t+t′)dt′ is a spatially white (i.e., uncorrelated) P -dimensional
vector with each element being a zero-mean wide-sense stationary (WSS) Gaussian
noise with autocorrelation function

Rξξ(t) =E{ξ∗p(t′)ξp(t+ t′)} = N0Ruu(t), and

E{ξp(t′)ξp(t+ t′)} = 0.
(3.11)

Equation (3.10) states that the channel response is a linear combination of L
scaled and delayed kernel functions Ruu(t− τl), weighted across sensors as given by
the components of c(φl), and across time according to the Doppler frequency νl, and
observed in the presence of the colored noise ξ(t).

The model of the received signal (3.10) can be used for different model-based
channel estimation algorithms. In general, the channel estimation problem is posed
as follows: given the measured signals zp(t), p = 0, . . . , P − 1, determine the order
L of the model and estimate optimally (with respect to some quality criterion) all
multipath parameters al, τl, νl ,and φl, for l = 1 . . . L.

Should Ruu(t) be an ideal delta impulse, the estimation of channel parameters
would be a relatively simple task due to the sparse structure of the channel IR.
However, a “non-ideal” form of Ruu(t) and additive noise at the receive antenna
necessitates the usage of high-resolution algorithms [Mol05, ch. 8] able to estimate
multipath parameters.

We also would like to add that in the case of frequency-domain sounding, the
resulting mathematical description of the channel model for the plane wave case
will be functionally identical to the results obtained for the time-domain sounding
due to the dual relationship between the time and frequency domains.
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3.1.4 Sampling wireless channels

As it was shortly mentioned in Chapter 2, the wireless channel is bandlimited. Thus,
it is possible to represent (3.10) by discrete samples.

In practice the output of the MF is sampled with the sampling period Ts ≤ Tp,
resulting in N P -tuples of the MF output, where N is the number of MF output
samples. This means that for the time duration t ∈ Oi, the output of each sensor
can be collected into a vector and can be rewritten (3.10) in a vector form:

zp|t∈Oi
= Kwp + ξp, p = 0 . . . P − 1, (3.12)

where we have defined

zp =[zp[0], zp[1], . . . , zp[N − 1]]T ,

wp =[a1cp(φ1)e
j2π(i− I−1

2
)ν1Tf , . . . , aLcp(φL)e

j2π(i− I−1
2

)νLTf ]T ,

ξp =[ξp[0], ξp[1], . . . , ξp[N − 1]]T .

(3.13)

The additive noise vector ξp possesses some useful properties that can be exploited
in different estimation algorithms:

E{ξp} = 0, E{ξmξHk } = 0, for m 6= k, and (3.14)

E{ξpξHp } = Σ = N0Λ,where Λq,k = Ruu((q − k)Ts). (3.15)

Here E{·} denotes the expectation operator. Note that (3.15) follows directly from
(3.11). The matrix K, also called the design matrix, accumulates the shifted and
sampled versions of the kernel function Ruu(t). It is constructed as follows: K =
[r1, . . . , rL], with rl = [Ruu(−τl), Ruu(Ts − τl), . . . , Ruu((N − 1)Ts − τl)]

T .

It important to stress that this sampled representation is valid assuming: a) the
Doppler frequency can be approximated as in (3.9), and b) the multipath parameters
stay time-invariant over the time interval O.

Thus, the time-varying multipath channel hp(t, τ) is represented by discrete sam-
ples, spaced equidistantly along the delay τ , τn = nTs, n = 0, . . . , N − 1, and by
equidistant discrete samples in time t, with the spacing equal to the repetition pe-
riod Tf of the sounding waveform, i.e., ti = iTf , i = 0, . . . , I − 1, as shown in Fig.
3.3.

Multipath parameters are usually estimated over a window consisting of I periods
of the burst waveform u(t). The resulting duration of the estimation window is thus
(I − 1)Tf + Tu. In order to be able to capture the dynamics of the parameter
variations, the channel measurements and parameter estimation are repeated with
the period Te ≥ ITf . We can thus say that the new SIMO channel representation
is obtained at tq = qTe, where q = 0, 1, 2... corresponds to the samples of the SIMO
estimation window (see Fig. 3.3).



34 3. MIMO channel estimation

Antenna
sensors
p=0..P-1 ...

Estimation window, q=0

i=0 i=I-1

SIMO
SIMO

SIMO
SIMO

Tf 2Tf

p

0

Estimation window, q=1

t

Figure 3.3: Sequential SIMO channel acquisition and processing.

3.2 Space-Alternating Generalized

Expectation-Maximization

As we have seen in Section 3.1, under the plane wave assumption the impulse re-
sponse of a wireless multipath channel can be represented as the sum of delayed and
weighted Dirac impulses, each representing one individual multipath component.
Such special structure of the channel impulse response implies that the filtered sig-
nal z(t) should have sparse structure, which would in turn imply simple estimation
of the channel parameters. Unfortunately, this sparsity is often obscured by additive
noise and temporal dispersion due to the finite bandwidth of the transmitter and re-
ceiver hardware. This motivates the application of algorithms capable of recovering
this sparse structure from the measurements.

Various algorithms have been proposed for estimating multipath parameters from
measurement data. The used methods can be grouped into three categories as de-
fined in [KV96]: spectral estimation (MUSIC)[Sch86], parametric subspace methods
[RK89, HN95], and deterministic methods. The Expectation-Maximization (EM)
algorithm [DLR77], as well as SAGE [FTH+99, FDHT96] belongs to the latter cat-
egory.

SAGE is a generalization of the EM algorithm that is used to replace the high-
dimensional optimization procedure, necessary to compute the joint maximum like-
lihood estimates, with several separate maximization processes, which can be per-
formed sequentially. This property makes SAGE particularly suitable for joint esti-
mation of the multipath parameters. Like any maximum likelihood method, SAGE
relies on the assumed data model, which in the case of wireless channels is specified
as (3.7), i.e., it assumes the plane wave scenario.

Now, we summarize the major steps of the SAGE algorithm for multipath pa-
rameter estimation. For more details on the SAGE algorithm the interested reader
is referred to [FH94, FTH+99, FDHT96, PFM97]. Again, for the sake of simplicity
we will consider the SIMO case only. Extension of the SAGE algorithm to MISO,
MIMO, and SISO channel IR’s does not pose any significant difficulty and thus it is
not discussed.

We see from (3.8) that the wireless channel can be modeled as a sum of L con-
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tributing wavefronts, where each wave is described by the corresponding multipath
delay τl, Doppler shift νl, DoA φl, as well as path gains al. Let us denote a set of
parameters describing each multipath as2

θl = {al, τl, νl, φl}.

The contribution of each of the wavefronts to the signal at the output of the MF for
t ∈ O can be represented as

s(t; θl) = alc(φl) exp

(

j2π(i− I − 1

2
)νlTf

)

Ruu(t− τl)

Now, given the matched filter output z(t), SAGE solves the following optimization
problem:

ΘML = argmin
Θ

∥
∥
∥z(t) − S(t;Θ)

∥
∥
∥

2

, (3.16)

where

S(t;Θ) =
L∑

l=1

s(t; θl),

and Θ = {θ1, ..., θL} is the union of all multipath parameter sets.
Assuming that additive noise term ξ(t) in (3.10) is a stationary complex zero-mean

Gaussian process with the covariance matrix Σ = E{ξ(t)ξ(t)H}, the minimization
of (3.16) is equivalent to maximization of the likelihood function Λ(Θ; z) defined as
[Poo96]

Λ(Θ; z) ∝
∫

O

2Re
{
S(t′;Θ)HΣ−1z(t′)

}
dt′ −

∫

O

S(t′;Θ)HΣ−1S(t′;Θ)dt′, (3.17)

where Re{·} denotes the real part, and (·)H denotes the Hermitian transpose of
the argument, respectively.

The brute force approach to find the optimum ΘML = argmax
Θ
{Λ(Θ; z)} is

computationally prohibitive since it results in an intractable high-dimensional opti-
mization procedure3. One possible solution to this problem can be found within the
Expectation-Maximization (EM) framework. The EM algorithm is an iterative op-
timization scheme that relies on the two key concepts of the complete (unobserved)
and incomplete (observed) data. In some cases it might be easier to estimate the
required parameters based on the complete data rather than directly from the ob-
served data. The incomplete data is then used to estimate the complete data, which
constitutes the E-step of the algorithm. The latter is then used to obtain the refined
parameter estimates, which is the M-step of the algorithm. Iteration between E-

2The set of parameters might be extended to include wave polarization, elevation angles, etc., if
the channel measurements allow to identify them.

3In the considered SIMO case this will require searching simultaneously L × (3 + 2) dimensions
– 3 real-valued parameters and 1 complex-valued path gain.
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and M-steps form the basis for the EM algorithm(see [DLR77, Moo96]). The itera-
tive scheme requires a good, i.e., close to the optimum, initialization of the sought
parameters.

In case of wireless channels the incomplete data is basically the output of the MF
(3.10). In (3.16) the individual signals s(t; θl) corrupted by the additive observation
noise form the natural complete data [FW88]:

xl(t) = s(t; θl) + ξl(t), l = 1 . . . L, (3.18)

where

ξ(t) =
L∑

l=1

√

βlξl(t), and
L∑

l=1

βl = 1. (3.19)

Note that ξl(t) are independent complex white Gaussian noises. The factors βl are
free design parameters [FW88]. However, it was shown [FH94, FTH+99] that by set-
ting βl = 1 the conditional Fisher information of xl(t) given z(t) is maximized, what
in turn maximizes the asymptotic convergence rate of the EM algorithm [DLR77].

At each iteration of the algorithm, we estimate the complete data xl(t) based on

the observation z(t) and some previous parameter estimates Θ̂
′
:

x̂l(t; θ̂
′

l) = E{xl(t)|z(t), Θ̂
′} l = 1, . . . , L.

This forms the Expectation step of the EM-algorithm. Having estimated the com-
plete data, we can then use it to refine our parameter estimates. The likelihood
(3.17) can then be reformulated as a function of θl and complete data xl(t):

Λ(θl; xl(t)) ∝
∫

O

2Re
{
s(t′; θl)

HΣ−1
l xl(t

′)
}
dt′−

∫

O

s(t′; θl)
HΣ−1

l s(t′; θl)dt
′, (3.20)

where Σl = E{ξl(t)ξl(t)H}. Then, the new refined parameter estimate θ̂
′′

l can be
obtained by solving

θ̂
′′

l = argmax
θl

Λ(θl; x̂l(t; θ̂
′

l)), l = 1 . . . L. (3.21)

Expression (3.21) forms the Maximization step of the EM-algorithm. It can be
seen that instead of an L× 5-D optimization problem, we end up having L separate
5-D optimizations – three real-valued parameters (delay, Doppler shift, and DoA),
and one complex-valued multipath gain.

However, 5-D optimization is also not trivial. To further simplify the optimization
procedure, the SAGE algorithm is introduced. The SAGE algorithm is used to
update not all, but a subset of the parameters, while keeping the others fixed [FH94].
Basically, SAGE is a grouped coordinate descent method that, in case of wireless
channels, allows to exchange a 5-D optimization by a sequence of 5 separate 1-D
searches, thus significantly reducing the computational load. The SAGE iterations
are guaranteed to converge to a maximum of the corresponding likelihood function,
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but it might be a local, rather than global optimum. Thus it is important to provide a
good initialization for the multipath parameter values to make sure that the solution
converges to an global optimum.

Algorithm 3.1 presented below outlines the major steps of applying the SAGE
algorithm to multipath parameter estimation.

Algorithm 3.1 SAGE algorithm for estimating channel parameters

Initialize algorithm: L, θ
[0]
l = {a[0]

l , τ
[0]
l , φ

[0]
l , ν

[0]
l }, l = 1, . . . , L

% — begin SAGE iterations —%
for each l = 1, . . . , L

E-Step: Estimate the complete data

x̂l(t; θ
[k]
l ) = z(t) −

L∑

l′=1,l′ 6=l

s(t; θ
[k]
l′ ) (3.22)

M-Step: Find new parameters as:

τ
[k+1]
l = argmax

τl

∣
∣
∣Z(τl, φ

[k]
l , ν

[k]
l ; x̂l(t; θ

[k]
l ))
∣
∣
∣ (3.23)

φ
[k+1]
l = argmax

φl

∣
∣
∣Z(τ

[k+1]
l , φl, ν

[k]
l ; x̂l(t; θ

[k]
l ))

∣
∣
∣ (3.24)

ν
[k+1]
l = argmax

νl

∣
∣
∣Z(τ

[k+1]
l , φ

[k+1]
l , νl; x̂l(t; θ

[k]
l ))

∣
∣
∣ (3.25)

a
[k+1]
l =

1

I‖c(φ
[k+1]
l )‖2TuEs

Z(τ
[k+1]
l , φ

[k+1]
l , ν

[k+1]
l ; xl(t; θ̂

[k]

l )) (3.26)

Here Es is the power of the sounding signal. (3.27)

θ
[k+1]
l = {a[k+1]

l , τ
[k+1]
l , φ

[k+1]
l , ν

[k+1]
l }, l = 1, . . . , L (3.28)

where

Z(τ, φ, ν; xl(t)) =

I−1∑

i=0

∫

Oi

R∗
uu(t

′ − τ)cH(φ)×

exp

(

−j2π(i− I − 1

2
)νTf

)

xl(t
′)dt′

(3.29)

end

It can be inferred that Z(τ, φ, ν; xl(t)) acts as a beamformer in the corresponding
domain, reaching its maximum only when the values of the free parameters coincide
with the true ones that parametrize the multipath s(t; θl).

The iterations of the Algorithm 3.1 are repeated until some suitable convergence
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criterion for the parameters of interest is met. In our simulations we stopped the
iterations when the relative changed of the parameter values was less than 1%.

3.2.1 Initializing SAGE with Matching Pursuit algorithm

SAGE is an iterative technique that requires a proper initialization. In general, this
initialization has to be derived directly from the measured data, and/or from any
available a priori knowledge. In the former case, the multipath parameters are ini-
tialized incoherently: first, the multipath delay is found, and then the corresponding
DoA, Doppler frequency, and finally, the multipath gain. To find the initial values
of the multipath delays we use the Matching Pursuit (MP) technique.

Matching Pursuit (MP) is a greedy iterative algorithm for deriving a signal decom-
position in terms of expansion functions (also called atoms) chosen from a dictionary.
MP was first introduced in [MZ93] for time-frequency representations, and has been
later extended into Orthogonal Matching Pursuit (OMP) [DMA97, PRK93] for gen-
eral sparse approximate solutions to signal representation problems.

From (3.12) we notice that, within the MP framework, the design matrix K can
be treated as approximation dictionary, and the columns in the matrix as atoms.
Of course, each column in the matrix corresponds to a certain multipath component
delay. Since these delays are initially unknown, we come up with an overcomplete
representation of the data, by quantizing the range of possible multipath delay values
τl’s. This will effectively generate the corresponding design matrix K, or in terms
of the sparse approximation, a dictionary, where each column represents a basis
function rl = [Ruu[−τl], Ruu[Ts − τl], . . . , Ruu[(N − 1)Ts − τl]]

T .

Now, let us assume that we have an antenna array with P receive elements where
each estimation window consists of I SIMO blocks. Since the delays are initialized
incoherently, we may neglect the channel structure along the time samples ti and
space p (antenna sensors) dimensions and consider each measured channel as an
independent realization. Thus we can say that we have J = I × P statistically
independent SISO channel realizations zj , j = 0, . . . , J − 1.

The greedy iteration of the MP is carried out as follows: first, the atom rl from
the dictionary K that best approximates the measured signal z

[0]
j is selected. The

squared norm L2 is often used as a metric to measure the quality of approxima-
tion simply because of its mathematical convenience, although other criteria can be
imagined. A graphical representation of this procedure is given in Fig. 3.4.

The projection of the z
[0]
j on the selected basis (e.g., r1 as in Fig. 3.4) is then

subtracted from signal z
[0]
j and the process is iterated on the residual z

[1]
j .

The MP algorithm is in some sense equivalent the the Gramm-Schmidt orthogo-
nalization procedure, since the obtained residual is always orthogonal to the selected
vectors in the expansion4. It also can be thought as a successive interference can-
cellation approach to initialize multipath parameters as proposed in [FTH+99].

4However, the basis is constrained to be neither orthogonal, nor normalized.
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Figure 3.4: Matching Pursuit greedy signal approximation.

The MP algorithm with a fixed number of components is presented in Algorithm
3.2.

Algorithm 3.2 MP algorithm for delay initialization

Initialize the dictionary D ≡ K.
Initial residual d

[0]
j = zj

% — begin MP iterations —%
for l = 1, . . . , L

Find the best matching atom

rl = argmax
r∈D

J−1∑

j=0

|rH ,d[l−1]
j |

Compute:

wlj =
rHl d

[l−1]
j

‖rl‖2
, d

[l]
j = d

[l−1]
j − wljrl

end

Resulting approximation

zj ≈
L∑

l=1

wljrl

The presented algorithm constrains L to a certain predefined number, just as we
need in the SAGE algorithm. Alternatively, one can proceed with the MP iterations
until the energy of the residual z

[l]
j falls below the certain threshold. In this case

the MP iterations guarantee to produce the representation that capture the desired
portion of the total impulse response power. However, finding objective rules to
select this threshold is not a trivial task. A threshold-based model order selection
procedure will be discussed later in Chapter 4. Algorithm 3.2 also accounts for the
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multiple channels specific to SIMO/MISO and MIMO systems: the best matching
atom is found jointly over the J = I × P channel realizations, following the idea
of simultaneous matching pursuit presented in [TGS05]. Of course, we assume that
the structure of the channel stays invariant over the estimation window O.

Once the delays have been found, we can initialize other multipath parameters.
We initialize them using the coefficients wlj. The obtained coefficients are organized
in the structure shown in Fig. 3.5.

...
... ... ...p = 0p = 0p = 0 p = 1p = 1p = 1 p = P − 1p = P − 1p = P − 1

wl0 wl1 wl(J−1)

i = 0 i = 1 i = I − 1

Figure 3.5: Structure of the coefficients wlj for a single basis rl.

We can easily transform coefficients wlj into the matrix W l with columns and
rows corresponding to the time and space, respectively, as shown in Fig. 3.6.

......

p = 0

p = 1

p = P − 1

wl0

wl(J−1)

i = 0 i = 1 i = I − 1

Figure 3.6: Structure of the matrix W l.

Coefficients in the matrix W l are then used to initialize the angular information.
Let as define γi as the ith column of the matrix W l, so that W l = [γ0 . . .γI−1].
Then, the initial value of the DoA φl is found as the maximizer of the following
function

φl = argmax
φ

I−1∑

i=0

|γHi c(φ)|. (3.30)

Similarly, we can initialize the Doppler frequency. Let as define δp as the pth row
of the matrix W l, so that W l = [δT0 . . . δ

T
P−1]

T . Then, the incoherent initialization
of the Doppler frequency for the lth component is found as the value that maximizes

νl = argmax
φ

P−1∑

p=0

|d(ν)δHp |, (3.31)
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where d(ν) = [d0(ν) . . . dI−1(ν)], and

di(ν) = exp(j2π(i− (I − 1)/2)νTf ), i = 0, . . . , I − 1. (3.32)

Finally, the initialization of the multipath gain al is found as

al =
cH(φl)W ld

H(νl)

||c(φl)||2||d(νl)||2
, (3.33)

where φl and νl are solutions to the maximization problems (3.30) and (3.31), re-
spectively. This finalizes the initialization of the SAGE algorithm.

3.2.2 Some application examples

To demonstrate the resulting multipath parameter estimation we consider appli-
cation of the SAGE algorithm to measured channel data from the FTW database
described in Appendix C. Since the SAGE algorithm minimizes the functional
(3.16), we thus consider the resulting goodness-of-fit between the real power profiles
and those obtained based on the SAGE estimates assuming different numbers of the
multipath components L (Figures 3.8-3.11).

In all simulations I = 5, with Te = 20msec, which for the FTW database corre-
sponds to the spatial resolution of ≈ λ/7. The receive antenna is a linear array with
P = 8 elements. The multipath parameter estimation was done sequentially over
560msec of measurement time, which corresponds to ≈ 4λ of walked distance, or 29
consecutive estimation windows. Evolution of the corresponding measured power
delay profile is shown in Fig. 3.7.
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Figure 3.8: Goodness-of-fit for the SAGE approximation with L = 1.
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Figure 3.9: Goodness-of-fit for the SAGE approximation with L = 3.
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Figure 3.10: Goodness-of-fit for the SAGE approximation with L = 15.
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Figure 3.11: Goodness-of-fit for the SAGE approximation with L = 30.



46 3. MIMO channel estimation

The first estimation results in Fig. 3.8 are for L = 1.
Clearly in this case the algorithm converges after just a few iterations (Fig. 3.8(a)).

From the results in Fig. 3.8(c) we can conclude that not all of the multipath com-
ponents have been captured, since a significant part of the total measured energy
was not captured.

By increasing the number of components we can improve the SAGE fit to the data
(Fig. 3.9, 3.10, and 3.11), since with more components we can fit the data better. Of
course the paid price is the increased estimation complexity: the algorithm requires
more iterations to converge, and it is more prone to land in the local maximum of
the likelihood. As the result, a proper initialization becomes a crucial aspect.

In the presented plots we also demonstrate how the estimated parameters (in
this case delay, Doppler frequency, and DoA) vary with time (Fig. 3.8(b), 3.9(b),
3.10(b), and 3.11(b)). These plots partly show the necessity of multipath tracking,
addressed in Chapter 5. To put it shortly, we need tracking to join the multipath
estimations over time into multipath trajectories.

3.3 Conclusions and discussion

Let us summarize the results obtained in this chapter. In the beginning we con-
sidered channel sounding in the time and frequency domains. These are used to
obtain channel measurement data that is used as the basis of our channel prediction
approach.

In this work we consider channel data obtained using channel sounding equipment.
Channel sounders are specifically designed for obtaining very accurate channel rep-
resentations. Keep in mind that in the communication system, where the prediction
algorithm would mostly be desired, the main goal is in delivering information to the
recipient, rather than extracting channel data.

Clearly, working with high-resolution channel data obtained using a channel sounder
is easier. However, such data might not always be available. Thus, we understand
that in general the whole prediction framework should be adjusted so as to cope
with the obtained channel data structure and resolution.

Parameter estimation

In order to be able to estimate the multipath parameters we take the plane wave
channel model, developed in Chapter 2. In the general case we cannot say that the
plane wave assumption always holds. If this assumption is not met, we would expect
some performance degradation that mainly results in biased parameter estimates.
This might result in additional multipath parameter noise that affects the tracking
of the components over time. Thus, we would expect the best performance for the
components that represent plane wavefronts.

The availability of the channel model allows to apply model-based parameter
estimation algorithms within, for instance, the Maximum Likelihood framework. In
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our work we exploit a particular instance of the Maximum Likelihood algorithm,
known as SAGE. The SAGE algorithm is particularly useful for high dimensional
optimizations, which is exactly the case for the joint estimation of the multipath
parameters. This algorithm was shown to have good convergence properties, but
due to iterative nature it requires a good initialization to avoid landing in local
maxima of the likelihood function. It is common to derive the SAGE initialization
directly from the measured data, as we explained in Section 3.2.1.

A particularly important aspect that arises when applying the SAGE algorithm
to multipath parameter estimation is the estimation artifacts. The artifacts stem
from the numerical optimization used in solving (3.16). This optimization involves
quantizing the parameter search space, which effectively results in parameter value
discretization. As the result, a single multipath component with parameters defined
on the real line is approximated by several components with discretized parameters
(Fig. 3.12). When the resolution of the discrete-time model is not fine enough,

τ1 τ2 τ3τ ′

Figure 3.12: Approximation of a single component with delay τ ′ by three discrete
components with delays τ1, τ2, and τ3.

the estimation algorithm uses several discrete components to approximate a single
continuous-time component. Since the number of components in the model is fixed,
this might lead to some of them being used solely for approximation purposes and
not for modelling individual propagation paths.

This problem is similar to the problem that occurs in fractional delay filters (FDF)
[LVML96]. An FDF aims at approximating a delay that is not a multiple of the
sampling period. As shown in [LVML96], such filters have infinite impulse response.
Though FIR approximations exist, they require several samples to represent a sin-
gle fractional delay. In our case these additional components are very undesirable.
For example, when using SAGE with L = 2, we might estimate two components
corresponding to the same multipath, rather than two physically different multi-
path components. These artifacts have correlated parameters, and therefore might
cause difficulties for the tracking algorithm. They prevent other, possibly weaker,
multipath components to be extracted from the measurement data, too.

Thus, it would be desired to introduce a mechanism that allows estimating the
number of multipath components L from the data to minimize the chance of missing
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some of the potential multipaths. In the following chapter, we consider an algorithm
that implements this approach within the Bayesian framework.



Chapter 4

Evidence Procedure and channel
estimation

In this chapter we consider a Bayesian approach to estimation of wireless channels.
As it was shortly mentioned in Chapter 3, the complete channel estimation problem
consists of finding the number L of impinging wavefronts and their corresponding
parameters. Joint estimation of the model order L and model parameters is the most
desired solution, but it is a particularly difficult task. It often leads to analytically
intractable and computationally very expensive optimization procedures.

The problem is often relaxed by assuming that the number of components is fixed,
which simplifies optimization in many cases like, for instance, in the SAGE algorithm
[KV96, FTH+99] discussed in Section 3.2.

There are however ways to estimate the model order from the measured data. Em-
pirical methods, exemplified by cross-validation, can be employed (see, for example,
[DHS00]). Cross-validation selects the optimal model by measuring its performance
over a validation data set and selecting the one that performs the best. In case
of practical multipath channels, such data sets are often not available due to the
time-variability of the channel impulse responses.

Alternatively, one can employ model selection schemes in the spirit of Ockham’s
razor: simple models (in terms of the number of parameters involved) are preferred
over more complex ones. It is clear that the simpler the model is, the worse it
approximates the measured data. Thus, there is an optimum solution that balances
the approximation quality with the number of involved parameters. This approach
does not require the validation set, but instead relies on the data model, which makes
the Ockham’s razor particularly interesting for model-based estimation algorithms.
Examples are the Akaike Information Criterion (AIC) and Minimum Description
Length (MDL) principle [WK85, Ris78]. Since in our case the data model is readily
available, we take this approach in the proposed algorithm.

Consider a certain class of parametric models (hypotheses) Hi defined as the
collection of prior distributions p(wi|Hi) for the model parameters wi

1. Given the
measurement data Z and a family of conditional distributions p(Z|wi,Hi), our goal
is to infer the hypothesis Ĥ and the corresponding parameters ŵ that maximize the

1Here the subscript i denotes different possible hypothesis rather than sounding sequence periods,
as in Chapter 3.

49
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posterior

{ŵ, Ĥ} = argmax
wi,Hi

{

p(wi,Hi|Z)
}

. (4.1)

The key to solving (4.1) lies in inferring the corresponding parameters wi and Hi

from the data Z, which is often a nontrivial task. As far as the Bayesian methodology
is concerned, there are two ways this inference problem can be solved [Hay01, sec.
5]. In the joint estimation method, p(wi,Hi|Z) is maximized directly with respect to
the quantities of interest wi and Hi. This often leads to computationally intractable
optimization algorithms. Alternatively, one can rewrite the posterior p(wi,Hi|Z)
as

p(wi,Hi|Z) = p(wi|Z,Hi)p(Hi|Z) (4.2)

and maximize each term on the right-hand side sequentially from right to left. This
approach is known as the marginal estimation method. Marginal estimation methods
(MEM) are well exemplified by Expectation-Maximization (EM) algorithms and
used in many different signal processing applications (see [DHS00, FW88, FTH+99]).
MEMs are usually easier to compute, however they are prone to land in a local rather
than global optimum.

We recognize the first factor on the right-hand side of (4.2) as a parameter pos-
terior, while the other one is a posterior for different model hypotheses. It is the
maximization of p(Hi|Z) that guides our model selection decision. Then, the data
analysis consists of two steps [Mac03, ch. 28],[Fit98]:

1. Inferring the parameter posterior under the hypothesis Hi

p(wi|Z,Hi) =
p(Z|wi,Hi)p(wi|Hi)

p(Z|Hi)
≡ Likelihood × Prior

Evidence
. (4.3)

2. Comparing different model hypotheses using the model posterior

p(Hi|Z) ∝ p(Z|Hi)p(Hi) ≡ Evidence × Hypothesis Prior. (4.4)

In the second stage, p(Hi) measures our subjective prior over different hypotheses
before the data is observed. In many cases it is reasonable to assign equal probabil-
ities to different hypotheses, thus reducing the hypothesis selection to selecting the
model with the highest evidence2 p(Z|Hi). The evidence can be expressed as the
following integral:

p(Z|Hi) =

∫

p(Z|wi,Hi)p(wi|Hi)dwi. (4.5)

Maximizing this integral with respect to the unknown model Hi is known as the
evidence maximization procedure, or Evidence Procedure (EP) [Mac92, Mac94].
The evidence integral (4.5) plays a crucial role in the development of Schwarz’s

2In the Bayesian literature, the evidence is also known as the likelihood for the hypothesis Hi
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approach to model order estimation [Sch78] (Bayesian Information Criterion), as
well as in a Bayesian interpretation of Rissanen’s MDL principle, as well as its
variations [Ris96, Ris78, Lan01].

Relevance Vector Machines (RVM), originally proposed by M. Tipping [Tip01],
are an example of the marginal estimation method that, for a set of hypotheses
Hi, iteratively approximates (4.1) by alternating between the model selection, i.e.,
maximizing (4.5) with respect to Hi, and inferring the corresponding model param-
eters from maximization of (4.3). RVMs have been initially proposed to find sparse
solutions to general linear problems. However, they can be quite effectively adapted
to the estimation of the impulse response of wireless channels, thus resulting in
an effective channel parameter estimation and model selection scheme within the
Bayesian framework.

The material presented in the paper is organized as follows: Section 4.1 introduces
general assumptions we take to apply the EP algorithm, as well as the used notations,
Section 4.2 explains the framework of the EP in the context of wireless channels.
In Section 4.3 we explain how model selection is implemented within the presented
framework and discuss the relationship between the EP and the MDL criterion for
model selection. Finally, Section 4.4 presents some application results illustrating
the performance of the RVM-based estimator in synthetic as well as in actual wireless
environments.

4.1 Signal model

The method we develop is primarily based on the signal model of the sampled mul-
tipath channel corresponding to the planar wave assumption, discussed in Sections
3.1.3 and 3.1.4.

Initially we will, however, restrict ourselves to estimating the model order L along
with the vector wp in (3.12), rather than the constituting parameters τl, φl, νl,
and al. We will also quantize, although arbitrarily fine3, the search space for the
multipath delays τl. Thus, we do not try to estimate the channel parameters with
infinite resolution, but rather fix the search grid at a certain accuracy, which is
dictated by a particular application.

The size of the delay search space L0 and the resulting quantized delays T =
{T1, . . . , TL0}, form the initial model hypothesis H0, which would manifest itself in
the columns of the matrix K in (3.12).

As it can be seen, our idea lies in finding the closest approximation of the
continuous-time model (3.10) with the discrete-time equivalent (3.12). By incor-
porating the model selection in the analysis, we also strive to find the most compact
representation (in terms of the number of components), while preserving good ap-
proximation quality. Thus, our goal is to estimate the channel parameters wp as

3There is actually a limit beyond which it makes no sense to make the search grid finer, since
it will not decrease the variance of the estimates, which is lower-bounded by the Cramer-Rao
lower bound [FTH+99].
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well as to determine how many multipath components L ≤ L0 are present in the
measured impulse response. The application of the RVM framework to this problem
follows in the next section.

4.2 Evidence maximization, Relevance Vector

Machines and wireless channels

We begin our analysis following the steps outlined in the beginning of this chapter.
In order to ease the algorithm description we first assume that P = 1, i.e., only a
single sensor is used. Extensions to the case P > 1 is carried out later in Section
4.2.2. To simplify the notations, we also drop the subscript index p in our further
notations.

From (3.12) it follows that the observation vector z is a linear combination of the
vectors from the column-space of K, weighted according to the parameters w and
embedded in the correlated noise ξ. In order to correctly assess the order of the
model, it is imperative to take the noise process into account. It follows from (3.15)
that the covariance matrix of the noise is proportional to the unknown spectral
height N0, which should therefore be estimated from the data. Thus, the model
hypotheses Hi should include the term N0. In the following analysis we assume that
β = N−1

0 is Gamma-distributed [Tip01], with the corresponding probability density
function (pdf) given as

p(β|c, d) =
cd

Γ(d)
βd−1 exp(−cβ), (4.6)

with parameters c and d predefined so that (4.6) accurately reflects our a priori
information about N0. In the absence of any a priori knowledge one can make use of
a non-informative (i.e., flat in the logarithmic domain) prior by fixing the parameters
to small values d = c = 10−4 [Tip01]. Furthermore, to steer the model selection
mechanism, we introduce an extra parameter (hyperparameter) αl, l = 1, . . . , L0,
for each column in K. This parameter measures the contribution or relevance of the
corresponding weight wl in explaining the data z from the likelihood p(z|wi,Hi).
This is achieved by specifying the prior p(w|α) for the model weights:

p(w|α) =

L0∏

l=1

αl
π

exp(−|wl|2αl), (4.7)

which is in our case a zero-mean complex multivariate Gaussian. High values of αl
will render the contribution of the corresponding column in the matrix K ‘irrele-
vant’, since the weight wl is likely to have a very small value (hence they are termed
relevance hyperparameters). This will enable us to prune the model by setting the
corresponding weight wl to zero, thus effectively removing the corresponding col-
umn from the matrix and the corresponding delay Tl from the delay search space
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T . We also see that α−1
l is nothing else as the prior variance of the model weight

wl. Also note that the prior (4.7) implicitly assumes statistical independence of the
multipath contributions.

To complete the Bayesian framework, we also specify the prior over the hyperpa-
rameters. Similarly to the noise contribution, we assume the hyperparameters αl to
be Gamma-distributed with the corresponding pdf

p(α|a, b) =

L∏

l=1

ba

Γ(a)
αa−1
l exp(−bαl),

where a and b are fixed at some values that ensure an appropriate form of the prior.
Again, we can make this prior non-informative by fixing a and b to small values,
e.g., a = b = 10−4.

Now, let us define the hypothesis Hi more formally. Let P(S) be a power set
consisting of all possible subsets of basis vector indices S = {1, . . . , L0}, and i 7→
P(i) be the indexing of P(S) such that P(0) = P(S). Then for each index value i
the hypothesis Hi is the set Hi = {β;αj, j ∈ P(i)}. Clearly, the initial hypothesis
H0 = {β;αj, j ∈ S} includes all possible potential basis functions.

Now we are ready to outline the learning algorithm that estimates the model
parameters w, β, and hyperparameters α from the measurement data z.

4.2.1 Learning algorithm

Basically, learning consists of inferring the values of wi and the hypothesis Hi that
maximize the posterior (4.2): p(wi,Hi|Z) ≡ p(wi,αi, β|z). Here αi denotes the
vector of all evidence hyperparameters associated with the ith hypothesis. The
latter expression can also be rewritten as

p(w,α, β|z) = p(w|z,α, β)p(α, β|z). (4.8)

The explicit dependence on the hypothesis index i has been dropped to simplify
the notation. We recognize that the first term p(w|z,α, β) in (4.8) is the weight
posterior and the other one p(α, β|z) is the hypothesis posterior. From this point
we can start with the Bayesian two-step analysis as has been indicated before.

Assuming the parameters α and β are known, estimation of model parameters
consists in finding values w that maximize p(w|z,α, β). Using Bayes’ rule we can
rewrite this posterior as

p(w|z,α, β) ∝ p(z|w,α, β)p(w|α, β). (4.9)

Consider the Bayesian graphical model [Hec95] in Fig. 4.1. This graph captures
the relationship between different variables involved in (4.8). It is a useful tool to
represent the dependencies between the variables involved in the analysis in order
to factor the joint density function into contributing marginals.
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α1

w1

z[0] z[N − 1]

α2

w2

αL

wL

β

Figure 4.1: Graphical model representing the dependence structure of the discrete-
time model of the wireless channel.

It immediately follows from the structure of the graph in Fig. 4.1 that p(z|w,α, β) =
p(z|w, β) and p(w|α, β) = p(w|α), i.e., z and α are conditionally independent
given w and β, and w and β are conditionally independent given α. Thus, (4.9) is
equivalent to

p(w|z,α, β) ∝ p(z|w, β)p(w|α), (4.10)

where the second factor on the right-hand side is given in (4.7). The first term is
the likelihood of w and β given the data. From (3.12) it follows that

p(z|w, β) =
exp{−(z − Kw)HβΛ−1(z − Kw)}

πN |β−1Λ| .

Since both right-hand factors in (4.10) are Gaussian densities, p(w|z,α, β) is also
a Gaussian density with the covariance matrix Φ and mean µ given as

Φ = (A + βKHΛ−1K)−1. (4.11)

µ = βΦKHΛ−1z, (4.12)

The matrix A = diag(α) is a diagonal matrix that contains the evidence parameters
αl on its main diagonal. Clearly, µ is a maximum a-posteriori (MAP) estimate of the
parameter vector w under the hypothesis Hi, with Φ being the covariance matrix
of the resulting estimates. This completes the model fitting step.

Our next step is to find parameters α and β that maximize the hypothesis pos-
terior p(α, β|z) in (4.8). This density function can be represented as p(α, β|z) ∝
p(z|α, β)p(α)p(β), where p(z|α, β) is the evidence term and p(α)p(β) is the hy-
pothesis prior. As it was mentioned earlier, it is quite reasonable to choose non-
informative hypothesis priors since we would like to give all possible hypotheses Hi
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an equal chance of being valid. This can be achieved by setting a, b, c, and d to very
small values. In fact, as it will follow from the learning algorithm, it is possible to
set them to zero, effectively forming uniform (over the logarithmic scale) hyperpriors
for α and β. This formulation of prior distributions is related to automatic rele-
vance determination (ARD) [Nea96, Mac94]. As a consequence of this assumption,
the maximization of the model posterior is equivalent to the maximization of the
evidence, which is known as the Evidence Procedure [Mac92].

The evidence term p(z|α, β) can be expressed as

p(z|α, β) =

∫

p(z|w, β)p(w|α)dw

=
exp

(

− zH(β−1Λ + KA−1KH)−1z
)

πN |β−1Λ + KA−1KH | ,

(4.13)

which is equivalent to (4.5), where conditional independencies between variables
have been used to simplify the integrands. In the Bayesian literature this quantity
is known as marginal likelihood and its maximization with respect to the unknown
hyperparameters α and β is a type-II maximum likelihood method [Ber85]. To ease
the optimization, several terms in (4.13) can be expressed as a function of the weight
posterior parameters µ and Φ as given by (4.11) and (4.12). Then, by taking the
derivatives of the logarithm of (4.13) with respect to α and β and by setting them
to zero, we obtain its maximizing values as

αl =
1

Φll + |µl|2
, (4.14)

N0 = β−1 =
tr[ΦKHΛ−1K] + (z − Kµ)HΛ−1(z − Kµ)

N
. (4.15)

In (4.14) µl and Φll denote the lth element of, respectively, the vector µ, and the
main diagonal of the matrix Φ. Unlike the maximizing values obtained in the original
RVM paper [Tip01, (18)], (4.15) is derived for the extended, more general case of
colored additive noise ξ with the corresponding covariance matrix β−1Λ arising due
to the MF processing at the receiver. Clearly, if the noise is assumed to be white,
expressions (4.14) and (4.15) coincide with those derived in [Tip01].

Thus, for a particular hypothesis Hi the learning algorithm proceeds by repeated
application of (4.11) and (4.12), alternated with the update of the corresponding
evidence parameters αi and β from (4.14) and (4.15), as depicted in Fig. 4.2, until
some suitable convergence criterion has been satisfied. Provided a good initialization
α

[0]
i and β [0] is chosen, the scheme in Fig. 4.2 converges after j iterations to the

stationary point of the system of coupled equations (4.11), (4.12), (4.14), and (4.15).
Then, the maximization (4.1) is performed by selecting the hypothesis that results
in the highest posterior (4.2).

In practice, however, we will observe that during the re-estimation process many
of the hyperparameters αl tend to very large values, or, in fact, become numerically
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Figure 4.2: Iterative learning of the parameters; The superscript [j] denotes the
iteration index.

indistinguishable from infinity given the computer accuracy4. This enables us to
approximate (4.1) by performing an on-line model selection: starting from the initial
hypothesis H0, we prune the hyperparameters that become larger than a certain
threshold as the iterations proceed by setting them to infinity. In turn, this sets
the corresponding coefficient wl to zero, thus “switching off” the lth column in the
kernel matrix K and removing the delay Tl from the search space T . This effectively
implements the model selection by creating smaller hypotheses Hi < H0 (with fewer
basis functions), without performing an exhaustive search over all the possibilities.
The choice of the threshold will be discussed in Section 4.3.

4.2.2 Extensions to multiple channel observations

In this subsection we extend the above analysis to multiple channel observations
or multiple-antenna systems. When detecting multipath components any additional
channel measurement (either in time, by observing several periods of the burst wave-
form u(t), or in space, by using multiple-sensor antennas) can be used to increase
detection quality. Of course, it is important to make sure that the multipath com-
ponents are time-invariant within the observation interval and space invariant over
the length of the array. The basic idea how to incorporate several channel observa-
tions is quite simple: in the original formulation each hyperparameter αl was used
to control a single weight wl and thus the corresponding column in the design ma-
trix K. Having several channel observations we can tie them together by utilizing
only a single hyperparameter for a physical multipath component present in chan-
nel observations. Usage of a single parameter in this case expresses the channel
coherence property in the Bayesian framework. The corresponding graphical model
that illustrates this idea for a single hyperparameter αl is depicted in Fig. 4.3. It
is interesting to note that similar ideas, though in a totally different context, were
adopted to train neural networks by allowing a single hyperparameter to control a
group of weights [Nea96].

4In the finite sample size case, however, this will only happen in the high SNR regime. Otherwise,
αl will take large but still finite values.



4.2. Evidence maximization, RVM and wireless channels 57
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β

Figure 4.3: Usage of αl in a multiple-observation discrete-time wireless channel
model to represent P coherent channel measurements.

Now, let us return to (3.12). It can be seen that the weights wp capture the
structure induced by multiple antennas. However, for the moment we ignore this
structure and treat the components of wp as a wide-sense stationary (WSS) process
over the individual channels, p = 0, . . . , P−1. We will also allow each sensor to have
a different MF. This might not necessarily be the case for wireless channel sounding,
but thus a more general situation can be considered. Different matched filters result
in different design matrices Kp, and thus different noise covariance matrices Σp,
p = 0, . . . , P − 1. The only requirement is that the variance of the input noise
remains the same and equals N0 = β−1 for all channels, so that Σp = N0Λp, and
the noise components are statistically independent among the channels. Then, by
defining

Σ̃ = β−1






Λ0 0
. . .

0 ΛP−1




 , Ã =






A 0
. . .

0 A






︸ ︷︷ ︸

P×P block matrix

,

K̃ =






K0 0
. . .

0 KP−1




 , z̃ =






z0
...

zP−1




 , w̃ =






w0
...

wP−1




 ,

(4.16)

we rewrite equation (3.12) as
z̃ = K̃w̃ + ξ̃. (4.17)

A crucial point of this system representation is that the hyperparameters αl are
shared by P channels as it can be seen in the structure of the matrix Ã. This will
have a corresponding effect on the hyperparameter re-estimation algorithm.
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From the structural equivalence of (3.12) and (4.17) we can easily infer that equa-
tions (4.11) and (4.12) are modified as follows:

Φp = (A + βKH
p Λ−1

p Kp)
−1, (4.18)

µp = βΦpK
H
p Λ−1

p zp, p = 0, . . . , P − 1. (4.19)

The expressions for the hyperparameter updates become a bit more complicated
but are still straight-forward to compute. It is shown in the Appendix E that:

αl =
P

∑P−1
p=0

(

Φp,ll + |µp,l|2
) , (4.20)

N0 = β−1 =
1

NP

(
P−1∑

p=0

tr[ΦpK
H
p Λ−1

p Kp]+

+
P−1∑

p=0

(zp − Kpµp)
HΛ−1

p (zp − Kpµp)

) (4.21)

where µp,l is the lth element of the MAP estimate of the parameter vector wp given
by (4.19), and Φp,ll is the lth element on the main diagonal of Φp from (4.18).
Comparing the latter expressions with those developed for the single channel case,
we observe that (4.20) and (4.21) use multiple channels to improve the estimates of
the noise spectral height and channel weight hyperparameters. They also offer more
insight into the physical meaning of the hyperparameters α. On the one hand, the
hyperparameters are used to regularize the matrix inversion (4.18), needed to obtain
the MAP estimates of the parameters wp,l and their corresponding variances. On
the other hand, they are acting as the inverse of the second noncentral moments of
the coefficients wp,l, as can be seen from (4.20).

4.3 Model selection and basis pruning

The ability to select the best model to represent the measured data is an important
feature of the proposed scheme, and thus it is paramount to consider in more detail
how the model selection is effectively achieved. In Section 4.2.1 we have shortly
mentioned that during the learning phase many of the hyperparameters αl’s tend
to large values, meaning that the corresponding weights wl’s will cluster around
zero according to the prior (4.7). This will allow us to set these coefficients to zero,
thus effectively pruning the corresponding basis function from the design matrix.
However the question how large a hyperparameter has to grow in order to prune its
corresponding basis function has not yet been discussed. In the original RVM paper
[Tip01], the author suggests using a threshold αth to prune the model. The empirical
evidence collected by the author suggests setting the threshold to “a sufficiently
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large number” (e.g., αth = 1012). However, our theoretical analysis presented in the
following section will show that such high thresholds are only meaningful in very
high SNR regimes, or if the number of channel observations P is sufficiently large. In
more general, and often more realistic, scenarios such high thresholds are absolutely
impractical. Thus, there is a need to study the model selection in the context of the
presented approach more rigorously.

Below, we present two methods for implementing model selection within the pro-
posed algorithm. The first method relies on the statistical properties of the hyperpa-
rameters αl, when the update equations (4.18), (4.19), (4.20), and (4.21) converge
to a stationary point. The second method exploits the relationship that we will
establish between the proposed scheme and the Minimum Description Length prin-
ciple [WK85, Mac03, Grü05, BRY98], thus linking the EP to this classical model
selection approach.

4.3.1 Statistical analysis of the hyperparameters in the

stationary point

The decision to keep or to prune a basis function from the design matrix is based
purely on the value of the corresponding hyperparameter αl. In the following we
analyze the convergence properties of the iterative learning scheme depicted in Fig.
4.2 using expressions (4.18), (4.19), (4.20), and (4.21), and the resulting distribution
of the hyperparameters once convergence is achieved.

We start our analysis of the evidence parameters αl by making some simplifications
to make the derivations tractable:

• P channels are assumed.

• The same MF is used to process each of the P sensor output signals, i.e.,
K1 = . . . = KP = K and Σ1 = . . . = ΣP = Σ = β−1Λ.

• The noise covariance matrix Σ = β−1Λ is known, and B = Σ−1.

• We assume the presence of a single multipath component, i.e., L = 1, with
known delay τ . Thus, the design matrix is given as K = [r(τ)], where r(τ) =
[Ruu(−τ), Ruu(Ts−τ), . . . , Ruu((N−1)Ts−τ)]T is the associated basis function.

• The hyperparameter associated with this component is denoted as α.

Our goal is to consider the steady-state solution α∞ for hyperparameter α in this
simplified scenario. In this case (4.18) and (4.19) simplify to

φ = (α+ r(τ)HBr(τ))−1,

µp = φKHBzp =
r(τ)HBzp

α + r(τ)HBr(τ)
, p = 0, . . . , P − 1.
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Inserting these two expressions into (4.20) yields

α−1 = φ+

∑

p |µp|2
P

=
1

α + r(τ)HBr(τ)
+

∑

p

∣
∣
∣

r(τ)HBzp

α+r(τ)HBr(τ)

∣
∣
∣

2

P
. (4.22)

From (4.22) the solution α∞ is easily found to be

α∞ =
(r(τ)HBr(τ))2

1
P

∑

p |r(τ)HBzp|2 − r(τ)HBr(τ)
. (4.23)

A closer look at (4.23) reveals that the right-hand side expression might not always
be positive since the denominator can be negative for some values of zp. This
contradicts the assumption that the hyperparameter α is positive5. Moreover, all
terms in (4.22) are positive, and thus the resulting solution must be positive as well.
A further analysis of (4.22) reveals, that (4.20) converges to (4.23) if, and only if,
the denominator of (4.23) is positive:

1

P

∑

p

|r(τ)HBzp|2 > r(τ)HBr(τ). (4.24)

Otherwise, the iterative learning scheme depicted in Fig. 4.2 diverges, i.e., α∞ = ∞.
This can be inferred by interpreting (4.20) as a nonlinear dynamical system that, at
iteration j, maps α[j−1] into the updated value α[j]. The nonlinear mapping is given
by the right-hand side of (4.20), where the quantities Φp and µp depend on the values
of the hyperparameters at iteration j − 1. In Fig. 4.4 we show several iterations of
this mapping that illustrate how the solution trajectories evolve. If condition (4.24)
is satisfied, the sequence of solutions {α[j]} converges to a stationary point (Fig.
4.4(a)) given by (4.23). Otherwise, {α[j]} diverges (Fig. 4.4(b)). Thus, (4.22) is a
stationary point only provided the condition (4.24) is satisfied:

α∞ =

{
(r(τ)HBr(τ))2

P

p |r(τ)HBzp|2

P
−r(τ)HBr(τ)

; condition (4.24) is satisfied

∞; otherwise.
(4.25)

Practically, this means that for a given measurement zp, and known noise covariance
matrix B, we can immediately decide whether a given basis function r(τ) should
be included in the basis by simply checking if (4.24) is satisfied or not. A similar
analysis is performed in [FT02], where the behavior of the likelihood function with
respect to a single parameter is studied. The obtained convergence results coincide
with ours when P = 1. Expression (4.24) is, however, more general and accounts
for multiple channel observations and colored noise. In [FT02] the authors also
suggest that testing (4.24) for a given basis function r(τ) is sufficient to find a
sparse representation and no further pruning is necessary. In other words, each basis

5Recall that α−1 is the prior variance of the corresponding parameter w. This constrains α to be
nonnegative.
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Figure 4.4: Evolution of the two representative solution trajectories for two cases:
(a) {α[j]} converges, (b) {α[j]} diverges.

function in the design matrix K is subject to the test (4.24) and, if the test fails, i.e.,
(4.24) does not hold for the basis function under test, the basis function is pruned.
In case of wireless channels, however, we have observed experimentally that even in
simulated high-SNR scenarios such pruning results in a significantly overestimated
number of multipath components. Moreover, it can be inferred from (4.24) that, as
the SNR increases, the number of functions pruned with this approach decreases,
resulting in less and less sparse representations. This motivates us to perform a
more detailed analysis of (4.25).

Let us slightly modify the assumptions we made earlier. We now assume that the
multipath delay τ is unknown. The design matrix is constructed similarly but this
time K = [rl], where

rl = [Ruu(−Tl), . . . , Ruu((N − 1)Ts − Tl)]
T

is the basis function associated with the delay Tl ∈ T used in our discrete-time
model.

Under these assumptions the input signal zp is nothing else but the basis function
r(τ) scaled and embedded in the additive complex zero-mean Gaussian noise with
covariance matrix Σ, i.e.,

zp = wpr(τ) + ξp. (4.26)

Let us further assume that wp ∈ C, p = 0, . . . , P − 1 are unknown but fixed
complex scaling factors. In further derivations we assume, unless explicitly stated
otherwise, that the condition (4.24) is satisfied for the basis rl. By plugging (4.26)
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into (4.23) and rearranging the result with respect to α−1
∞ we arrive at:

α−1
∞ =

|rHl Br(τ)|2∑p |wp|2
P |rHl Brl|2

+
2
∑

p Re{wprHl Br(τ)ξHp Brl}
P |rHl Brl|2

+

rHl B
(
∑

p ξpξ
H
p

)

Brl

P |rHl Brl|2
− 1

rHl Brl
.

(4.27)

Now, we consider two scenarios. In the first scenario τ = Tl ∈ T , i.e., the discrete-
time model matches the observed signal. Although unrealistic, this allows to study
the properties of α−1

∞ more closely. In the second scenario, we study what happens
if the discrete-time model does not match perfectly the measured signal. This case
helps us to define how the model selection rules have to be adjusted to consider
possible misalignment of the path component delays in the model.

Model match: τ = Tl

In this situation, rl = r(τ), and thus (4.27) can be further simplified according to

α−1
∞ =

∑

p |wp|2
P

+
2
∑

p Re{wpξpBrl}
P (rHl Brl)

+
rHl B

(
∑

p ξpξ
H
p

)

Brl

P (rHl Brl)2
− 1

rHl Brl
, (4.28)

where the only random quantity is the additive noise term ξp. This allows us to
study the statistical properties of the finite stationary point in (4.25).

Equation (4.28) shows how the noise and multipath component contribute to α−1
∞ .

If all wp are set to be zero, i.e., there is no multipath component, then α−1
∞ = α−1

n

reflects only the noise contribution:

α−1
n =

rHl B
(
∑

p ξpξ
H
p

)

Brl

P (rHl Brl)2
− 1

rHl Brl
. (4.29)

On the other hand, in the absence of noise, i.e., in the infinite SNR case, the cor-
responding hyperparameter α−1

∞ includes the contribution of the multipath compo-
nent6 α−1

s :

α−1
s =

∑

p |wp|2
P

+
2
∑

p Re{wpξHp Brl}
P (rHl Brl)

. (4.30)

In a realistic case, both noise and multipath component are present, and α−1
∞ consists

of the sum of two contributions α−1
∞ = α−1

s + α−1
n . Both quantities α−1

s and α−1
n are

random variables with pdf’s depending on the number of channel observations P ,
the basis function rl, and the noise covariance matrix Σ. In the sequel we analyze
their statistical properties.

6Actually, the second term in the resulting expression vanishes in a perfectly noise-free case, and
then α−1

s =
∑

p |wp|2/P .
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We first consider α−1
s . The first term on the right-hand side of (4.30) is a deter-

ministic quantity that equals the average power of the multipath component. The
second one, on the other hand, is random. The product Re{wpξHp Brl} in (4.30)
is recognized as the cross-correlation between the additive noise term and the basis
function rl. It is Gaussian distributed with expectation and variance given as

E

{

2
∑

p Re{wpξHp Brl}
P (rHl Brl)

}

= 0, and

E

{(

2
∑

p Re{wpξHp Brl}
P (rHl Brl)

)2}

=
2
∑

p |wp|2
P 2(rHl Brl)

,

(4.31)

respectively, where E{·} denotes the expectation operator. Thus, α−1
s is distributed

as

α−1
s ∼ N

(
∑

p |wp|2
P

,
2
∑

p |wp|2
P 2(rHl Brl)

)

, (4.32)

which is a normal distribution with the mean given by the average power of the
multipath component and variance proportional to this power.

Now, let us consider the term α−1
n . In (4.29) the only random element is

∑P
p=1 ξpξ

H
p .

This random matrix is known to have a complex Wishart distribution [CNSS03,
Goo63] with the scale matrix Σ and P degrees of freedom. Let us denote

c =
Brl√
PrHl Brl

and x = cH
P∑

p=1

ξpξ
H
p c. (4.33)

It can be shown that x is Gamma-distributed, i.e., x ∼ G(P, σ2
c ), with the shape

parameter P and the scale parameter σ2
c given as

σ2
c = cHΣc =

1

P (rHl Brl)
.

The pdf of x reads

p(x|P, σ2
c ) =

xP−1

Γ(P )(σ2
c )
P

e−x/σ
2
c . (4.34)

The mean and the variance of x are easily computed to be

E{x} = Pσ2
c =

1

rHl Brl
,

Var{x} = P (σ2
c )

2 =
1

P (rHl Brl)2
.

(4.35)

Taking the term −1/(rHl Brl) in (4.29) into account, we see that the resulting vari-
able α̃−1

n is a zero mean random variable with the pdf

pα̃−1
n

(x|P, σ2
c ) =

(x− E{x})P−1

Γ(P )(σ2
c )
P

e−(x−E{x})/σ2
c , (4.36)
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which is equivalent to (4.34), but shifted so as to correspond to a zero-mean random
variable. However, it is known that only positive values of α−1

n occur in practice.
The probability mass of the negative part of (4.36) equals the probability that the
condition (4.24) is not satisfied and the resulting α−1

∞ eventually diverges to infinity
and is pruned. Taking this into account the pdf of α−1

n reads

pα−1
n

(x) = Pnδ(x) + (1 − Pn)I+(x)p̃α−1
n

(x|P, σ2
c ), (4.37)

where δ(·) denotes a Dirac delta function, Pn is defined as

Pn =

∫ 0

−1/(rH
l

Brl)

p̃α−1
n

(x|P, σ2
c )dx,

and I+(·) is the indicator function of the set of positive real numbers:

I+(x) =

{
0 x ≤ 0
1 x > 0.

A closer look at (4.37) shows that as P increases the variance of the Gamma distri-
bution decreases, with α−1

n concentrating at zero. In the limiting case as P → ∞,
(4.37) converges to a Dirac delta function localized at zero, i.e., αn = ∞. This allows
natural pruning of the corresponding basis function. This situation is equivalent to
averaging out the noise, as the number of channel observations grows. Practically,
however, P stays always finite, which means that (4.32) and (4.37) have a certain
finite variance.

The pruning problem can be approached from the perspective of classical detection
theory. To prune a basis function, we have to decide if the corresponding value of
α−1 has been generated by the noise distribution (4.37), i.e., the null hypothesis,
or by the pdf of α−1

s + α−1
n , i.e., the alternative hypothesis. Computing the latter

is difficult. The problem might be somewhat relaxed by taking the assumption
that α−1

s and α−1
n are statistically independent. However proving the plausibility

of this assumption is difficult. Even if we were successful in finding the analytical
expression for the pdf of the alternative hypothesis, such model selection approach
is hampered by our inability to evaluate (4.32) since the gains wp’s are not known
a priori. However, we can still use (4.37) to select a threshold.

Recall that the presented algorithm allows to learn (estimate) the noise spectral
height N0 = β−1 from the measurements. Assuming that we know β, and, as
a consequence, the whole matrix B then, for any basis function rl in the design
matrix K and the corresponding hyperparameter αl, we can decide with an a priori
specified probability ρ that αl is generated by the distribution (4.37). Indeed, let
α−1

th be a ρ-quantile of (4.37) such that the probability P (α−1 ≤ α−1
th ) = ρ. Since

(4.37) is known exactly, we can easily compute α−1
th and prune all the basis functions

for which α−1
l ≤ α−1

th .
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Model mismatch: τ 6= Tl

The analysis performed above relies on the knowledge that the true multipath delay
τ belongs to T . Unfortunately, this is often unrealistic and the model mismatch
τ /∈ T must be considered. To be able to study how the model mismatch influences
the value of the hyperparameters we have to make a few more assumptions.

Let us for simplicity select the model delay Tl to be a multiple of the chip period
Tp. We will also need to assume a certain shape of the correlation function Ruu(t)
to make the whole analysis tractable.

Schematically, the model mismatch can be visualized as shown in Fig. 4.5. The
fixed basis function r is positioned at the delay Tl ∈ T . The true multipath com-
ponent r(τ) is not necessarily aligned with the basis r.

r r(τ)

Tl = lTp(l − 1)Tp (l + 1)Tpτ

Figure 4.5: Model mismatch.

Just as in the previous case, we can split the expression (4.27) into the the mul-
tipath component contribution α−1

s

α−1
s =

|rHl Br(τ)|2∑p |wp|2
P |rHl Brl|2

+
2
∑

p Re{wprHl Br(τ)ξHp Brl}
P |rHl Brl|2

, (4.38)

and the same noise contribution α−1
n defined in (4.29).

It can be seen that the weighted and normalized correlation

γ(τ) =
rHl Br(τ)

rHl Brl
(4.39)

makes (4.38) differ from (4.30), and as such it is the key to the analysis of the model
mismatch. Note that this function is bounded as

|γ(τ)| ≤ 1,

with equality following only if τ = Tl. Note also that in our case for |τ − Tl| < Tp
the correlation γ(τ) is strictly positive.

Due to the properties of the sounding sequence u(t), the magnitude of Ruu(t) for
|t| > Tp is sufficiently small and in our analysis of model mismatch can be safely
assumed to be zero. Furthermore, if rl is chosen to coincide with the multiple of
the sampling period Tl = lTs, then it follows from (3.15) that the product rHl B =
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Figure 4.6: Evaluated correlation functions a)Ruu(t) and b) γ(τ)
for the linear approximation case.

rHl Σ−1 = βeHl is a vector with all elements being zero except the lth element, which
is equal to β. Thus, the product rHl Br(τ) for |τ − Tl| < Tp must have a form
identical to that of the correlation function Ruu(t) for |t| < Tp. It follows that when
|τ − Tl| ≥ Tp the correlation γ(τ) can be assumed to be zero, and it makes sense to
analyze (4.38) only when |τ − Tl| < Tp.

To proceed further, we need to assume the shape of the correlation function Ruu(t).
We will consider consequently two cases: the linear approximation, when the main
lobe of the Ruu(t) is approximated by a triangular pulse with the width equal to 2Tp,
and the cosine approximation when the main lobe of the Ruu(t) is approximated by
the raised cosine function with the width 2Tp.

Let us start with the linear approximation. This approximation is exact when the
shaping pulse used to form the sounding signal u(t) is a simple rectangular pulse
with the pulse width Tp. In Fig. 4.6 we show the evaluated correlation function
Ruu(t), as well as the corresponding correlation function γ(τ) corresponding to this
case.

Since the true value of τ is unknown, we define a probability density over it.
It is reasonable to assume τ to be uniformly distributed in the interval [−(l −
1)Tp, (l+ 1)Tp]. This in turn induces the corresponding distribution over γ(τ), and,
correspondingly, over |γ(τ)|2, which enters the first term on the right-hand side of
(4.38).

In the linear approximation case it can be easily found that

γ(τ) ∼ U(0, 1), (4.40)

where U(0, 1) is a uniform distribution over the interval [0, 1] with the corresponding
pdf pγ(x) = 1.

The distribution of the |γ(τ)|2 can also be easily found. The corresponding pdf
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pγ2(x) is given as

pγ2(x) =
1

2
√
x
. (4.41)

In Fig. 4.7 we plot the empirical (based on Monte Carlo simulations) and theo-
retical pdf’s of the γ(τ) and γ(τ)2 terms, respectively, for the linear approximation
case.
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Figure 4.7: Comparison between the empirical and theoretical pdf’s of the a)γ(τ)
and b)|γ(τ)|2 for the linear approximation case.

Let us now consider the cosine approximation case. This approximation makes
sense if the sounding pulse p(t) defined in Sec. 3.1.1 is a square root raised cosine
pulse (Fig. 4.8).

Again, assuming that τ is uniformly distributed in the interval [−(l − 1)Tp, (l +
1)Tp], it can be shown that

γ(τ) ∼ B(0.5, 0.5), (4.42)

where B(0.5, 0.5) is a Beta distribution [EHBP00] with both distribution parameters
being equal to 1/2. The corresponding pdf pγ(x) in this case is given as

pγ(x) =
1

B(0.5, 0.5)
x−

1
2 (1 − x)−

1
2 , (4.43)

where B(·, ·) is a Beta-function [AS72] with B(0.5, 0.5) = π.
It is also straight-forward to compute the pdf of the γ(τ)2 term:

pγ2(x) =
1

π
x−

3
4 (1 −√

x)−
1
2 . (4.44)

The corresponding empirical as well as theoretical pdf’s that correspond to this
case are shown in Fig. 4.9.
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Figure 4.8: Evaluated correlation functions a)Ruu(t) and b) γ(τ) for the cosine ap-
proximation case.
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Figure 4.9: Comparison between the empirical and theoretical pdf’s of the a)γ(τ)
and b)|γ(τ)|2 for the cosine approximation case.

It is interesting to note that similar model mismatch analysis was done in [KK99],
though in totally different context of speech coding.

Now we have to find out how this information can be utilized to design an appro-
priate threshold. In the case of perfectly matched model the threshold is selected
based on the noise distribution (4.37). In the case of model mismatch, the term
(4.38) measures the amount of the interference resulting from the model imperfec-
tion.

Indeed, if |τ − Tl| ≥ Tp, then the resulting γ(τ) = 0, and thus α−1
s = 0. The
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corresponding evidence parameter α−1
∞ is then equal to the noise contribution α−1

n

only and will be pruned using the method we described for the matched model
case. If however, |τ − Tl| < Tp, then a certain fraction of α−1

s will be added to the
noise contribution α−1

n , thus causing the interference. In order to be able to take
this interference into account and adjust the threshold accordingly, we propose the
following approach.

The amount of interference added is measured by the magnitude of α−1
s in (4.38).

It consists of two terms: the first one is the multipath power, scaled by the factor
γ(τ)2:

γ(τ)2

∑

p |wp|2
P

. (4.45)

The second term is a cross product between the multipath component and the
additive noise, scaled by γ(τ):

γ(τ)
2
∑

p Re{wpξHp Brl}
P (rHl Brl)

. (4.46)

Both terms have the same physical interpretation as in (4.30), but with scaling
factors γ(τ) depending on the true value of τ .

We see that in (4.38) there are quite a few unknowns: we do not know the true
multipath delay τ , the multipath gains wp, as well as the instantaneous noise value
ξ. To be able to circumvent this uncertainties, we consider the large sample size
case, i.e, P → ∞ and invoke the law of large numbers to approximate (4.45) and
(4.46) by their expectations.

First of all, using (4.31) it is easy to see that

E

{

γ(τ)
2
∑

p Re{wpξHp Brl}
P (rHl Brl)

}

= 0.

The other term (4.45) converges to γ(τ)2α−1
p as P grows, where α−1

p is the power
of the multipath component. So, even in the high SNR regime and infinite number
of channel observations P the term (4.45) does not go to zero. In order to assess
how large it is, we approximate the gains of the multipath component wp by the
corresponding MAP estimate µp obtained with (4.19).

The correlation function γ(τ) can also be taken into account. Since we know the
distributions of both γ(τ) and γ(τ)2, we can summarize these by the corresponding
mean values. In fact, we will need the mean only for γ(τ)2 since it enters the
irreducible part of α−1

s .
For the cosine approximation case it is easily computed as:

E{γ(τ)2} =

∫ 1

0

x

π
x−

3
4 (1 −√

x)−
1
2dx =

B(2.5, 0.5)

π
=

3

8
. (4.47)

Having obtained the mean, we can approximate the interference α̂−1
s due to the

model mismatch as

α̂−1
s = 3/8 ×

∑P−1
p=0 |µp|2
P

, (4.48)
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The final threshold that accounts for the model mismatch is then obtained as

α̂−1
th = α̂−1

s + α−1
th , (4.49)

where α−1
th is the threshold developed earlier for the matched model case.

4.3.2 Improving the learning algorithm to cope with the model
selection

Under the light of the model selection strategy considered here we anticipate two
major problems arising with the learning algorithm discussed in Section 4.2. The
first one is the estimation of the channel parameters that requires computation of
the posterior (4.18). Even for the modest sizes of the hypothesis Hi (from 100 to
200 basis functions), the matrix inversion is computationally very intensive. This
issue becomes even more critical if we consider a hardware implementation of the es-
timation algorithm. The second problem arises due to the non-vanishing correlation
between the basis vectors rl constituting the design matrix K. A very undesirable
consequence of this correlation is that the evidence parameters αl associated with
these vectors become also correlated, and thus no longer represent the contribution
of a single basis function. As the consequence the developed model selection rules
are no longer applicable.

It is, however, possible to circumvent these two difficulties by modifying the learn-
ing algorithm as discussed below. The basic idea consists in estimating the channel
parameters for each basis independently. In other words, instead of solving (4.18),
(4.19), (4.20), and (4.21) jointly for all L basis functions, we find a solution for each
basis vector separately. First, the new data vector xp,l for the lth basis is computed
as

xp,l = zp −
L∑

k=1,k 6=l

rkµp,l. (4.50)

This new data vector xp,l now contains the information relevant to the basis rl only.
It is then used to update the corresponding posterior statistics as well as evidence
parameters exclusively for the lth basis as follows:

Φl = (αl + βrHl Λ−1rl)
−1, (4.51)

µp,l = βΦlr
H
l Λ−1xp,l, p = 0, . . . , P − 1. (4.52)

Note that expressions (4.51) and (4.52) are now scalars, unlike their matrix coun-
terparts (4.18) and (4.19). Similarly, we update the evidence parameters as

αl =
P

∑P
p=1

(

Φl + |µp,l|2
) . (4.53)



4.3. Model selection and basis pruning 71

Updates (4.51), (4.52), and (4.53) are performed for all L components sequentially.
Once all components are updated, we update the noise hyperparameter N0:

N0 = (β−1) =
1

NP

(
P∑

p=1

tr[Φ(K)HΛ−1K]+

+
P∑

p=1

(zp − Kµp)
HΛ−1(zp − Kµp)

)

.

(4.54)

The above updating procedures constitute one single iteration of the modified
learning algorithm. This iteration is repeated until some suitable convergence crite-
rion is satisfied. Note that the procedure described here is an instance of the SAGE
algorithm. This opens a potential to unite both SAGE and Evidence Procedure,
allowing to implement simultaneous parameter and model order estimation within
the SAGE framework.

The above iterative method is an instance of a general technique called successive
interference cancellation. It allows solving both anticipated problems. First of all,
there is no need to compute matrix inversion at each iteration. Second, the obtained
values of α now reflect the contribution of a single basis function only, since they
were estimated while the contribution of other bases was canceled in (4.50).

Now, at the end of each iteration, once the new value of the noise is obtained using
(4.54), we can decide to prune some of the components, as described in Section 4.3.1.

4.3.3 MDL principle and Evidence Procedure

The goal of this section is to establish a relationship between the classical information-
theoretic criteria for model selection, such as Minimum Description Length (MDL)
[WK85, Mac03, Grü05], and the Evidence Procedure discussed here.

The MDL criterion was originally formulated from the perspective of coding theory
as a solution to the problem of balancing the code complexity and the resulting
length of the encoded data. Formally, if the length of the data Z encoded with the
code Hi is given as Len(Z|Hi), and the corresponding code complexity is given as
C(Hi), then the optimal code in the MDL-sense is achieved as the solution to the
following optimization problem:

Ĥ = argmin
Hi

{

Len(Z|Hi) + C(Hi)
}

.

This concept can naturally be transferred to general model selection schemes by
treating Len(Z|Hi) as a measure of model performance and C(Hi) as measure of the
model complexity. In the context of Maximum Likelihood (ML) estimation, model
performance arises naturally as the likelihood function evaluated at its maximum,
i.e., at the ML estimates of the parameters. Formalizing the model complexity term,
on the other hand, is not a trivial task. This term has been approximated under
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some very specific assumptions in the seminal paper [Ris78] by Rissannen:

DL(Hi) = − log(p(z|wHi

ML))
︸ ︷︷ ︸

model performance

+ 0.5L log(N)
︸ ︷︷ ︸

model complexity

, (4.55)

where DL(Hi) is the so-called description length of the model Hi, L is the assumed
model order (number of parameters), N is the number of observed data samples,
wHi

ML is an L-dimensional ML estimate of the model parameters under hypothesis
Hi, and z is the observed data. Thus, joint model and parameter estimation schemes
should aim at minimizing the DL so as to find the compromise between the model
fit (likelihood) and the number of the parameters involved (complexity). Equation
(4.55) has been used ever since in many signal processing applications involving
model selection. However, for general problems the complexity term 0.5L log(N)
might not always be adequate. In order to account explicitly for the complexity
of a particular model structure, a quantity called stochastic complexity has been
introduced (see [Grü05, Ris96, BRY98]).

The Bayesian interpretation of the stochastic complexity term obtained for like-
lihood functions from an exponential family (see [Grü05] for more details) is of
particular interest for our problem at hand.

DL(Hi) = − log(p(z|wMAP ,Hi)
︸ ︷︷ ︸

model performance

+

L

2
log

N

2π
− log(p(wMAP |Hi)) + log(

√

|I1(wMAP )|)
︸ ︷︷ ︸

stochastic complexity

.
(4.56)

Here I1(wMAP ) is the Fisher information matrix of a single sample evaluated at the
MAP estimate of the model parameter vector, and p(wMAP |Hi) is the corresponding
prior for this vector. We will now show, that the Evidence Procedure employed in
our model selection scheme results in a very similar expression.

Let us once again come back to the evidence term (4.13). To exemplify the
main message that we want to convey here, we will compute the integral in (4.13)
differently. For each model hypothesis defined as in Section 4.2, let us define
∆(wi) = − log(p(z|wi, βi))− log(p(wi|αi)). Then equation (4.13) can be expressed
as

p(z|αi, βi) =

∫

exp(−∆(wi))dwi. (4.57)

In our case ∆(wi) is known to be quadratic, since both p(z|wi, βi) and p(wi|αi)
are Gaussian. Now, we expand ∆(wi) in a Taylor series around the argument
that maximizes the integrand in (4.57), which is the MAP estimate of the model
parameters µi given in (4.12). This technique is also known as Laplace’s method
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[Mac03, ch. 27]. Proceeding in this way we obtain

∆(wi) = ∆(µi) + (wi − µi)
∂∆(wi)

∂wi

∣
∣
∣
∣
∣
wi=µi

+

1

2
(wi − µi)

H ∂
2∆(wi)

∂wi∂wH
i

∣
∣
∣
∣
∣
wi=µi

(wi − µi)

(4.58)

It is easily verified that

∂2∆(wi)

∂wi∂wH
i

∣
∣
∣
∣
∣
wi=µi

= 2Φ−1
i and

∂∆(wi)

∂wi

∣
∣
∣
∣
∣
wi=µi

= 0. (4.59)

By inserting the right-hand side of (4.58) in (4.57) and making use of (4.59) we
arrive to

p(z|αi, βi) = exp(−∆(µi))

∫

exp(−(wi − µi)
HΦ−1

i (wi − µi))dwi (4.60)

which can be easily integrated. For a hypothesis Hi with L = |P(i)| parameters it
equals

p(z|αi, βi) = exp(−∆(µi))π
L|Φi|. (4.61)

By taking the logarithm of (4.61) and changing the sign of the resulting expression
we arrive at the final expression for the negative log−evidence

− log(p(z|αi, βi)) = − log(p(z|µi, βi))−
log(p(µi|αi)) − L log(π) − log(|Φi|).

(4.62)

By noting that Φi has been computed using N data samples, and that log(|Φi/N |) =
log(|I−1

1 (µi)|), we rewrite (4.62) as

DL(Hi) = − log(p(z|µi, βi))
︸ ︷︷ ︸

model performance

+

L log(
N

π
) − log(p(µi|αi)) + log(|I1(µi)|)

︸ ︷︷ ︸

model complexity

,
(4.63)

We note that (4.56) and (4.63) are essentially similar, with the distinction that the
latter accounts for complex data. Thus we conclude that maximizing evidence (or
minimizing the negative log−evidence) is equivalent to minimizing the DL (see Fig.
4.10).

On the one hand, the model performance gets better as we use higher model
orders, with smallest negative likelihood achieved for the full model H0. On the
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Figure 4.10: Model selection by evidence evaluation.
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Figure 4.11: Model selection by evidence evaluation.

other hand, the model complexity grows as we consider larger hypotheses, achieving
a maximum at H0. The balance between the two terms corresponds to the model
H̃ with the highest evidence.

Let us now consider how this can be exploited in our case. Within the Evidence
Procedure framework we always start with the full hypothesis H0, which includes
all basis functions. We then prune some of the basis functions from the initial
hypothesis according to the specific rules. In Section 4.3.1 we developed a threshold
that allows optimal pruning of the basis functions. However, the MDL principle
can also be used for this purpose. In general, the MDL concept assumes presence
of multiple estimated models. The model that minimizes the DL functional is then
picked as the optimal one. In our case, evaluating the DL functional for all possible
hypotheses Hi is way to complex. In order to make this procedure more efficient,
we can exploit the estimated evidence information.

Consider the graph shown in Fig. 4.11. Each node on the graph corresponds to a
certain hypothesis Hi consisting of |Pi| basis functions. An edge emanating from a
node is associated with a certain basis function from the hypothesis Hi. Should the
path through the graph include this edge, the corresponding basis function would be
pruned, leading to a new hypothesis with fewer basis functions. Clearly, the optimal



4.4. Application of the RVM to wireless channels 75

path through the graph should be the one that minimizes the DL criterion. Now,
let us propose a strategy to find the optimal model without evaluating all possible
paths through the graph.

At the initial stage, we start in the leftmost node, which corresponds to the full
hypothesis H0. We then proceed with the learning algorithm using the iterative
scheme depicted in Fig. 4.2 to obtain the estimates of the evidence parameters
α0 for each basis function in H0. Once convergence is achieved, we evaluate the
corresponding description length DL0 for this hypothesis using (4.63). Since the
optimal path should decrease the DL, the hypothesis at the next stage Hi is selected
by moving along the edge that corresponds to the basis function with the largest
value of α (i.e., the basis function with the smallest evidence). For the newly selected
hypothesis Hi we again estimate the evidence parameters αi and the corresponding
description length DLi. If DL0 < DLi, then the hypothesis H0 achieves the minimum
of the description length and it is then selected as the solution. Otherwise, i.e., if
DL0 > DLi, we continue along the graph, each time pruning a basis function with the
smallest evidence and comparing the description length at each stage. We proceed
so until the DL does not decrease any more, or until we stop at the last node that
has no basis functions at all. Such an empty hypothesis corresponds to the case
when there is no structure in the observed data at all. In other words it corresponds
to the case when the algorithm failed to find any multipath components.

4.4 Application of the RVM to wireless channels

The application of the proposed channel estimation scheme coupled with the consid-
ered model selection approach requires two major components: 1) it needs a proper
construction of the kernel design matrix that is dense enough to ensure good delay
resolution, and 2) the iterative nature of the algorithm requires a good initialization.

The construction of the design matrix K can be done with various approaches,
depending on how much a priori information we have about the possible positions
of the multipath components. The columns of the matrix K contain the shifted
versions of the kernel Ruu(nTs−Tl), l = 1, . . . , L0, where Tl are the possible positions
of the multipath components that form the search space T . The delays Tl can be
selected uniformly to cover the whole delay span or might be chosen so as to sample
some areas of the impulse response more densely, where multipath components are
likely to appear. Note that the delays Tl are not constrained to fall on a regular
grid. The power-delay profile (PDP) may be a good indicator of how to place the
multipath components.

Initialization of the model hyperparameters can also be done quite effectively. In
the sequel we propose two different initialization techniques.

The simplest one consists in evaluating the condition (4.24) for all the basis func-
tions in the already created design matrix K. For those basis functions that satisfy
condition (4.24), the corresponding evidence parameter is initialized using (4.23).
Other basis functions are removed from the design matrix K. Such initialization
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assumes that there is no interference between the neighboring basis functions. It
makes sense to employ it when the minimal spacing between the elements in T is
at most half the duration of the sounding pulse Tp.

Alternatively it is better to use independent evidence initialization. This type of
initialization is in fact coupled with the construction of the design matrix K and
relies on the successive interference cancellation scheme discussed in the Section
4.3.2. To make the procedure work, we need to set the initial channel coefficients
to zero, i.e., µp ≡ 0. The basis vectors rl are computed as usual according to the
delay search space T . The initialization iterations start by computing (4.50). The
basis rl that is best aligned with the residual xp,l is selected. If the selected rl sat-
isfies condition (4.24), it is included in the design matrix K, and the corresponding
parameters Φl, µp,l, and αl are computed according to (4.51), (4.52), and (4.53),
respectively. These steps are continued until all bases with delays from the search
space T are initialized, or until the basis vector that does not satisfy the condition
(4.24) is encountered.

Of course, in order to be able to use this initialization scheme, it is crucial to get a
good initial noise estimate. The initial noise parameter N

[0]
0 can in most cases be es-

timated from the tails of the channel impulse response, where multipath components
are unlikely to be present or too weak to be detected. Generally, we have observed
that the algorithm is less sensitive to the initial values of the hyperparameters α,
but proper initialization of the noise spectral height is crucial.

Now we can describe the simulation setup used to assess the performance of the
proposed algorithm.

4.4.1 Simulation setup

The generation of the synthetic channel is done following the block-diagram shown
in Fig. 3.1: a single period u(t) of the sounding sequence s(t) is filtered by the
channel with the impulse response h(τ), and complex white Gaussian noise is added
to the channel outputs to produce the received signal y(t). The received signal is
then run through the MF. The continuous-time signals at the output of the MF are
represented with cubic splines. The resulting spline representation is then used to
obtain the sampled output zp[n], p = 0, . . . , P − 1, with n = 0 . . .N − 1. Output
signals zp[n] are then used as the input to the estimation algorithm.

For all P channel observations we use the same MF, and thus Φp = Φ, Kp = K,
and Σp = Σ, p = 0, . . . , P−1. Without loss of generality, we assume a shaping pulse
of the duration Tp = 10nsec. The sampling period is assumed to be Ts = Tp/Ns,
where Ns is the number of samples per chip used in the simulations. The sounding
waveform u(t) consists of M = 255 chips. We also assume the maximum delay
spread in all simulations to be τspread = 1.27µsec. With these parameters, a one-
sample/chip resolution results in N = 128 samples. The autocorrelation function
Ruu(t) is also represented with cubic splines, allowing a proper construction of the
design matrix K according to the predefined delays in T .
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Realizations of the channel parameters wl,p are randomly generated according to
(4.7).

The performance of the algorithm is also evaluated under different SNR’s at the
output of the MF, defined as

SNR = 10 log10

(1/α

N0

)

. (4.64)

We assumed that in the case L > 1 all simulated multipath components have the
same expected power α−1.

4.4.2 Numerical simulations

Let us now demonstrate the performance of the model selection schemes discussed
in Section 4.3 on synthetic, as well as on measured channels.

Multipath detection with perfectly matching model

First we consider the distribution of the hyperparameters once the stationary point
has been reached. In order to do that, we apply the learning algorithm to the
full hypothesis H0. The delays in H0 are evenly positioned over the length of the
impulse response: T = {lTs; l = 0, . . . , N − 1}, i.e., L0 = N . Here, we simulate the
channel with a single multipath component, i.e., L = 1, having the delay τ ′ equal to
a multiple of the sampling period Ts. Thus, in the design matrix K corresponding
to the full hypothesis H0 there will be a basis function that coincides with the
contribution of the true multipath component. Once the parameters have been
learned, we partition all the hyperparameters α into those attributed to the noise,
i.e., αn, and one parameter that corresponds to the multipath component αs, i.e.,
the one associated with the delay Tl = τ ′.

In a next step, we compare the obtained histogram of α−1
n with the theoretical

pdf pα−1
n

(x) given in (4.37). The corresponding results are shown in Fig. 4.12(a). A
very good match between the empirical and theoretical pdf’s can be observed.

Similarly, we investigate the behavior of the negative log-evidence versus the size
of the hypothesis. We consider a similar simulation setup as above, however with
more than just one multipath component to make the results more realistic. Figure
4.12(b) depicts the evaluated negative log-evidence (4.62) as a function of the model
order, evaluated for a single realization, when the true number of components is
L = 20, and the number of channel observations is P = 5.

Note that, as the SNR increases, there are fewer components subject to the initial
pruning, i.e., those that do not satisfy condition (4.24). We also observe that the
minimum of the negative log-evidence (i.e., maximum of the evidence) becomes more
pronounced as the SNR increases, which has an effect of decreasing the variance of
the model order estimates.

In order to find the best possible performance of the algorithm, we first perform
some simulations assuming that the discrete-time model (3.12) perfectly matches
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Figure 4.12: Evidence-based model selection criteria. a) Empirical (bar plot) and
theoretical (solid line) pdf’s of hyperparameters α−1

n (SNR = 10dB,
and P = 10), b) Negative log-evidence as a function of the model order
(number of paths) for different SNR values (P = 5, and L = 20).

the continuous-time model (3.10), i.e., τl ∈ T , l = 1, . . . , L. This is realized by
drawing uniformly L out of N possible delay values in the interval [0, Ts(N − 1)].
Again, T = {lTs; l = 0, . . . , N − 1}. The number of multipath components in the
simulated channels is set to L = 5 and the channel is sampled with Ns = 2 samples
per chip.

In this simulation we evaluate the detection performance by counting the errors
made by the algorithms. Two types of errors can occur: (a) an insertion error–
an erroneous detection of a non-existing component; (b) a deletion error– a loss
of an existing component. The case when an estimated delay T̂l matches one of
the true simulated delays is called a hit. We further define the multipath detection
rate as the ratio between the number of hits to the true number of components L
plus the number of insertion errors. It follows that the detection rate is equal to 1
only if the number of hits equals the true number of components. If, however, the
algorithm makes any deletion or insertion errors, the detection rate is then strongly
smaller than 1. We study the detection rates for both model selection schemes versus
different SNR’s. The presented results are averaged over 300 independent channel
realizations.

We start with the model selection approach based on the threshold selection using
the ρ-quantile of the noise distribution - quantile-based model selection. The results
shown in Fig. 4.13(a) are obtained for ρ = 1 − 10−6 and different numbers of
channel observations P . It can be seen that, as P increases, the detection rate
significantly improves. To obtain the results shown in Fig. 4.13(b) we fix the
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Figure 4.13: Multipath detection rates based on the EP. (a) Quantile-based model
selection versus P : ρ = 1 − 10−6, L = 5; (b) Quantile-based model
selection versus ρ: P = 5, L = 5; (c) Negative log-evidence-based
detection versus P .

number of channel observations at P = 5 and vary the value of the quantile ρ. It
can be seen that as ρ approaches unity, the threshold is placed higher, meaning that
fewer noise components can be mistakenly detected as multipath components, thus
slightly improving the detection rate. However higher thresholds require a higher
SNR to achieve the same detection rate, as compared for the thresholds obtained
with lower ρ.

The next plot in Fig.4.13(c) shows the multipath detection rate when the model is
selected based on the evaluation of the negative log-evidence under different model
hypotheses (negative log-evidence model selection). It is interesting to note that
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in this case the reported curves behave quite differently from those shown in Fig.
4.13(a). First, we see that for the case P = 1 the behavior of this method is slightly
better, compared to the threshold-based method in Fig. 4.13(a). But as P grows,
the performance of the multipath detection does not increase proportionally, but
rather exhibits a threshold-like behavior. In other words, multipath detection based
on the negative log-evidence and alike MDL-based model selection requires the SNR
above a certain threshold in order to operate reliably. Furthermore, this threshold
is independent of the number of channel observations P .

Thus from Fig. 4.13(a) and Fig. 4.13(c) we can conclude that the quantile-based
method performs better in a sense that it can always be improved by increasing the
number of channel observations. Further, model selection using the thresholding
approach can be performed on-line, concurrent with parameters estimation, while
in the other case multiple models have to be learned.

Now, let us consider how the EP performs when the multipath component delays
are on the real line, rather than on a discrete grid. Clearly, this case corresponds
more to the real-life situation.

Multipath detection with model mismatch

In the real world the delays of the multipath components do not necessarily coincide
with the elements in T used to approximate the continuous-time model (3.10). By
using the discrete-time models to approximate the continuous-time counterparts,
we would necessarily expect some performance degradation in terms of an increased
number of components.

Since there is an inevitable mismatch between the continuous-time and discrete-
time models, it is worth asking how densely we should quantize the delay line to
form the design matrix in order to achieve the best performance. It is convenient
to select the delays in T of the discrete-time model as a multiple of the sampling
period Ts. As the sampling rate increases the true delay values get closer to some
elements in T , thus approaching the continuous-time model (3.10).

We simulate a channel with a single multipath component that has a random
delay, uniformly distributed in the interval [0, τspread].

The criterion used here to assess the performance of the algorithm is the proba-
bility of correct path extraction. This probability is defined to be the conditional
probability that, given any path is detected at all, the absolute difference between
the delay estimate and the true delay is less than the chip pulse duration Tp. Notice
that the probability of correct path extraction is conditioned on the path detection,
i.e., it is evaluated for the cases when the estimation algorithm is able to find at
least one component.

It is also interesting to compare the performance of the EP with other param-
eter estimation techniques. Here we consider the SAGE algorithm [FTH+99] that
has become a popular multipath parameter estimation technique. The SAGE algo-
rithm, however, does not provide any information about the number of multipath
components. To make the comparison fair, we augment it with the standard MDL
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criterion [Ris78, WK85] to perform model selection.
Thus, we are going to compare three different model selection algorithms: the

quantile-based (or threshold-based) scheme with a pre-selected quantile ρ = 1−10−6,
the SAGE+MDL method, and negative log-evidence method. We are also going
to use the threshold-based method to demonstrate the difference between two EP
initialization schemes: the joint initialization, and the independent initialization,
discussed in Section 4.4. In all simulations the negative log-evidence method was
initialized using independent initialization.

We start with channels sampled with Ns = 1 sample/chip resolution and P = 5
channel observations. We see that the studied methods have different probabilities
of path detection (Fig.4.14(a)), i.e., they require different SNR to achieve the same
path detection probability. The threshold-based methods can be, however, adjusted
by selecting the quantile ρ appropriately. As we see, with ρ = 1−10−6, the threshold-
based and SAGE+MDL methods achieve the same probabilities of path detection.
The resulting probabilities of correct path extraction are shown in Fig. 4.14(b).
Note that for low SNR comparisons of the methods is meaningless, since too few
paths are detected. However, above SNR ≈ 15dB, with all methods we can achieve
similar high path detection probabilities, which allows direct comparison of the
correct path extraction probabilities. We can hence infer that, in this regime, model
selection with negative log-evidence is superior to other methods, since it has higher
probabilities of path extraction. In other words this means that at higher SNR this
method will introduce fewer artifacts.

Now, let us increase the sampling rate and study the case Ns = 2 (Fig. 4.14(c),
and Fig. 4.14(d)). We see that the probabilities of path extraction are now higher
for all methods. A slight difference between the two EP initialization schemes can
also be observed. Note however that the performance increase is higher for the
SAGE+MDL and negative log-evidence algorithms, which both rely on the same
model selection concept.

Finally, the last case with Ns = 4 is shown in Fig. 4.14(e) and Fig. 4.14(f). Again
SAGE+MDL and negative log-evidence schemes achieve higher correct path extrac-
tion probabilities as compared to the threshold-based method. The performance of
the latter also increases with the sampling rate, but unfortunately not as fast as that
of the Description-Length based model selection. Theses plots also demonstrate the
difference between the two proposed initializations of the EP. In Fig. 4.14(f) we
see that in this case the independent initialization outperforms the joint one. As
already mentioned, this distinction becomes noticeable, once the basis functions in
K exhibit significant correlation, what is the case for Ns & 2.

4.4.3 Results for measured channels

We also apply the proposed algorithm to the measured data collected in in-door
environments. Channel measurements were done with the MIMO channel sounder
PropSound manufactured by Elektrobit Oy (see Appendix D). The basic setup
for channel sounding is equivalent to the block-diagram shown in Fig. 3.1. In the
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Figure 4.14: Comparison of the model selection schemes in a single path scenario.
(a,c,e) path detection probability, and (b,d,f) probability of correct path
extraction for P = 5, and (a,b) Ns = 1; (c,d) Ns = 2; and (e,f) Ns = 4.
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conducted experiment the sounder operated at the carrier frequency 5.2GHz with a
chip period of Tp = 10nsec. The output of the matched filter was sampled with the
period Ts = Tp/2, thus resulting in a resolution of 2 samples per chip. The sounding
sequence consisted of M = 255 chips, resulting in the burst waveform duration of
Tu = MTp = 0.255µsec.

Based on visual inspection of the PDP of the measured channels, the delays Tl
in the search space T are positioned uniformly in the interval between 250nsec and
1000nsec, with spacing between adjacent delays equal to Ts. This corresponds to
the delay search space T consisting of 151 elements. The initial estimate of the
noise floor is obtained from the tail of the measured PDP. The algorithm stops once
the relative change of the evidence parameters between two successive iterations is
smaller than 0.0001%. The corresponding detection results for different number of
channel observations are shown in Fig. 4.15. When P = 1 (see Fig. 4.15(a)), the
independent initialization results in only 9 basis functions constituting the initial
hypothesis H0. The final estimated number of components is found to be L = 8.
As expected, increasing the number of channel observations P makes it possible to
detect and estimate components with smaller SNR. For the case of P = 5 we detect
already L = 12 components (Fig. 4.15(b)), and for P = 32, L = 15 components
(Fig. 4.15(c)). This shows that increasing the number of observations not necessarily
brings a proportional increase of the detected components, thus suggesting that there
might be a limit given by the true number of multipath components.

4.5 SAGE iterations and SAGE-RVM algorithm

The Evidence Procedure developed so far can be applied to estimating the model
order L, as well as the corresponding multipath delays τl with fixed resolution.
The SAGE algorithm discussed in Section 3.2 allows estimating other multipath
parameters as well, but does not have model selection capabilities. Joining the two
approaches will allow to take the best from both SAGE and Evidence Procedure
approaches, thus giving rise to the new SAGE-RVM algorithm, discussed in the
following section.

4.5.1 Basic steps of the SAGE-RVM algorithm

The reader familiar with the SAGE algorithm has already noticed that the modi-
fications to the EP learning introduced in Section 4.3.2 are inspired by the SAGE
Expectation-Maximization steps. The key to the algorithm improvement lies in es-
timating data relevant to a single wavefront only by canceling the influence of the
other components, i.e., in terms of the SAGE terminology, estimating hidden data.
The hidden data allows to estimate both the evidence parameters, which are then
used in model selection, and the other multipath parameters, like Doppler frequency,
DoA, multipath gain, etc.

Let us now go through the major steps of the SAGE-RVM algorithm. We generally



84 4. Evidence Procedure and channel estimation

2 2.5 3 3.5 4 4.5 5

x 10
−7

−110

−105

−100

−95

−90

−85

−80

−75

−70

−65

−60

time, sec

M
ag

ni
tu

de
, d

B

Measured PDP
Reconstructed PDP
Estimated noise floor
Detected multipaths

(a) P = 1; Estimated number of multipath
components L = 8.
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(b) P = 5; Estimated number of multipath
components L = 12.
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(c) P = 32; Estimated number of multipath
components L = 15.

Figure 4.15: Multipath detection results for quantile-based method with ρ = 1 −
10−6.

assume a receive antenna array with P elements and I consecutive SIMO channel
observations, as explained in Section 3.1.4. Thus, in total we have J = I×P channel
observations.

SAGE-RVM initialization

The initialization of the SAGE-RVM algorithm begins with the independent EP
initialization as explained in Section 4.4. This results in the initial model order
L, design matrix K, coefficient vector µj, j = 0..J − 1, corresponding evidence
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parameters α, and initial additive noise spectral height N0 = β−1.
Now, using (3.13) we can extract the initial Doppler frequency, DoA, and mul-

tipath gain from the estimated coefficients µj . This is done by transforming µj =
[µ1j . . . µLj]

T into the matrix W l as it was done for the SAGE algorithm initializa-
tion, explained in Section 3.2.1. The initial values of the DoA φl, Doppler frequency
νl, and multipath gain al are then found as solutions to (3.30), (3.31), and (3.33).

This would finalize the initialization step of the SAGE-RVM algorithm. Note
that this initialization is basically equivalent to the SAGE initialization, with the
distinction that the EP expressions are used instead of those of the Matching Pursuit.

SAGE-RVM iterations

Basically, the iterations of the SAGE-RVM algorithm reproduce (with some modi-
fications) the initialization step. At the each iteration the hidden data xj,l for the
lth multipath component is computed as

xj,l = zj −
L∑

k=1,k 6=l

rkµj,k,

which is then used to update the delay τl of the lth multipath component: the value
of the new delay τl is found as the maximizer of

τ ′l = argmax
τ

∑

j

∣
∣
∣xH

j,lr(τ)µj,l

∣
∣
∣, (4.65)

where r(τ) = [Ruu(−τ), . . . , Ruu((N − 1)Ts − τ)]T . Note that in (4.65) the search
space for the multipath delay is the whole real line, rather than a discrete set. Once
the optimum delay is found, we adjust the corresponding basis function associated
with this component as

r′
l = [Ruu(−τ ′l ), Ruu(Ts − τ ′l ), . . . , Ruu((N − 1)Ts − τ ′l )]

T . (4.66)

With the new basis it is possible to update the corresponding posterior statistics
as well as evidence parameters exclusively for this multipath component using now
the hidden data xj,l only:

Φ′
l = (αl + β(r′

l)
HΛ−1r′

l)
−1, (4.67)

µ′
j,l = βΦ′

l(r
′
l)
HΛ−1xj,l, j = 0, . . . , J − 1. (4.68)

Having updated the parameter posterior statistics we update the corresponding
evidence parameter:

α′
l =

J

∑J−1
j=0

(

Φl + |µj,l|2
) . (4.69)
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At this stage, we can perform model selection using the threshold-based rules
developed earlier to test if the basis r′

l stays in the model. If we decide not to
prune the basis, we proceed to the estimation of the DoA, Doppler frequency and
the multipath gain. Otherwise, the corresponding components are removed from
the analysis.

To estimate the DoA, Doppler frequency, and multipath gain, we construct the
matrix W ′

l using the updated weight coefficients µ′
j,l as explained in Section 3.2.1.

The new update value of the DoA is found as the solution to the following maxi-
mization problem:

φ′
l = argmax

φ
|a∗l cH(φ)W ld

H(νl)|, (4.70)

where al is the multipath gain, c(φ) is the steering vector of the array (3.3), and
d(ν) is a Doppler vector, defined in (3.32).

The update for the Doppler frequency νl is found similarly as a solution to

ν ′l = argmax
ν

|a∗l cH(φ′
l)W ld

H(ν)|. (4.71)

Finally, the updated value of the multipath gain al is found as

a′l =
cH(φ′

l)W ld
H(ν ′l)

||c(φ′
l)||2||d(ν ′l)||2

. (4.72)

The update steps (4.65)-(4.72) are subsequently performed for all L components.
Once all the components are updated, we can update the noise parameter N0 as

N ′
0 =

1

NJ

(
J−1∑

j=0

tr[Φ′K ′HΛ−1K ′] +
J−1∑

j=0

(zj − K ′µ′
j)
HΛ−1(zj − K ′µ′

j)

)

, (4.73)

where K ′ is the updated design matrix with columns defined by (4.66), and Φ′ and
µ′
j are posterior statistics, updated according to (4.67) and (4.68), respectively.
This completes a single iteration of the SAGE-RVM algorithm. We see from the

preceding discussion that SAGE-RVM is in fact a modified version of the SAGE
algorithm that allows online model selection.

4.5.2 Some application examples

Let us now consider some application examples. We apply the SAGE-RVM algo-
rithm to the FTW data (Appendix C) since it is used later for the channel predic-
tion, too. To implement the model selection, we use the quantile-based method with
ρ = 1 − 10−6.

Similarly to the SAGE algorithm, we demonstrate the resulting goodness-of-fit
(Fig. 4.16) to the measured data achieved with the SAGE-RVM algorithm for a
single measurement.

Since the channel is in general time-varying, the multipath parameters as well as
the model order are a function of time. In Fig. 4.17 we plot the evolution of the
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(c) Estimated Doppler spectrum.

Figure 4.16: (a,b,c) Goodness-of-fit for the SAGE-RVM algorithm. The number of
estimated components is L = 14.

estimated multipath parameters as a function of the walked distance (the speed of
the mobile transmitter in this case was ≈ 1m/s). The size of the markers on the
plot is proportional to the inverse of the estimated evidence parameter α−1

l , i.e.,
proportional to the estimated power of a multipath component.

Note that the approximation results are very similar to that of the SAGE algo-
rithm, but the number of the wavefronts is estimated optimally in accordance with
the Ocham’s razor principle.



88 4. Evidence Procedure and channel estimation

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.5

x 10
−6

D
el

ay
, s

ec

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5
0
5

10

D
op

p.
, H

z

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

20

40

D
oA

, d
eg

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

15

Distance, λ

L

Figure 4.17: Evolution of the estimated multipath parameters (Delays, Doppler fre-
quency, DoA, and number of wavefronts L).

4.6 Discussion and conclusions

In this chapter we have considered an extension and application of the Evidence
Procedure to the estimation of wireless channels. Let us now summarize and discuss
the performance and properties of the EP and SAGE-RVM algorithms.

4.6.1 Evidence Procedure

The Evidence Procedure is in many respects similar to the SAGE algorithm. It
is also a model-based parameter estimation algorithm, but unlike SAGE, the EP
optimizes the penalized model performance error. The penalty introduced in the
EP framework allows to find a compromise between the model performance (size of
the approximation error) and the number of the components in the approximation.

The proper penalty is introduced naturally within the Bayesian framework. The
Bayesian approach results in the Maximum a posteriori (MAP) estimate. We know,
that MAP is basically equivalent to the ML approach with the distinction that the
former requires specification of the a priori information. This prior information is
then used in the model selection criteria.

The application of the Evidence Procedure to the wireless channels was devel-
oped based on the methods known in the literature as Relevance Vector Machines.
The RVM algorithm was developed as a Machine Learing technique and had to
be significantly extended to allow its application to the wireless channels. First,
we extended the RVM to the complex domain and colored additive noise. From
the methodological point of view, an important innovation is the Bayesian graphi-
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cal channel model that represents a probabilistic structure of the multipath MIMO
channel. This graphical model is not only the basis for the probabilistic inference
of the model parameters, but it is also a completely new way of representing the
multipath structure of the channel. The evidence parameters, introduced in the
model, also called hyperparameters in the original RVM paper, can be interpreted
as a simple form of the hypermodel. We can say so because each evidence parameter
αl controls the contribution of the corresponding multipath component.

These evidence parameters are the key to the model selection. Note that here we
also exploit this “hyper”-model concept: based on α we control the sparsity of the
total model. Assuming a single path scenario we are able to find the statistical laws
that govern the values of the evidence parameters once the estimation algorithm
has converged to the stationary point. It is shown that in low SNR scenarios the
evidence parameters do not attain infinite values, as has been assumed in Tipping’s
original RVM formulation, but stay finite with values depending on the particular
SNR level. This knowledge enabled us to develop model selection rules based on the
discovered statistical laws behind the evidence parameters.

In order to be able to apply these rules in practice, we also proposed a modified
learning algorithm that exploits the principle of successive interference cancellation.
This modification not only allows to avoid computationally intensive matrix inver-
sions, but also removes the interference between the neighboring basis functions in
the design matrix.

The model mismatch case is also considered in our analysis. We are able to assess
the possible influence of the finite algorithm resolution and, to some extent, take
it into account by adjusting the corresponding model selection rules. This step
eventually minimizes the number of the obtained estimation artifacts

We also showed the relationship between the EP and the classical model selection
based on the MDL criterion. It was found that the maximum of the evidence
corresponds to the minimum of the corresponding description length criterion. Thus,
EP can be used as the classical MDL-like model selection scheme, but also allows
faster and more efficient threshold-based implementation.

The EP framework was also compared with the multipath estimation using the
SAGE algorithm augmented with the MDL criterion.

According to the simulation results, the Description-Length based methods, i.e.,
negative log-evidence and SAGE+MDL method, give better results in terms of the
achieved probabilities of correct path extraction. They also improve faster as the
sampling rate grows. However, these model selection strategies require learning
multiple models in parallel, which, of course, imposes additional computational load.
The threshold-based method, on the other hand, allows to perform model selection
on-line, thus being more efficient, but its performance increase with the growing
sampling rate is more modest. The performance of the threshold-based method also
depends on the value of the quantile ρ. In our simulations we set ρ = 1−10−6, which
results in the same probability of path detection as in the SAGE+MDL algorithm.
However, other values of ρ can be used, thus giving a way to further optimize the
performance of the threshold-based method.
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The comparison between the SAGE and EP schemes clearly shows that estimating
evidence parameters really pays off. Introducing them in the computation of the
model complexity, as it is done in the negative log-evidence approach, results in the
best performance, compared to the other two methods. Although the negative log-
evidence method needs a slightly higher SNR to reliably detect channels, it however
results in the highest probability of path extraction.

The threshold-based method also opens perspectives for on-line remodeling, i.e.,
removing, or even adding new, components during the estimation of the model pa-
rameters which might result in much better and sparser models. Since the evidence
parameters reflect the contribution of the multipath components, they might also
be useful in applications, where it is necessary to define some measure of confidence
for a multipath component.

4.6.2 SAGE-RVM algorithm

By borrowing some of the ideas implemented in the SAGE algorithm, we also made
the EP algorithm more efficient. This union of both SAGE and Evidence Procedure
gives birth to the SAGE-RVM algorithm. The theoretical foundation that makes
this possible lies in the SAGE algorithm itself.

In general, SAGE is a general-purpose parameter estimation technique, which is
not necessarily bundled with estimating delay, DoA, and Doppler frequency. It can
similarly be used to estimate the evidence parameters α. The latter allows us to
invoke the model selection criteria we developed within the EP framework. It is this
step that gives birth to the SAGE-RVM algorithm. In other words, it is possible to
treat SAGE-RVM as a modification of the SAGE algorithm that, in addition to the
standard list of multipath parameters, estimates the associated evidence parameters
as well.

The key step in SAGE-RVM is the estimation of the hidden data (E-step of the
SAGE algorithm). The hidden data allows us to estimate and update parameters for
a single component only, including the evidence parameter. In connection to the EP,
this not only means that we avoid computing matrix inversions used in obtaining
the posterior statistics (4.18), and (4.12), but also that we are able to estimate other
multipath parameters.

It also important to stress the importance of the proper noise estimation. The EP
framework allows estimating the noise value directly. As we have seen, the whole
model selection mechanism assumes the noise variance to be known. Practically, we
need to estimate it and use the estimate as the true value, which might not be the
best choice. Further, since the noise estimate and model selection are coupled, errors
in the model selection might propagate in the estimation of the noise statistics, and
the other way around. To decouple this dependency, it might be advantageous not
to update the noise estimate at all, or at lest freeze it after a couple of iterations in
order to avoid error propagation.



Chapter 5

Channel tracking

Estimation algorithms discussed in Chapters 3 and 4 allow to estimate parameters of
the multipath components constituting the impulse response of a multipath channel.
Now, for each estimation window we can represent a wireless channel by a set of
parameters describing the detected wavefronts.

However, wireless channels are usually time-varying. In order to properly recon-
struct the dynamics of the underlying wavefronts it is important to keep proper
parameter associations between the consecutive channel observations, i.e., we need
to track the multipath components over time. This brings us to the problem of
parameter association and tracking. A similar problem is sometimes referred to as
parameter warping [MS00b].

In general, parameter tracking/association is not a trivial problem since there is
no a priori model that can be used to ease this task. However, this model can be
constructed or learned iteratively, as the algorithm proceeds. In fact, the hyper-
model of the multipath dynamics is an appropriate model that can assist multipath
tracking.

Thus, multipath tracking needs a hypermodel for optimal performance, while a
hypermodel learning algorithm relies on the output of the tracking algorithm that
supplies it with learning data. We suggest to resolve this interdependency in the
spirit of the classical sequential Bayesian estimation (see, for example, [MS00b]).

Let us consider the block diagram of the proposed sequential tracking and pre-
diction scheme, depicted in Fig. 5.1.

We assume that we want to reconstruct K tracks from the multipath estimates
{θl[q]}Ll=1, so that K ≤ L, where q refers to the estimation window sample, as
defined in Section 3.1.4.

The dynamics of each track is captured by the corresponding deterministic hyper-
model, i.e., predictor Hk(·), in a sense that

θ̂k[q] = Hk(θk[q − 1], θk[q − 2], . . .). (5.1)

Expression (5.1) is equivalent to the prediction step of Bayesian sequential estima-
tion.

Once the prediction is obtained, we can define a distance measure f(·, ·) between
the predictions θ̂k[q] and newly obtained estimates {θl[q]}Ll=1. The associations are
then made so as to minimize the resulting distance between the predictions and the
estimates. The details on the association algorithm are presented in Section 5.1.
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Figure 5.1: Iterative multipath tracking and adaptation of the track hypermodels
Hk.

The obtained associations are then used to recursively update the hypermodels.
In Sections 5.2 and 5.3 we consider the corresponding hypermodel realizations and
the corresponding learning algorithms. This constitutes the update step of sequential
estimation. Note that the proposed scheme is similar in the reasoning to the Dual
Estimation [Hay01, ch. 5], used within the Kalman Filter framework to jointly
estimate the states as well as the system’s observation or transition models.

Let us now consider these steps in more details.

5.1 Multipath tracking

Let us start by assuming that the estimation algorithm finds and estimates L[q]
multipath components for the qth channel estimation window. Depending on a
particular estimation algorithm the number of estimated components might vary
with time. Let us also assume that we are interested in reconstructing the dynamics
of K[q] components, which we also call tracks, so that K[q] ≤ L[q]. In the sequel
we drop the explicit dependency on the estimation window index q to simplify the
notations, however we assume that both L and K are in general a function of q.

We already know that a multipath component is described by a parameter vector
θk[q]. The parameters constituting θk[q] can be split into two subsets. This is done
since not all of the multipath parameters are used in the tracking algorithm. For
instance, in case of SIMO channels, only the multipath delay, Doppler shift, and
DoA uniquely identify the multipath component. The complex multipath gain, on
the other hand, does not help much, since given two multipath components with
identical delays, Doppler frequencies, and DoA’s, the estimation algorithm will not
be able to separate them.

The first subset sk[q] ⊂ θk[q] consists of the parameters related to the structure
of the channel, namely multipath delay τk[q], Doppler frequency νk[q], and DoA
φk[q]. These multipath parameters are then going to be used in the tracking and
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association algorithm.

The second subset ak[q] ⊂ θk[q] includes multipath parameters that are not used
in tracking. As an example, this subset might consist of a complex multipath gain
ak[q], but it also might include other multipath parameters for which long-term
predictors are to be designed. As we will see later, it makes sense to use different
hypermodels for sk[q] and ak[q].

Let us for the moment assume that the dynamics of each track is captured by a
certain known deterministic hypermodel Hk(·) consisting of two separate predictors
Sk(·) and Ak(·) in a sense that

ŝk[q] = Sk(sk[q − 1], sk[q − 2], . . .),

âk[q] = Ak(ak[q − 1],ak[q − 2], . . .),
(5.2)

where θ̂k[q] = ŝk[q]∪âk[q] is the predicted set of parameters for the kth multipath
track.

Now, we can formulate the tracking problem as follows : having found L estimated
parameters sl[q], l = 1, . . . , L, it is required to assign them optimally to the K
existing tracks in order to reconstruct the proper temporal sequence of the multipath
parameters θk[q], k = 1 . . .K.

The hypermodels Sk(·) are the key elements in solving this problem, since they
provide predictions ŝk[q] = Sk(sk[q − 1], sk[q − 2], . . .) for the K tracks of interest.
The optimum associations should then minimize some distance functional between
predictions ŝk[q], k = 1 . . .K, and newly estimated parameters sl[q], l = 1, . . . , L.

Now, let us formulate the association problem more formally.

5.1.1 Dynamic programming and assignment problem

Consider three possible track continuation scenarios at time q, shown as directed
graphs in Fig. 5.2. As an example, we consider cases when K = L (Fig. 5.2(a)),
when K < L (Fig. 5.2(b)), and when K > L (Fig. 5.2(c)).

The graph edges indicate possible track continuations as connections between the
predicted ŝk[q] and the newly estimated sl[q] parameters. Each connection induces
a dynamic cost Ckl[q] computed as

Ckl[q] = f(ŝk[q], sl[q]) + µCk[q − 1]. (5.3)

Here Ck[q− 1] is the cost accumulated by the kth track up to the time q− 1, and
0 ≤ µ ≤ 1 is a forgetting factor. The function f(·, ·) measures the closeness between
the predicted and estimated structure parameters.

Now, let us define a binary variable xkl such that:

xkl =

{
1, if sl[q] should be assigned to ŝk[q] ;
0, otherwise.
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Figure 5.2: Possible track continuation scenarios.

Then, optimal association should minimize the total induced cost Z:

argmin
xkl

Z =

K∑

k=1

L∑

l=1

Ckl[q]xkl, so that

L∑

l=1

xkl = 1, k = 1 . . .K, and xkl ∈ {0, 1}.
(5.4)

Formulation (5.4) known in the literature as the assignment problem and can be
solved using linear programming methods [MS00b, Tah02]. A classical assignment
problem occurs in situations when, for example, it is needed to assign several workers
to different jobs. Each worker i requests a certain payment cij to perform a job j.
The assignment problem appoints the workers to the corresponding job so that the
total cost is minimized. This formulation is clearly equivalent to our case with the
jobs being equivalent to the tracks of interest and workers to the estimated multipath
components. Should we have just a single track, i.e., K = 1, then for µ = 1 in (5.3)
we obtain an instance of the classical Viterbi algorithm [Rab89]. However, in our
case all of the K tracks have to be simultaneously associated with L candidates,
which makes the problem more difficult.

The standard solution to (5.4) requires the assignment problem to be balanced:
the number of workers and the number of jobs must be the same, which in our case
translates into K = L. (Fig. 5.2(a)). This requirement can be easily satisfied by
introducing dummy variables into the analysis.

Let us first consider the case when K < L. It follows that we need to augment the

existing K tracks with L−K dummy predictions θ̂
′
, as shown in Fig. 5.3(a). The
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Figure 5.3: Augmented graphs for balancing the assignment problem.

weights C ′
∞ along the edges between the dummy predictions ŝ′ and the estimates

sl, l = 1, . . . , L are set to a sufficiently large number, e.g., C ′
∞ = 1014, to make sure

they will not affect the assignments for the real tracks1. Once the solution is found
the dummy variables are removed and the remaining associations are used further
in the algorithm for hypermodel updates. This is what is implemented in all our
simulations. Alternatively, one can also consider this situation as a possibility to
introduce new tracks in the analysis. This however stays outside the scope of this
work.

The other case, whenK > L, is a bit more difficult. It is basically equivalent to the
situation when some of the tracks have ceased to exist (possibly only temporarily)
due to the change in the propagation environment, or, simply, due to becoming to
weak to be detected.

To balance the problem, we need to introduce K − L dummy estimates s′ (Fig.
5.3(b)), just as we did for the case (K < L), and solve the association problem as
usual. However the dummy data s′ cannot be used in making association and hy-
permodel updates since it is artificially added. As a consequence, the corresponding
tracks have to be deleted from the analysis.

It might, however, be advantageous to refrain from deleting the tracks imme-
diately. The estimation algorithm might have simply missed the component tem-
porarily due to, for instance, unresolved multipath component superposition, and
there is a chance it might be rediscovered several steps later. To account for this
we leave the parameters of this track unchanged, hoping that this deletion happend
only temporarily. This is done using the following strategy:

• First, we solve the augmented association problem with dummy variables.

• The tracks that are assigned the dummy parameters s′ use the previous track
parameters θk[q − 1] as their continuation, i.e., θk[q] = θk[q − 1].

We may also note how often we do not find any association for a certain track.

1How the assignments are going to be resolved between the dummy variables is absolutely unim-
portant.
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This number can be used to guide our decision on whether the track must be really
deleted or not.

5.1.2 Selecting the cost function

Measuring the similarity (closeness) between the predicted values ŝk[q] and the newly
estimated ones sl[q] with the distance function f(·, ·) is an important step in solving
the association problem. The natural measure of such similarity would be absolute
distance or Euclidian distance. However, straight-forward application of these con-
cepts would result in inappropriate computations of the similarity measure, since
the parameters in both sl[q] and ŝk[q] have very different physical units.

In [SÖH+02] authors proposed a measure to evaluate the distance between two
multipath components – multipath component distance (MCD). We can adopt the
same measure in the computation of the cost function for track association.

The MCD between any two multipath components k and l is defined as

MCD2
kl =

∑

i∈{τ,ν,φ...}

MCD2
i,kl, (5.5)

which is the radius of the hypersphere in the normalized multipath parameter dis-
tance space. The index i here spans several different physical dimensions describing
the multipath component, and thus MCDi,kl is the distance between the multi-
path components along dimension i. In fact, an appropriately normalized Euclidian
distance is the essence of the MCD.

Normalization is necessary. First of all, it is important to make sure that all
multipath parameters contribute equally to the computation of the distance. Second,
since the MCDi,kl are added together to obtain the final MCDkl, we must make sure
that we add quantities with the same physical units. In [SÖH+02] it was proposed
to normalize MCDi,kl such that 0 ≤MCDi,kl ≤ 1 for all multipath parameters.

A possible normalization for the delay is

MCDτ,kl =
|τk − τl|
∆τmax

, (5.6)

where ∆τmax = maxk,l |τk − τl| is the maximum delay spread. Practically ∆τmax is
selected based on some a priori information of the channel delay spread.

Similarly, Doppler information can also be normalized as follows:

MCDν,kl =
|νk − νl|
2νmax

, (5.7)

where νmax is the maximum Doppler frequency magnitude.
For spatial MIMO systems, component distance for the angular information,

MCDDoA,kl and MCDDoD,kl can be computed as the normalized Euclidian distance
between two points on a unit sphere. Figure 5.4 illustrates this concept for the case
of the DoA. Here, φl and ϑl are azimuth and π/2-elevation angle of the lth multipath
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Figure 5.4: Geometrical definition of the spatial component MCDDoA,kl.

component at the receiver, respectively. Thus the resulting distance MCDDoA,kl (or
equivalently MCDDoD,kl) can be computed as
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Although each of the contributing distances MCDi,kl is normalized, the resulting
measure MCDkl is not. Deciding to normalize MCDkl might lead to inconsistent
results should the same data be processed with different number of physical dimen-
sions. Thus, as suggested in [SÖH+02], it more appropriate to leave the resulting
distance unnormalized.

Further, we will adopt several slight modifications to the resulting MCD to tai-
lor it to our needs. The considered distance measure is a monotonically increasing
function of the distance between the components (Fig. 5.5(a)). In case of track-
ing/association, it is reasonable to assume that the parameters of a single multipath
component do not differ significantly between two consecutive channel blocks, i.e.,
there are no parameter jumps. Thus, we are more inclined to have a function that
is monotonic only in a certain sensitivity region ±∆ (Fig.5.5(b)). Outside the sen-
sitivity region ±∆ the cost function attains the maximum value irrespective of the
value of the argument.

Let us consider the following example that illustrates the necessity to introduce
this sensitivity region.

Example

Let us consider for simplicity a single track, i.e., K = 1, and s[q] = {τ [q]}.
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Figure 5.5: The form of the distance function f(·, ·) for a single parameter.

The predicted value of the multipath components (assuming the hyper model is
known) is τ̂ = 3.5µsec. The samples of the impulse response were obtained with
the sampling period Ts = 1µsec.

The estimation algorithm finds two multipath components with the delays
τ1 = 3µsec and τ2 = 9µsec. It is clear, that the optimal track continuation would
be to choose τ1 as the track continuation, since f(τ̂ , τ1) < f(τ̂ , τ2).

Now, let us assume that τ1 = 8.9µsec and τ2 = 9.0µsec. Here again
f(τ̂ , τ1) < f(τ̂ , τ2), thus we are tempted to make the same assignment as before.
But this would most likely correspond to the wrong physical multipath component
since the estimated components arrive significantly later in time (in this case
almost 6 sampling instances later). In this situation we must declare that there is
no candidate to use as the track continuation.

As we can see, the sensitivity region allows us to exclude assignments of the
multipath components that are too far away from the candidates. Taking this into
account requires the appropriate re-normalization of the discussed MCDi,kl terms.
For delay and Doppler frequency these modifications take the following form:

MCDτ,kl =
|τk − τl|

∆τ
, MCDν,kl =

|νk − νl|
∆ν

, (5.9)

where ∆τ and ∆ν are the sensitivity regions for delays and Doppler spreads, re-
spectively. Similarly, one can re-normalize the MCDDoA,kl. The sensitivity regions
should be chosen so as to reflect some a priori information about allowable pa-
rameter variations. This information might come from, for example, the known
resolution ability of the measurement equipment, noise level, some specific features
of the propagation environment, etc.
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Note that sensitivity regions may transform a K < L case into the K ≥ L case,
when the number of allowable continuations is less than the number of tracks, even
when number of estimated components L is large.

It is also convenient to include the component weighting in the computation of
the total cost in (5.5) to amplify the influence of some parameters as compared to
the other:

MCD2
kl =

∑

i∈{τ,ν,φ...}

Wi ·MCD2
i,kl,

∑

i∈{τ,ν,φ...}

Wi = 1, (5.10)

where Wi are some predefined weights. The weighting is useful since the different
multipath parameters are estimated with different resolution. For example, it makes
sense to give MCDτ,kl more weight since the resolution in delay is usually much
higher, as compared to the Doppler frequency of angular information.

5.2 Structure hypermodel Sk for channel tracking

Previously we defined very abstractly the hypermodels Sk and Ak associated with
the tracked multipath components. In a sequel we explain how to construct the
corresponding hypermodels and how they can be trained.

Since the whole tracking/prediction approach is Bayesian-inspired, we employ
Bayesian sequential methods for learning track hypermodels Hk as well. First of all,
the Bayesian methodology is quite general and, as we will see later, can be applied to
constructing the hypermodels Sk, as well as Ak. Second, using a sequential method
we can build the model from scratch as the data arrives.

As we previously mentioned, for parameter tracking/association we need a one-
step-ahead predictor (5.1) for the parameter subset sk[n] to compute the cost (5.3).
This one-step prediction can be accomplished by a dedicated structure hypermodel
Sk. A small prediction horizon allows to approximate the trajectory of the track sk[n]
with relatively simple models. One such model is a so-called damped local linear
trend (DLLT) [Har89] discussed below. Note that this is equivalent to assuming
linear dynamics for the multipath parameters, as it was also suggested in [Sem03].

5.2.1 Damped local linear trend

Assuming that the multipath parameters evolve smoothly with time, we can try to
locally approximate the parameter trajectories with straight lines (or more generally,
polynomials). Here we will assume that the linear extrapolation is sufficient. The
DLLT is a simple linear model that a) can be learned with the standard Kalman
filter framework, and b) can be employed to implement the required one-step ahead
extrapolation.
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For a single kth track, the state-space representation of this filter is given as:






[
ŝk[q + 1]
vk[q + 1]

]

=

[
I I

0 ∆k

] [
ŝk[q]
vk[q]

]

+ ξk[q]

sk[q] =
[
I 0

]
[
ŝk[q]
vk[q]

]

+ εk[q],
(5.11)

where I is an identity matrix of the appropriate size, vk[n] is a vector of estimated
DLLT slopes, and ∆k = diag([δτ , δν , δφ]) are fixed damping factors for each of the
multipath parameters. The damping factors are chosen such that 0 ≤ δτ , δν , δφ ≤ 1.
Practically, we select ∆k = 0.1I. Also note that when ∆k = 0 the DLLT converges
to the classical random walk model.

Although for tracking we need only L = 1 step prediction, higher prediction
horizons can be realized by recursive application of the transition equation (5.11)
exactly L times. It has been shown [Har89] that for an L-step-ahead predictor based
on the information up to the moment of time q, eq. (5.11) converges to the value
ŝk = ŝk[q] + vTk [q](1 − ∆k)

−1 as L → ∞.
The disturbance terms εk[q] and ξk[q] are assumed to be zero-mean Gaussian

processes2. However their variances remain important design parameters. Since the
multipath parameters cannot be estimated with zero variance, the observation noise
εk[n] can be related to the residual estimation uncertainty of the SAGE algorithm.
Due to the unbiasedness and consistency of the SAGE-obtained estimates [FTH+99],
the disturbance εk[n] can be treated as a white Gaussian estimation noise. State
noise ξk[n], on the other hand, is left as a free design parameter. Practically, we
choose it so as to make sure that the ratio between the variance of the state noise
and that of the observation noise is ≈ 0.01.

The Kalman filter allows to find the states of (5.11) iteratively, as the data arrives.
Clearly, this requires a proper initializations. The initialization of the hypermodels
Sk is chosen so as to repeat the last seen value. This can be achieved by selecting
vk[0] = 0, and setting sk[0] to the true estimated multipath parameters at q = 0.
Assuming smooth parameter variations, the hypermodel predictions will not wander
too far from the true future values. Such initialization is more likely to result in
correct associations, and thus the proper values are going to be used to update the
predictor coefficients during the later iterations.

5.3 Hypermodels Ak

Once we solve the tracking/association problem, we can consider the evolution of
the parameters ak[q] and build predictors for them. As we mentioned, the set
ak[q] includes parameters that are not involved in tracking and for which long term-
prediction is needed. The required hypermodels Ak might thus be more complicated,
as compared to Sk.

2Note that ξk[q] used in (5.11) should not be confused with the additive channel noise defined in
Chapters 3 and 4.
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Multipath power prediction is often a desired output of channel forecasting. In
power prediction we are mostly interested in accurately modeling the evolution of
the multipath gains and extrapolating it beyond the observation interval. Thus,
ak[q] = {ak[q]}.

In the sequel we present several possible implementations of the hypermodel struc-
tures for gain prediction and the corresponding learning strategies.

5.3.1 Adaptive Linear Predictor (ALP)

The first predictor we propose is based on a simple linear model. The structure of
such a predictor is given as :

âk[q + L] =

Q−1
∑

m=0

ck[m]ak[q −m] = ck[q]
Tαk[q], (5.12)

where L ≥ 1 is the prediction interval, and Q > 0 is the order of the predictor. In
(5.12) αk[q] = [ak[q], . . . , ak[q − Q + 1]]T is a vector of delayed gain observations,
and ck[q] = [c0[q], . . . , cQ−1[q]]

T are the time-varying predictor coefficients.
Due to the linearity of (5.12) the coefficients ck[q] can be estimated and updated

with the classical Recursive Least Squares (RLS) algorithm [MS00b].
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a[q −Q− L + 1]

a[q + L]

ck[q]

Figure 5.6: Structure of the ALP with RLS-based adaptation of predictor coefficients
for L = 2.

Model (5.12) and the RLS algorithm form the basis of the Adaptive Linear Pre-
dictor (ALP). The block diagram of the ALP learning is shown in Fig. 5.6. The
samples ak[q] are stored in the buffer that is used to simultaneously update the pre-
dictor coefficients and make predictions. The size of the buffer needed to store all
the necessary data is Q+ L.

As it can be seen, we use the newest sample ak[q] to update the predictor coeffi-
cients. Once the new predictor coefficients are estimated, they are immediately used
in obtaining forecasts.
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Note that the ALP is trained for a fixed prediction horizon L. If multiple pre-
diction horizons are needed, we would be forced to re-learn the predictor, or train
several of them in parallel for every value of L, which of course increases the com-
putational load.

5.3.2 Iterated Adaptive Linear Predictor (IALP)

Another type of the linear predictor we use in our work is an Iterated Adaptive Linear
Predictor (IALP). Similarly to the ALP, this predictor utilizes structure (5.12) with
L = 1 to make predictions. However, it exploits the Kalman Filter framework to
estimate the predictor coefficients. As we will see later, this predictor can be used
in a manner that allows different prediction intervals L without the need to re-train
the model.

For the case, L = 1 we can cast this predictor in a state-space form as
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α̂k[q + 1]
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ak[q] =
[
1 01×Q−1

]
α̂k[q] + ςk[q],

(5.13)

where ck[q] ∈ CQ is a vector of model coefficients, α̂k[q] ∈ CQ a vector of delayed
gain observations as in (5.12), and IQ−1×Q is a Q− 1 ×Q rectangular matrix with
the 1’s on the diagonal Iii = 1, i = 1, . . . , Q− 1.

It can be seen that the KF is used not only to track filter states, but also to
estimate predictor coefficients, which in the Kalman filter context is known as the
Joint estimation problem [Hay01, ch. 5]. In this form the joint filter states are
interdependent, forming the bilinear state-space representation. This nonlinearity
prevents the application of the standard KF algorithm. However, it is still possible
to apply the Joint Extended Kalman Filer (EKF) [Hay01, ch. 5] that circumvents
the nonlinearity problem and enables joint estimation.

The role of the disturbance terms ςk[q], ηα,k[q] and ηc,k[q] in (5.13) is basically the
same as of ξk[q] and εk[q] in (5.11). They are assumed to be zero-mean Gaussian
processes and their variances remain free design parameters. Here as well we kept
the ratio between the variance of the state noise and that of the observation noise on
the order of 0.01. We should however mention that there are methods to estimate
the variance of the disturbance terms iteratively within the Bayesian framework
[Hay01] so as to minimize the prediction error. Accommodation of this case presents
a challenging predictor design problem that should be addressed in further research.

Note that although the hypermodel (5.13) is functionally equivalent to the ALP,
it, however, differs significantly in the way the predictions for longer L are realized.
The ALP is trained for a particular prediction horizon L, as can be seen from Fig.
5.6, while the IALP makes forecasts for L > 1 by the recursive application of the
one-step-ahead state-transition equation in (5.13) exactly L times, hence its name
“iterated” predictor. It is also worth saying that in the IALP case the predictions
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are made based on the filtered states α̂k[q] rather than directly on the samples of
the time series ak[q], as it is the case with the ALP.

5.3.3 Nonlinear predictor based on Volterra models (AVNP)

The basis for the ALP and IALP hypermodels constitutes the so called autoregressive
(AR) model [MS00a]. The idea of autoregression is simple – the future sample is
represented by a linear combination of the past measurements. ALP and IALP differ
in the way how the predictor coefficients are estimated and how the predictions are
obtained, but they are both linear predictors.

The linear predictor is able to capture only the linear dependencies in the observed
signal. If the signal that is to be predicted has some nonlinear structure then the
linear predictor is only a suboptimal one.

A nonlinear extension of the AR model is known as a Nonlinear Autoregression
(NAR). In this case the future sample is represented by a nonlinear combination
of the past observations. The distinction between different NAR models lies in the
way this nonlinearity is represented.

The type of predictor we consider here represents the nonlinearity using Volterra
models [MS00a]. In general, the Rth discrete Volterra filter is given as

y[n] =h0 +
∑

m

h1[m]x[n−m]+

∑

m

∑

l

h2[n− l, n−m]x[n− l]x[n−m] + . . .

+
∑

m

. . .
∑

l

hR[n− l, . . . , n−m]x[n − l] . . . x[n−m],

(5.14)

where x[n] is an input signal and y[n] is the output of the Volterra model, and
hr[· · · ], r = 0, . . . , R are the so-called Volterra kernels.

It can be seen that h0 captures a possible bias in the data, h1[n] is a linear impulse
response, h2[m, l] captures the quadratic nonlinearity, h3[m, l, k] captures the cubic
one, and so on, until the Rth order3.

Clearly, the number of coefficients needed to represent each order of nonlinearity
grows exponentially. As the result more data is required to reliably estimate these
coefficients, and thus the learning time increases. This might present extra difficulty
should the channel exhibit fast temporal variations – there might be not enough
samples to estimate the model coefficients. However, if the variations occurring in
the signal are nonlinear, we might still capture them with the NAR and thus extend
the range of model validity.

Now, let us discuss how the Volterra filter can be implemented to accomplish the
task we need. The structure of the Volterra filter can be easily formed by combining

3Theoretically, infinite Volterra series, both of infinite order and infinite memory length, are
possible, but they are of little practical interest for us. The infinite representation is usually
truncated at a certain level that ensures sufficient approximation quality.
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nonlinearly the elements from a simple delay line. The following examples illustrate
this principle.

Example

Let us consider the following nonlinear system:

y[n] = x[n] − 4x2[n − 1] + 2x[n − 1]x[n] + x[n − 2]x[n] + x3[n − 3]

The signal flow diagram that implements this system is shown in Fig. 5.7.

2

+

-4

x[n− 3]x[n− 2]x[n− 1]
z−1z−1z−1

x[n]

y[n]

Figure 5.7: Signal flow diagram of the Volterra filter.

The number of elements in the delay line represents the filter memory, while the
interconnections between the elements form the required nonlinearity.

It can be seen that the difference that distinguishes the Volterra filter from a
simple linear FIR filter is the way the elements in the delay line are combined. In
the simple FIR they are combined linearly, i.e., weighted and added together, while
in the Volterra filter the elements are interconnected so as to represent the required
nonlinearity and, only then, they are linearly combined.

It follows that transforming a linear ALP into the nonlinear Adaptive Volterra-
based Nonlinear Predictor (AVNP) is actually not that difficult. Let us consider as
an example a second order system with the linear and quadratic memory lengths
equal to Nl and Nq, respectively. The model bias is assumed to be 0. Extension to
the other possible configurations of Volterra models is straightforward.

Let us define a vector h1 = [h1[0], . . . , h1[Nl − 1]] that contains the coefficients
of the linear kernel h1[m]. Similarly we collect the coefficients of the quadratic
part h2[m, l] into a vector h2 = vec(h2[m, l]) by stacking the columns of the matrix
h2[m, l]. Note that due to the symmetry of the kernel coefficients [MS00a], the
number of unique elements in h2[m, l] is only Nq(Nq + 1)/2. Now, we form the joint
coefficient vector h as

h =

[
h1

h2

]

.
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Further, let MN = max(Nl, Nq) denote length of the required delay line, and let
ak[q], q = 0, . . . , Q − 1 be the samples of the observed signal that is used to train
the Volterra predictor. Let us further define a memory vector αk[q] = [ak[q], ak[q −
1], . . . , ak[q −Q−MN + 1]]T and the Volterra operator V(αk[q],h) as

V(αk[q],h) =
∑

m

h1[m]ak[n−m]+
∑

m

∑

l

h2[n− l, n−m]ak[n− l]ak[n−m].

(5.15)

Then, training the predictor consists in solving the system of simultaneous equations

ak[L] = V(αk[0],h),

ak[L + 1] = V(αk[1],h),

. . .

ak[Q− 1] = V(αk[Q−L− 1],h),

(5.16)

assuming L ≥ 1.
Expression (5.16) can also be transformed into the vector form as

αk = Akh, (5.17)

where now αk = [ak[0], ak[1], . . . , ak[Q− 1]]T are the samples of the observed signal,
and Ak = [Ak1 Ak2] is the observation matrix (or design matrix), with elements
composed from the samples ak[q] delayed and combined according to the particular
nonlinear structure. For example,

Ak1 =






ak[0] . . . ak[1 −Nl]
... . . . ak[2 −Nl]

ak[Q− 1] . . . ak[Q−Nl]




 (5.18)

Ak2 =








a2
k[0] ak[0]ak[−1] . . . a2

k[−1] . . .
a2
k[1] ak[1]ak[0] . . . a2

k[0] . . .
...

...
...

a2
k[Q− 1] ak[Q− 1]ak[Q− 2] . . . a2

k[Q− 2] . . .








(5.19)

From (5.17) we see that the unknown coefficients h enter the equation linearly,
and thus we can employ linear optimization methods to estimate them. In fact, it
is straightforward to apply the RLS algorithm [MS00b] to estimate the coefficients
h in a recursive way.

The block diagram of the AVNP learning algorithm is shown in Fig. 5.8. We see
that it does not differ substantially in its overall structure from its counterpart in
Fig. 5.6 for the ALP predictor.

The distinction arises in the way the estimated coefficient vector h is used to
obtain the predictions: in the ALP case it is a simple scalar product with the delayed
signal samples ak[q], while in the AVNP case the coefficients h are combined with
the delayed signal samples according to the specific nonlinear structure.
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a[q]

a[q − 1]

a[q − 2]

a[q − MN − L + 1]
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[
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h2
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[
h1[q]
h2[q]

]

Figure 5.8: Structure of the Volterra model-based Nonlinear Predictor with RLS-
based adaptation of predictor coefficients.

5.3.4 Nonlinear predictor based on Neural Networks (IANNP)

Similarly to the Volterra models, Neural Networks (NN) [Hay01] can also be used
to capture the nonlinearity in NAR. By varying the coefficients of the NN we can
create different nonlinear functions that result in different predictors. Just like in
the case of other predictors, the hypermodel based on the NN-NAR should also be
adjusted to the arriving data.

To adapt the network coefficients we will use here a structure similar to the
IALP hypermodel. In other words we exploit the Kalman Filter framework to learn
and adjust the filter coefficients recursively, giving rise to the Iterated Adaptive
Neural Network-based Predictor (IANNP). The basics for applying the Kalman
Filter methodology to NN learning are well described in [Hay01].

In general, the structure of a multilayer perceptron neural network is specified by

• The number of hidden layers,

• The number of neurons in each layer, including the input layer, and

• The form of the neuron activation functions.

The number of neurons (and thus the number of resulting coefficients) is directly
proportional to the complexity of the resulting hypermodel. The more neurons
are used, the more complex functions can this network approximate. It is known
[HSW89] that a sufficiently big feedforward network with a single hidden layer can
approximate any smooth bounded nonlinear function.

For us it is, however, important to make sure that the size of the network stays
compact: the smaller the network is, the fewer coefficients need to be adapted. This
minimizes the network learning time. We chose to implement the structure of the
NN with a single hidden layer and a purely linear output layer, as shown in Fig.
5.9.
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Figure 5.9: Structure of the Neural Network used for hypermodel approximation.

The neurons in the hidden layer all have sigmoidal activation functions. The
number of neurons in the input layer, as well as in the hidden layer, are left as free
network design parameters.

Now, let us consider the structure of the Kalman filter used to track and update
the network coefficients.

Assuming that the NN has NQ inputs and a total of MQ weights, the state space
of the corresponding NAR hypermodel is given as







[
α̂k[q + 1]
ck[q + 1]

]

=





[
f(ck[q], α̂k[q])
INQ−1×NQ

α̂k[q]

]

Ick[q]



+




ηα,k[q]

ηc,k[q]





ak[q] =
[
1 01×(NQ−1)

]
α̂k[q] + ςk[q],

(5.20)

where INQ−1×NQ
denotes a NQ−1×NQ rectangular matrix with the 1’s on the diago-

nal Iii = 1, where i = 1, . . . , NQ−1, and f(·, ck[q]) is a neural network parametrized
by the time-varying coefficients ck[q]. In this formulation the vector ck[q] consists
of all the coefficients of the NN, shown in Fig. 5.9.

Similarly to the IALP, the standard Kalman filter cannot be used to solve this
estimation problem due to the nonlinearity of the state-transition equation in (5.20).
However, it is still possible to apply the Joint EKF framework to learn the coefficients
of the neural network. For more information on Joint EKFs we refer the reader to
[Hay01].

Also, just like in the IALP case the predictions for L > 1 are obtained by the
recursive application of the state transition equation in (5.20).

5.4 Discussion and conclusions

Now let us discuss and conclude the ideas we introduced here for the tracking algo-
rithm.

First note that we allow simultaneous tracking of K components. In theory, K
might be as large as desired, upper bounded only by the true number of present
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multipath component. In practice, we might however be limited in the available
resources and reduce the number or tracked components to a possible minimum.

The main idea of the proposed tracking scheme is inspired by the sequential
Bayesian estimation. The two major steps of the algorithm are the prediction step
and the update step, just like prediction and propagation steps in the Bayesian
sequential estimation [Hay01, MS00b].

Using the hypermodels we obtain single-step predictions of the multipath structure
parameters – the prediction stage of the algorithm. The predicted structure defines
the predicted “time-space position” of the tracked component. These predictions
are then used to find which of the estimates obtained with the multipath estimation
algorithm is associated with the current track.

An advantage of this scheme is its ability to construct the track hypermodel
online from scratch. However, there is also a critical disadvantage, namely tracking
errors propagation. If the association is wrong, consequently the wrong value is
used as the track continuation and, as a result, the wrong value is used to update
the hypermodel. Initially we try to minimize possible errors by assuming “singular”
model structures. In other words, we initialize the models so as to repeat the last
seen value at the output (i.e., to represent the random walk model). Assuming that
the track dynamics does not change abruptly, such a “singular” model can be a
good start to solve the associations in the beginning of the tracking, that in return
triggers the adaptation of the model coefficients.

Tracks association

Track association is an essential part of the tracking approach we consider because
it decides which estimates are going to be used for hypermodel updates.

Having K tracks results in a K dimensional constrained optimization procedure.
This optimization task is formulated as a Dynamic Programming problem. The
“dynamic” aspect arises simply because the current association cost (5.3) for the kth
track depends on the previous costs evaluated along the optimal solution path. Since
we minimize the total association costs we definitely prefer smooth track trajectories
(with smaller costs). Smooth parameter change is crucial for the successful model
building, since it prevents tracking error propagation.

Smooth parameter variations result from a high degree of correlation between
the successive MIMO channel estimation windows. Thus, it is important to have
spatially oversampled channel IR’s. This will ensure smooth parameter trajectories
that can be easily picked up and followed by the tracker.

Another very important aspect of the tracking algorithm is its sensitivity to the
estimation artifacts. Such artifacts are forming mainly in the vicinity of strong
components and the parameters of these artifacts are highly correlated with the
parameters of the true component. Thus, the association algorithm is likely to assign
similar costs to these estimates and quite possibly divert the component trajectory.
The straightforward way to minimize the amount of estimation artifacts is to increase
the intrinsic resolution of the measurement equipment. This is unfortunately not
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always possible.
The tracker itself is not able to instantaneously distinguish between the true

component and the artifact, but it might do it by observing the track component
over time. The estimation artifacts eventually loose their influence once the physical
component moves further away from the artifact position. Thus, it might be possible
to detect these artifacts, return back in time, and adjust the tracker so that to avoid
undesired tracking solutions. Of course, during this “time-reverse” the hypermodel
will not be available for forecasting.

Hypermodels

Another important element in the tracking algorithm is the hypermodel.
The hypermodels we use are divided into two groups, depending on their function

and application in the whole framework. We split the track hypermodel Hk into
a set of two sub-models: structure hypermodel Sk and gain hypermodel Ak. This
dichotomy stems from the fact that the sub-models Sk and Ak are applied to different
signals. The structure hypermodel Sk is the simplest one because it is needed to
model relatively simple local dynamics of the track structure, which is then used in
solving the association problem. We select it to be a simple damped Local Linear
Trend model. Such model is linear and it can be easily updated with the standard
Kalman filter.

On the other hand, the hypermodels Ak are more complex since the multipath
gain variations are more difficult to model. In our work we consider hypermodels Ak

for predicting complex multipath gain. We distinguish linear and nonlinear models
(based on the hypermodel structure), as well as iterated one-step-ahead predictors,
and L-step predictors (depending on how the forecasts are realized).

The iterated and L-step predictors differ in the way they come up with predictions
for prediction intervals L > 1. The iterated predictor, trained as a one-step-ahead
predictor, obtains such forecasts by a closed loop prediction [Har89], i.e., by recursive
application of the the one-step ahead prediction L times. The L-step predictor, on
the other hand, is trained for a specific prediction interval L.

In learning the hypermodels we employ two different learning algorithms: the first
one is based on the Recursive Least Squares, and the second one exploits Joint EKF
methodology. RLS is used to train the L-step predictors, while the joint EKF is used
for iterated predictors. The types of the used hypermodels and the corresponding
learning algorithms are summarized in Table 5.1.

RLS Joint EKF
Linear ALP IALP

Nonlinear AVNP IANNP

Table 5.1: Hypermodels used in multipath gain prediction.

The RLS algorithm is easier to implement and it has fewer free parameters, but
it must be re-adapted for each new interval L. EKF-based predictors exploit the
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transition equation in the state-space formulation as a predicting function. They
thus make predictions based on the filtered hypermodel states, but the state-space
formulation has more free parameters that should be set up. Furthermore, with
the closed-loop prediction we must be concerned with the stability of the resulting
predictors. Although we propose to use quite a simple approach, this question
deserves more rigorous mathematical investigation.

Although the linear models are usually easier to learn and interpret, the nonlinear
can better represent the nonlinear dependencies in the signal. The disadvantage of
the nonlinear models is that usually they require more data to reliably estimate
the coefficients. This fact might render the usage of nonlinear models impractical,
should we confront abrupt signal changes due to, for example, tracking or estimation
errors.



Chapter 6

Multipath forecasting

The previous chapters discuss a sequence of channel processing steps, leading to
the construction of multipath hypermodels. In this chapter we apply the proposed
parameter estimation, tracking, and prediction algorithms to the measured channel
data.

The multipath estimation, multipath parameter tracking, and prediction algo-
rithms have several free parameters that have to be chosen to allow the application
of the considered techniques. In Section 6.1 we discuss which and how these param-
eters can be selected. We also define the quality measure to assess the performance
of the channel prediction algorithm.

In the Section 6.3 we consider tracking and prediction of the multipath component
parameters estimated with the SAGE algorithm, which was discussed in Chapter 3.
Using these data we also discuss hypermodel properties used for prediction.

In Section 6.4 we apply the prediction and tracking algorithms to the channel
data estimated with the Evidence Procedure, namely, the SAGE-RVM algorithm
proposed in Chapter 4.

Throughout this chapter we use the FTW data set (App. C) to demonstrate the
results of channel prediction.

6.1 Choosing simulation parameters

Three major steps of the considered prediction framework, namely estimation, track-
ing and prediction require specification of several free parameters that control al-
gorithm performance and properties. These parameters can be roughly grouped
as:

• Channel estimation

– Maximum number of components L to estimate.

– Initialization of the SAGE-RVM and SAGE algorithms.

– Initial noise variance used in the SAGE-RVM model selection.

• Channel tracking

– Number of the tracks K to be reconstructed.

111
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– Forgetting constant µk used in computing the track cost (5.3).

– Sensitivity regions ∆ used in computing the MCD in (5.10).

– Weighting coefficients Wi in (5.10).

• Hypermodel design/ prediction

– The damping factors ∆ used in the structure hypermodels Sk in (5.11).

– Order of the hypermodels Ak, as well as the corresponding structures of
the nonlinearity in the case of the nonlinear hypermodels.

– Selection of the disturbance parameters in the state-space formulations
(5.13) and (5.20) of the predictor hypermodels.

– Forgetting factor used in the RLS-based hypermodel learning algorithms.

– Initialization of the Ak hypermodels.

Selecting or estimating these parameters is not a straightforward procedure. Be-
low we provide some “rules of thumb” that have guided the selection of these pa-
rameters in our simulations.

Channel estimation

Channel estimation is a relatively autonomous procedure. The initialization of both
the SAGE and SAGE-RVM algorithms has been discussed in the preceeding chap-
ters. However, both algorithms require selection of the initial number of components
L. SAGE cannot estimate the number of components, but SAGE-RVM can. From
the analysis of FTW data with the SAGE-RVM algorithm, we established that the
number of multipath components varies between L = 7, . . . , 18. Thus, for the SAGE
algorithm the initial number of components is chosen from this interval. Later we
explicitly state how many components are used in the SAGE algorithm.

In order to implement model selection in the SAGE-RVM algorithm, we need to
specify the initial variance of the noise. Practically, the noise variance is initialized
by measuring the variance of the tails of the channel IR, where it is unlikely to
observe any detectable multipath components.

Tracking

In comparison to channel estimation, the tracking algorithm has quite a few free
parameters. First of all, it is the number of tracks K. This number is mainly
dictated by the application constraints and available resources. One track is easier
to reconstruct, but most likely it captures only a fraction of the total channel power.
Many tracks are more difficult to track, but they reflect a larger portion of the
total received power. As we will see from the experiments, the best strategy is to
implement an intelligent track management algorithm that is able to decide how
many tracks are needed and which components should be used in the tracker. Such
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management algorithm is, however, outside the scope of this work. In the sequel we
will demonstrate prediction results for different numbers of tracked components.

In the heart of the tracking/association algorithm lies the computation of the
MCD. As we know, this requires the specification of the sensitivity regions ∆τ ,
∆ν , and ∆φ. In order to select them it might be helpful to exploit the resolution
limitations induced by the measurement equipment. It is known that the acquisition
bandwidth limits the resolution in the delay, the number of antennas influence the
spacial resolution, and the length of the channel estimation window channel defines
the resolution of the Doppler frequency.

Based on the corresponding parameters of the FTW data set, we used the following
values: for the delay the sensitivity region ∆τ was set to 2/(120 · 106)sec, which is
double the inverse of the channel bandwidth. Concerning the sensitivity regions
for Doppler and DoA parameters, we decided to set them to the maximum range.
This was mainly done to account for the low data resolution in these domains, as
compared to the resolution in the delay domain. In the computation of the MCD we
also can specify the weighting Wi of individual parameter MCDi’s. As we previously
said, this allows to control the contribution of some of the parameters to the final
MCD. Taking this all into account we define the weighting coefficients as

Wτ = 0.9, Wν = 0.05, Wφ = 0.05.

Another important parameter is the forgetting factor µk for the dynamic track
cost computation (5.3). The choice of this constant is quite arbitrary, but it should
not be very high to make sure that the cost adapts to the time-varying environment,
and it also should not be very low, to make sure that the reconstructed track remains
smooth. In our simulations it was chosen to be µk = 0.9 for all tracks.

Hypermodel design

The hypermodels also require specification of a set of parameters that control their
behavior. Let us begin with the structure hypermodels Sk.

To initialize the states ŝk[q] of the structure hypermodels we use the multipath
parameters obtained for the first estimation window. States vk[q] are set to zero to
ensure that our untrained model will not produce absolutely irrelevant predictions.

For the DLLT hypermodel we also need to specify the slope constants ∆k, as well
as the parameters of the disturbance terms in the state-space model formulation.
In our experiments we found that ∆k = 0.1I, k = 1, . . . , K, provides sufficient
model performance and good predictions. The disturbance terms ξk[q] and εk[q] in
(5.11) are assumed to be zero-mean Gaussian random variables. Their covariance
matrices remain however an important design parameter and should be selected so
as to optimize the agility of the resulting tracker and insensitivity to the errors. The
values we used were mainly found by trial and error. The corresponding variances
for the are specified in the Table 6.1.
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Delay τ DoA φ Doppler ν
σ2
τ/σ̂

2
τ σ2

δτ
/σ̂2

τ σ2
φ/σ̂

2
φ σ2

δφ
/σ̂2

φ σ2
ν/σ̂

2
ν σ2

δν
/σ̂2

ν
var{ξ[q]}
var{ε[q]}

0.02/0.9 0.02/0.9 0.025/1 0.025/1 0.025/1 0.025/1

Table 6.1: Variance of the disturbance terms in the state-space representation of the
DLLT model for each of the structure parameters.

The parameters in Table 6.1 are related to the covariance matrices Σξ of ξk[q],
and Σε of εk[q] as

Σξ = diag([σ2
τ , σ

2
ν , σ

2
φ, σ

2
δτ , σ

2
δν , σ

2
δφ

]T )

Σε = diag([σ̂2
τ , σ̂

2
ν , σ̂

2
φ]
T )

Selecting parameters for the hypermodels Ak is a bit more tricky. First, for
iterative learning we need to choose initial values for hypermodel parameters ck[0].
Generally, we select them as follows:

ck[0] =

(
1
c′

)

,

where c′
∼ N (0, σI) is a vector of random hypermodel coefficients with zero mean

and covariance matrix σI, with σ being some small number (e.g., σ = 0.001). Such
initialization results in the “random walk” initialization of the hypermodel, i.e., we
select the coefficients so as to be close to the random walk model. Random coeffi-
cient initialization allows then to average the prediction performance over different
hypermodel solution trajectories.

It is also important to properly choose the order of hypermodels, as well the
structure of nonlinearity, in case of AVNP or IANNP hypermodels. These are left
as free design parameters and during the simulations we will consider several possible
choices. As a general rule, we prefer compact models with few parameters, since
training such predictors is simpler.

For the hypermodels learned with the RLS algorithm we also need to specify the
forgetting constant. This, both for ALP and AVNP, was set to 0.9. This value was
found to result in good prediction performance.

For the IALP and IANNP hypermodels, instead of the RLS forgetting factor, we
need to specify the parameters of the disturbance terms present in the their state-
space formulations. Similarly to the structure hypermodel Sk, we find these values
empirically though numerous experiments. We again assume the disturbance terms
to be distributed as ηα,k[q] ∼ N (0, σ2

αI), ηc,k[q] ∼ N (0, σ2
cI), and ςk[q] ∼ N (0, σ2

ς ).
The scaling factor for the covariance matrices are chosen so that σ2

α/σ
2
ς = 1/0.02,

and σ2
c/σ

2
ς = 0.001/0.02.
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6.2 Measuring the prediction quality

It is also important to find a way to evaluate the performance of the prediction
algorithm. We can anticipate that if the tracking algorithm makes errors, even
temporarily, it leads to a burst-like degradation of the prediction performance. In
addition, when the hypermodel is adapted, the corresponding transients also cause
the prediction quality degradation.

A classical way to assess prediction quality is to compute the Prediction Gain
(PG) that relates the power of the signal a[q] to be predicted to the prediction error
e[q] = a[q] − apred[q] as

PG = 10 log10

(
Psig
Perr

)

, (6.1)

where Psig =
∑N

q=1 |s[q]|2/N , and Perr =
∑N

q=1 |e[q]|2/N are the signal and prediction
error powers, respectively, averaged over the segment of N samples.

We see that PG is equivalent to the Signal-to-Noise ratio. In our case, however, the
straightforward application of (6.1) is not fully justified, since both the error signal
and the signal we predict can exhibit short-term transient behavior, i.e., generally
they are nonstationary. Thus, the computed average power might not be adequate.

A possible way to alleviate this problem is to consider a Segmental Prediction
Gain – an equivalent of the Segmental SNR, often used in speech coding applications
[O’S00]. The basic idea behind the segmental PG is quite simple: the data sequence
is sectioned into relatively small chunks of size ≈ 2λ, over which signal stationarity
can be assumed. For each chunk i the individual PGi is computed according to
(6.1). The final Segmental PG is then found as an average over all the partial PGi’s
over the whole data sequence.

In all our further simulations we evaluate the Segmental PG only. The first
value PG0, corresponding to the initial hypermodel adaptation, is excluded from
the computation of the Segmental PG.

We also develop this scheme a bit further by taking into the account the specifics
of the resulting signals, as explained below.

Measuring the prediction error

The computation of the Prediction Gain requires estimation of the prediction error
power. Although a relatively simple operation, it might result in the inadequate
representation of the prediction quality due to the possible presence of outliers -
– instantaneous error bursts with high amplitudes. These outliers are mostly the
result of transients and tracking errors. The outliers significantly affect the resulting
value of the error signal power. In Fig. 6.1 we show a sample prediction error along
with the corresponding histogram of prediction errors.

As we see the outliers constitute themselves as the long tails of the prediction
error histogram (Fig. 6.1(b)). The probability of finding an outlier is quite low,
but the effect on the computed variance is significant. In statistics it is common to
amend this sensitivity to outliers by means of so-called robust statistics.
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Figure 6.1: A sample measured prediction error for a one-step-ahead ALP hyper-
model.

It is known [Hub81] that the median is a robust estimator of the sample mean.
The median is much less sensitive to outliers than the standard mean value. The
following example illustrates the distinction between the median and the mean as a
representative description of the random samples:

Example

Consider the following set of numbers: A = {1, 2, 3}. It is required to compute the
mean and the median of these samples. It is easily found that the mean equals
µA = 2, and the median is mA = 2.

Now, let us assume that this set is extended with an outlier: B = {1, 2, 3, 100}.
The new values of the mean and median are µB = 26.5, and mB = 2.5, respectively.

We can see that the median is much less affected by the presence of the outlier in
the data set, as compared to the mean.

In our experiments we thus compute the median of the squared absolute error
instead of the mean. The corresponding Prediction Gain is then computed as in
(6.1), but Psig and Perr are evaluated as

Psig = median{|s[q]|2}, andPerr = median{|e[q]|2}. (6.2)

This will result in the value of the noise power variance being less affected by the
transients and temporary tracking errors. Thus, in computing the Segmental PG
we will use the median power instead of the mean power.
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Naive predictor

It also illustrative to compare the prediction properties of the trained hypermodels
with the “simplest” predictor – the Naive Predictor . The Naive Predictor assumes
that the future signal samples at the moment q+L are equal to the samples at the
moment q. In other words, the Naive Predictor can be seen as a predictor that for
any prediction interval L > 0 returns the value equal to the current value at the
moment q.

Such a predictor is termed “naive” because repeating the last seen value, especially
for time-varying signals and long prediction horizons, and hoping that the signal does
not change, is overly simplistic. However, in the absence of any other hypermodels,
this might be the only strategy.

6.3 SAGE-based multipath prediction

Here we present the results of applying the prediction algorithm to the channel data
estimated with the SAGE algorithm discussed in Chapter 3. In all experiments
we use the FTW channel data set (Appendix C) to demonstrate the tracking and
prediction results.

We consider different examples of multipath prediction with different simulation
parameters. First, in Example 1 we consider a single track prediction over the
distance of 28λ. Based on this example we also discuss the properties of the used
prediction hypermodels. In Example 2 we extend the tracking distance to 71λ.
Finally, in Example 3 we consider simultaneous tracking and prediction of several
components.

6.3.1 Tracking example 1: SIMO channel with a single track

In this example we consider a simple case of tracking a single multipath compo-
nent, i.e., K = 1, over the distance of 28λ (or equivalently, ≈ 4.2m). The SAGE
algorithm is set up to extract L = 9 components from the measured data. The
strongest component from the estimated set is then used to initialize the corre-
sponding structure hypermodel Sk.

Let us first consider tracking results. In Fig. 6.2 we plot the evolution of the
multipath parameters, i.e., delay, Doppler and DoA, as a function of the walked
distance expressed in multiples of the carrier wavelength λ.

The first plot in Fig. 6.2(a) demonstrates the evolution of the corresponding mul-
tipath delay. The grid lines in Fig. 6.2(a) are drawn so as to coincide with the
multiples of the sampling period. It can be seen that the delay trajectory resides
mainly in the vicinity of a single sampling instance, however, it does deviate. These
deviations are the results of the SAGE algorithm estimating parameters with a
resolution better than the channel sampling period.

Next, in Fig. 6.2(b) we can see the evolution of the Doppler frequency trajectory.
It is interesting to note how the Doppler frequency changes with time. The portion
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Figure 6.2: (Example 1) Reconstructed trajectories of the track structure parame-
ters.
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of the data we use corresponds to the beginning of the measurement, i.e., when the
transmitter starts moving. We see that initially we have very low Doppler frequency
around 2Hz that increases to ≈ 10Hz, which corresponds to the movement with
the velocity of ≈ 1m/s. This is the velocity with which the mobile transmitter was
moved during the measurement campaign.

The evolution of the estimated DoA trajectory, shown in Fig. 6.2(c), is also quite
interesting. It is relatively stable in the area up till 17λ. However, towards the end
of the tracking interval the, DoA trajectory deviations grow. This is particularly
visible after ≈ 20λ.

A explanation for this behavior can be found once we consider the evolution of
the corresponding complex gain and power, shown in Fig. 6.3. We see that in the
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Figure 6.3: (Example 1) Evolution of the real and imaginary parts of the gain and
of the power of the estimated track.

vicinity of the 20λ the power of the multipath component has dropped. This might
happen naturally, due to the multipath component slowly getting out of sight of
the antenna array. Alternatively, this might also result from errors in the tracking
algorithm that picks up a wrong component continuation. In any case, the power
of the track has fallen and thus more noise is affecting the parameter trajectories.
Clearly, as the tracking algorithm continues the trajectory further, the hypermodels
have to re-adapt to the new conditions. This in turn results in the temporary
degradation of the prediction quality, since the hypermodels require time to adapt
themselves to the new conditions and re-learn the new model coefficients. In case of
tracking errors, the transients have a profound effect on both Sk and Ak, and as a
result on the prediction performance. But in case of gradual parameter change, the
learning algorithm should be able to effectively cope with it.
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This observation allows us to conclude that, in general, the agile hypermodels,
i.e., those that are able to adapt faster, eventually minimize the influence of the
transients and tracking errors on the prediction and tracking performance.

We see that in this experiment we have a strong and stable trajectory that can
be used to train long-term gain predictors. In Fig. 6.4 we plot the spectrogram
of the complex gain trajectory. We see that the complex gain is a time varying
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Figure 6.4: (Example 1) Spectrogram of the complex gain variation of the estimated
track.

narrowband complex process, which exhibits a chirp-like behavior. Such signals
can be viewed as complex exponential with a time-varying frequency. In theory, a
complex exponential can be modeled with a simple first-order complex AR model.
We, however, will need to continuously re-estimate the parameters of the AR models
to cope with the signal nonstationarity, or use nonlinear models that try to capture
the signal’s chipred behavior.

In a sequel we will demonstrate the prediction performance of the gain hypermod-
els, considered in Section 5.3, using this trajectory data.

Adaptive Linear Predictor (ALP)

We begin with the application of the ALP hypermodel to the long-term forecast of
the complex multipath gain. Keeping in mind that we want the predictor to adapt
fast, we try to keep the predictor order as small as possible.

First, in Fig. 6.5 we illustrate a sample of a one-step-ahead prediction, i.e., L = 1,
with the predictor order Q = 3. For the FTW data set this corresponds to the
spacial prediction horizon of λ/7, or, equivalently 20msec into the future. The
initial portion of the predicted signal illustrates well the convergence properties of
the hypermodel. It can be seen that after ≈ 4λ the hypermodel coefficients converge
and the predictions start to follow closely the true gain variations. The Naive
Predictor, on the other hand, is much less effective in this case. As expected this
predictor simply compies the samples of the gain signal by L = 1 samples into the
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Figure 6.5: (Example 1) Complex gain prediction using the ALP hypermodel. L =
1, Q = 3.

future. Such prediction is clearly inferior to the ALP-based prediction performance
for this prediction horizon.

The next plot in Fig. 6.6 shows the evaluated PG as a function of the prediction
horizon L for different model orders Q. The result in Fig. 6.6 are averaged over 100
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Figure 6.6: (Example 1) Prediction gain for the ALP hypermodel with different
model orders.
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random hypermodel coefficients initializations.
The first observation we make is that the prediction performance gets worse as

the prediction horizon increases. This is quite logical since it is impossible to predict
a non-deterministic process infinitely far into the future. What is also interesting
is that by increasing the model order Q we do not gain any significant increase of
PG. This might be the result of overfitting: the hypermodel with more parameters
does not generalize well, especially for higher prediction horizons. However too few
parameters lead, as we can see, to undermodeling, which also results in lower PG.
In our simulations we empirically selected an optimum model order Q = 3 that
achieves high PG with few coefficients.

We also observe that the Naive Predictor is not a monotonic function of the
prediction horizon. Since the Naive Predictor simply repeats the last seen value, it
thus exhibits oscillatory variations of the prediction quality like the gain signal itself.
When the prediction interval L coincides with a multiple of the “signal period”, we
obtain higher PG values. Similarly, around half of this “signal period”, the Naive
Predictor results in a very poor prediction performance.

Iterated Adaptive Linear Predictor (IALP)

The next hypermodel we are going to discuss is the IALP. This is again a linear
predictor that, unlike ALP, exploits the Kalman Filter framework to learn and
adapt the hypermodel coefficients.

Similarly to the previous case we first show the initial portion of the predicted
signal. In Fig. 6.7 we show the corresponding prediction results for a prediction
interval L = 1 and model order Q = 3. Interestingly, the IALP hypermodel adapts
faster to the data. If we compare these prediction results to the similar ALP pre-
diction experiment, shown in Fig. 6.5, we notice that the latter adapts after only
≈ 2λ, i.e., the half of the ALP learning time. This is of course an advantage since
we definitely prefer agile predictors. Thus, in general, we can expect a better PG
performance with this predictor. The following plot in Fig. 6.8 proves this assertion.
Again, the PG results where averaged over 100 independent model initializations.
Although we cannot say that the PG increase is very high, but for short prediction
horizons we win almost 1dB. Surprisingly, increasing the order Q of the predictor
does not have a profound effect on the PG performance. Thus we can conclude that
overfitting is less of a problem here.

It must, however, be stressed that the recursive nature of the IALP hypermodel
brings along numerical stability issues. The “iterative” application of the state
transition equation in (5.13) might lead to unstable predictor for long prediction
intervals L. In our implementation of the IALP, we use a simple-minded approach to
avoid such instabilities by simply checking the range of the predicted gain samples.
When they become larger than a certain predefined threshold, we re-adapt the
hypermodel by generating initial hypermodel parameter values with slightly higher
variance σ. This usually allows to find a solution that eventually leads to a stable
trajectory (within the empirically defined range). The stability of the resulting
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Figure 6.7: (Example 1) Complex gain prediction using the IALP hypermodel. L =
1, Q = 3.
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Figure 6.8: (Example 1) Prediction gain for the IALP hypermodel with different
model orders.

predictor remains however a weak point of the used IALP algorithm.

Nonlinear Volterra-based predictor (AVNP)

Since the complex gain waveform is a chirp-like signal, a nonlinear model might be
more appropriate. In theory, linear modeling of polynomial phase (chirped) signals
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is suboptimal and a nonlinear structure is required. Here we apply several nonlinear
models that can be used to approximate this nonlinearity. Again, we would like to
have the simplest models to ensure that the resulting computational complexity is
not high.

Volterra models, used in AVNP’s, are good candidates for such approximation.
By selecting the order of nonlinearity and memory length for each order we can
approximate a large class of nonlinear systems. In the following we will try several
different nonlinearity structures to find the best fitting one.

Keeping in mind that the ALP performed quite well with only three coefficients,
we assume the length of the linear part of AVNP to be equal to 3. We also do
not increase the order of nonlinearity beyond the cubic one. In our experiments we
found that higher nonlinearity orders do not bring any considerable increase of the
PG performance.

As in the previous cases, let us first consider a sample prediction result for L = 1,
shown in Fig. 6.9.
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Figure 6.9: (Example 1) Complex gain prediction using the AVNP1 (Table 6.2) hy-
permodel. L = 1.

In this experiment we use a simple quadratic Volterra model with a single coeffi-
cient for the nonlinear part. Note that similarly to the ALP hypermodel, this AVNP
hypermodel requires roughly the same learning time to make useful predictions, i.e.,
approximately 3λ to 4λ. Similar learning times can be observed when we consider
higher nonlinearity orders.

The configuration of the Volterra model used to generate these prediction results
is not necessarily an optimal one. Although it is possible to objectively find the
best structure, i.e., nonlinearity order and memory size, that would minimize the
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prediction error, this is a quite challenging task. In the present work we choose the
best model empirically by trial and error. Although suboptimal, this strategy, at
least, allows to determine if Volterra models bring any advantage at all, as compared
to the linear prediction methods.

A set of model structures we experiment with is summarized in the Table 6.2.

AVNP1 AVNP2 AVNP3 AVNP4
Linear part 3 3 3 6

Quadratic part 1 3 3 3
Cubic part 0 1 3 3

Table 6.2: Memory lengths for the nonlinear terms of the AVNP hypermodel.

Using these configurations we can evaluate the PG experimentally. The corre-
sponding prediction results, averaged over 100 random model initializations, are
shown in Fig. 6.10.
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Figure 6.10: (Example 1) Prediction gain for the AVNP hypermodel with different
model structures.

What we immediately see is that the resulting PG performance is inferior to
that of the linear models. Especially for short prediction horizons, where the best
performance is expected, the usage of nonlinearity does not bring any advantage and
the achieved PG is even lower than that of the ALP predictor. For longer horizons
the performance is not that different from the ALP predictor.

Based on that we can assume that Volterra models might not be an appropriate
choice for modeling the dynamics of chirp-like signals we deal with. However, it is
possible that other nonlinear models are more efficient in doing this.
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Iterated nonlinear predictor based on Neural Networks (IANNP)

Another type of nonlinear predictor we consider is the Iterated Adaptive Neural
Network Predictor (IANNP). Unlike AVNP, which is a nonlinear extension the ALP
hypermodel, this predictor is the nonlinear extension of the IALP. Similarly to IALP
this hypermodel exploits the Kalman filter framework for hypermodel parameter
estimation and adaptation. It also makes predictions by recursive application of
the state transition equation, which in the case of IANNP is a nonlinear function
represented by a neural network (NN). We will consider several possible neural
networks that we found to give interesting results. The used NN differ only in the
number of neurons in the input and hidden layers.

We begin by illustrating a one-step-ahead prediction results for a sample network
structure. For that we use a relatively small NN with 2 inputs and 3 neurons in the
hidden layer, which gives a total of 9 network coefficients that are to be estimated.
The corresponding results are shown in Fig. 6.11. It can be easily seen that this
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Figure 6.11: Complex gain prediction using the IANNP1 (Table 6.3) hypermodel.
L = 1.

predictor needs more than the others to adapt its coefficients. Unlike the IALP, the
convergence time in this case is almost 4λ to 6λ, depending on the initialization.
Such a long adaptation time eventually results in longer transients and lower PG.
Keep in mind that the number of coefficients is relatively small, thus for larger
networks we might expect even longer adaptation times.

As we said, the NN’s we use in this experiment differ in the number of neurons
in the input and hidden layers. The configurations we used to evaluate the PG are
summarized in Table 6.3.
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IANNP1 IANNP2 IANNP3 IANNP4
Input Layer 2 2 7 7

Hidden Layer 3 7 2 7

Table 6.3: Number of neurons in the neural network used in the IANNP hypermodel.

The corresponding prediction gain computed using these hypermodels is shown
in Fig. 6.12. We can see that although the PG performance for short prediction
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Figure 6.12: (Example 1) Prediction gain for the IANNP hypermodel with different
network structures.

intervals is lower than for the corresponding linear hypermodels, it does not, however,
degrade as fast. If we compare the IANNP with its linear counterpart, i.e., the
IALP hypermodel, we find that, for shorter prediction intervals, the linear models
still outperform IANNP. But when the prediction interval grows, the IANNP models
deliver a better performance: it decays not as fast as the linear predictor, yielding
a positive prediction gain as long as ≈ 2.5λ.

We should also mention that unlike the IALP hypermodel, there are no stability
issues with iterative prediction for long prediction intervals L. Since the hidden
layer uses sigmoidal activation functions, its output values are always bounded by
±1 and thus the output of the hypermodel stays bounded even if it the transition
equation is used recursively.

6.3.2 Tracking example 2: Extending tracking time

In this example we use the same simulation parameters as in the Example 1,
but track the multipath component over a longer time interval. As we have seen,
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the prediction results obtained in the previous examples were evaluated over the
tracking distance of 28λ. Here we extend the observation and tracking time to 71λ,
which corresponds to the tracking distance of ≈ 10m.

It is easier to analyze these plots together with the evolution of track power,
shown in Fig. 6.14. We can see that up till ≈ 30λ the track evolution is quite
stable, with slight variations of the signal power envelope. Again we observe a
time dependent frequency variation of the track gain (see signal spectrogram in Fig.
6.15). The track trajectory is, however, interrupted at 30λ, which can be seen as
a drop of the track power. A similar break occurs around ≈ 39λ. This is most
likely caused by errors in the tracking algorithm, which in turn might be caused by
errors in parameter estimation. It is known that the SAGE algorithm occasionally
introduces estimation artifacts, namely in the cases when several components are
used to approximate a single true one. These artifacts might severely “confuse” the
tracker. This “confusion” can be seen as noisy bursts in the parameter trajectories,
since the artifacts have slightly different (but still close) parameter values. It is
possible that, as the tracking proceeds, the artifacts become sufficiently different
from the hypermodel predictions and the tracking algorithm might eventually pick
up the correct component, as we see in our experiment around 30λ and 39λ. This
however leads to parameter jumps, and as the result to possible transients.

Further we notice that after ≈ 48λ the power of the track significantly decreases.
This might be an absolutely natural process – the component simply becomes too
weak due to the change of the propagation environment. We cannot, however,
exclude the case of tracking errors. They might also lead to the track converging to
improper continuations.

Still, we can identify the hypermodels that are able to adapt to these changes.
Again, the signal we are going to predict is the time-varying complex gain. In
this experiment we select several hypermodels to evaluate the PG performance.
In particular, we use linear hypermodels of order 3, i.e., ALP(3), IALP(3), and
nonlinear hypermodels AVNP3 and IANNP3. The corresponding results, averaged
over 100 independent model initializations, are shown in Fig 6.16.

As we can see from the Fig. 6.16, there is a slight degradation of the prediction
gain for the short prediction horizons, as compared to the previous example. This
decrease comes from having more transients due to the hypermodel changes when
compared to the shorter data record of Example 1. Due to the increased observation
time, the obtained curves are now less noisy and the dependency of the PG on the
prediction horizon can be seen more clearly.

It is also interesting to note that the hypermodel based on the neural network
slightly outperforms other predictors for long prediction intervals (beyond ≈ 1.3λ).
We also see that IANNP hypermodels are better suited for prediction as compared
to the AVNP. Thus, they capture the nonlinear dynamics of the observed signal
more effectively. Nonetheless, for short prediction intervals the linear models are
still better than the nonlinear models.

The PG performance obtained for this example demonstrates that we achieve
positive PG up to a distance of ≈ 2.5λ (approx. 0.37m). Clearly, it is the actual
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(a) Multipath delay.
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(b) Doppler frequency.
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Figure 6.13: (Example 2) Reconstructed trajectories of the track structure parame-
ters.
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Figure 6.14: Example 2: Evolution of the real and imaginary parts of the gain and
of the power of the estimated track.
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Figure 6.15: (Example 2) Spectrogram of the complex gain variation of the estimated
track.

application that determines the minimum required PG, and thus the maximum
possible prediction horizon.

6.3.3 Tracking example 3: Tracking multiple components

Here we will present some performance results for tracking several components
simultaneously. We also consider tracking over a long distance, using the hyper-
models we chose in Example 2. The SAGE algorithm is set up to estimate L = 15
components, the number of tracks is set to K = 5. Other experimental parameters
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Figure 6.16: (Example 2) Prediction gain for a single track evaluated over the dis-
tance of 71λ (10m).

are left unchanged as in the previous examples.

Unlike the previous examples, here we need to select K > 1 initial tracks, which is
a “K out of L” selection problem. Despite its seeming simplicity, it is an important
step of the algorithm. First of all, we want to track, and then predict, strong
components. Second, the tracks should be initialized so as to minimize the possible
influence of the estimation artifacts. For that we propose to use a simple multipath
clustering.

Multipath clustering based on extracted multipath parameters has been addressed
in a number of works [Shu04b, SG04, CBH+06, CCS+06]. These clusters are treated
as geometrical objects that group components with close parameters into a single
unit. Measuring the “closeness” between the multipath components can be effec-
tively done using the MCD [SÖH+02] we discussed in our tracking algorithm. The
initial components are then selected as the strongest component from each cluster.

Let us here again start with plotting the multipath parameter trajectories. In
Fig. 6.17 we plot the trajectories of the corresponding track delays (Fig. 6.17(a)),
Doppler frequencies (Fig. 6.17(b)), and DoA’s (Fig. 6.17(c)).

What we readily see is that cluster-based initialization performs quite well– we
see that the tracked components are separated and do not interfere. Based on these
trajectories we can also “guess” a geometrical distribution of the wavesources in the
propagation environment.

Track 3 is the closest one, i.e., it has the smallest propagation delay. This compo-
nent, along with the Tracks 1 and 4, has positive Doppler frequency, thus we move
towards it. Tracks 2 and 5, on the other hand, have negative Doppler frequencies
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(b) Doppler Frequency.
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Figure 6.17: (Example 3) Reconstructed multipath trajectories. K = 5.
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Figure 6.18: Virtual reconstructed geometry of wavesources distribution.

and thus we move away from them. Combining this information with the DoA and
delay trajectories, we can construct an “approximate”, or virtual, geometrical dis-
tribution of the wavesources, shown in Fig. 6.18. In Fig. 6.18 the distance from the
antenna array is directly proportional to the corresponding track delay. Thus, the
Track 3 is the closest to the array, while the Track 5 is the furthest.

Now, let us analyze the parameter dynamics of these tracks more closely. For
that we again refer to the evolution of the track powers and complex gains, shown
in Fig. 6.19, and 6.20, respectively.
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Figure 6.19: (Example 3) Evolution of the track powers.

First, we notice that the Track 4 is clearly very weak. In the interval 28λ to
52λ the tracker was not able to find any appropriate continuation, what can be



134 6. Multipath forecasting

20 40 60

−5
0
5

x 10
−5

R
ea

l p
ar

t
track N 1

20 40 60
−5

0
5

x 10
−5

Im
ag

. p
ar

t

track N 1

20 40 60
−1

0

1
x 10

−4

R
ea

l p
ar

t

track N 2

20 40 60
−1

0

1
x 10

−4

Im
ag

. p
ar

t

track N 2

20 40 60

−2
0
2

x 10
−4

R
ea

l p
ar

t

track N 3

20 40 60
−4
−2

0
2

x 10
−4

Im
ag

. p
ar

t

track N 3

20 40 60
−2

0

2
x 10

−5

R
ea

l p
ar

t

track N 4

20 40 60
−2

0

2
x 10

−5

Im
ag

. p
ar

t

track N 4

20 40 60
−4
−2

0
2
4

x 10
−5

R
ea

l p
ar

t

track N 5

20 40 60
−4
−2

0
2
4

x 10
−5

Im
ag

. p
ar

t
track N 5

Figure 6.20: (Example 3) Evolution of the real and imaginary parts of the gain for
the estimated tracks.

recognized from a horizontal line in the power evolution. We also see that the
corresponding DoA and Doppler trajectories for this track are very noisy. Track 2
is also one that might not be useful for prediction. Although it is relatively strong,
the corresponding gain signal is too incoherent, and thus the adapted hypermodel
will have to re-adapt most of the time.

From Fig. 6.19 we can also identify that Track 3 is the strongest one. Its evolution
is basically equivalent to the of the track from Example 2. Note, however, that
these tracks are not exactly the same. Up to 30λ they behave identically, but after
30λ, in this example, we can observe a slightly different track continuation. This
difference comes from the multiplicity of admissible solutions to the association
problem– tracking several componets might result in a slightly different solution.
Especially this might be the case when a tracking algorithm is “fooled” by estimation
artifacts.

The remaining Tracks 1 and 5 are also potentially very promissing. They are
weaker than Track 3, but their parameter evolution, despite occasional tracking
errors, is quite stable. Track 5 preserves consistent structure over the length of
almost 40λ.

Now, let us evaluate the prediction gain for these tracks. We will use the same
hypermodels we used in Example 2, i.e., ALP(3), IALP(3), AVNP3, and IANNP3.
The evaluated PG’s for these tracks are summarized in Fig. 6.21.

As expected, the best performance we obtain for Tracks 1, 3, and 5. Again the best
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(b) Track N2
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(c) Track N3
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Figure 6.21: (Example 3)PG evaluated for K = 5 reconstructed tracks.
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performance is achieved with linear predictors. They are simpler to adapt despite
that they are not optimal in capturing the nonlinear behavior of the observed signal.

Volterra hypermodels are inferior to both linear as well as NN hypermodels. We
might thus conclude that the polynomial structure of the Volterra model is inappro-
priate in track gain prediction. Neural networks, on the other hand, are much more
promissing.

What is also interesting to observe, is that with Track 1 and 5 we achieve positive
PG even beyond 3λ horizon. By comparing the achieved performance to that of
Track 3, which is the strongest one, we can further conclude that it is not the power
that is the major requirement for successful prediction, but rather the consistent
signal structure with few to none tracking errors over a sufficiently long distance.
This allows learning the coefficients of the hypermodels and still making reasonable
predictions.

Examples of inconsistent signals are Tracks 2 and 4. The best predictor for these
tracks is just the last seen value, what is actually implemented by the Naive Predic-
tor. Clearly, it does not pay off to invest any resources for tracking these components.

We know that the estimation algorithm estimates more components than the
number of tracks we reconstruct. This creates a potential for introducing track
management schemes that can further improve prediction performance by excluding
the useless tracks from the analysis and incorporating better components into the
tracker.
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6.4 Evidence Procedure-based multipath extraction

and prediction

In this section we consider the application of the Evidence Procedure to the multi-
path extraction with the consecutive prediction of the resulting multipath compo-
nents. The EP procedure considered here estimates channel parameters by using
the SAGE-RVM approach discussed in the Section 4.5 of Chapter 4.

In order to be fair in the comparison, we apply this estimation algorithm to the
same data that we used for the SAGE-based channel prediction. We also utilize the
same tracker and predictor structures and parameters for the same reason.

In all the related SAGE-RVM related examples we consider the observation dis-
tance spanning 71λ and initialize the estimation algorithm with L = 20 components.

6.4.1 Tracking example 4: Single component tracking

Here we consider a single track example, whose parameters where estimated using
the SAGE-RVM algorithm.

We begin by plotting the evolution of track structure parameters. The recon-
structed trajectories are shown in Fig. 6.22(a) for delay, in Fig. 6.22(b) for Doppler
frequency, and in Fig. 6.22(c) for DoA.

Clearly, the evolution of the track parameters is quite similar to that obtained in
Example 2 with the SAGE estimates. But we also note some differences. We see
that the delay trajectory is not the same after ≈ 40λ, as compared to that in Fig.
6.13(a). When we consider the corresponding gain evolution, shown in Fig. 6.23, we
notice that the track power has also fallen. Thus is is very likely that the tracker has
picked up a different track. The evolution of the DoA trajectory is also different.
Although we do still receive the component from roughly the same direction, the
trajectory itself is much smoother. We see the outbreaks only where the tracking
errors are likely to be, i.e., around 30λ, and 40λ, when the multipath delay “jumps”
between the sampling instant.

Note that in the case of the Evidence Procedure an estimate of the track power
is readily available as the inverse of the corresponding evidence parameters α.

Similarly to Example 2, we plot the spectrogram of the corresponding gain signal
in Fig. 6.24. Again, we see that the track gain is a slowly time-varying complex
signal with narrow bandwidth. What is substantially different from Fig. 6.15 is
that, after 40λ, the track is lost, as we have seen already from the other parameter
evolutions. We will, however, not claim that the tracking based on SAGE estimates
is better in general. According to the results in Fig. 6.14 and Fig. 6.15, we see that
there we also have problems around 40λ, however, are able to track the component
a bit longer up till 50λ. Note that this does not happen, as expected, for Track 3 in
Example 3.

Now, let us consider the prediction results for this track. We apply four differ-
ent prediction algorithms introduced in the previous chapter to the reconstructed
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(b) Doppler frequency.
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Figure 6.22: (Example 4) Reconstructed multipath trajectories. K = 5. (SAGE-
RVM).
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Figure 6.23: (Example 4) Evolution of the real and imaginary parts of the gain and
of the power of the estimated track.
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Figure 6.24: (Example 4) Spectrogram of the complex gain variation of the estimated
track.

multipath gain. The evaluated PG characteristics are shown in Fig 6.25.

Interestingly, in this case we perform a bit better with nonlinear models, compared
to Example 2. In general, despite the fact that we get slightly different parameter
trajectories, the achieved averaged PG performance is pretty much the same as
compared with the SAGE-based tracks and predictions.

6.4.2 Tracking example 5: Tracking several components

In this example we set the number of tracked components to K = 5 as in the simi-
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Figure 6.25: (Example 4) Prediction gain for a single track.

lar SAGE-based Example 3. Again, we leave the tracking and prediction parameters
unchanged.

In Fig. 6.26 we show the evolution of the delay, Doppler and DoA trajectories
for the selected multipath components. As we can see, there is not much difference
between the structure parameter trajectories here and those in Example 3. This is
actually the results we expect – the SAGE and SAGE-RVM algorithm possess a lot
in common, and the parameter estimates obtained with these algorithms differ but
not significantly. Since we use the same tracker setup we expect similar parameter
evolutions.

The evolution of the complex gain and powers for the reconstructed tracks are
shown in Fig. 6.28 and 6.27, respectively.

As we see, there is again not much difference. Again, we can identify Tracks 1, 3,
and 5 as potentially useful for long-term prediction. Tracks 2 and 4 are less suited
for prediction due to the inconsistent structure, just as in the Example 3.

Now, let us consider the prediction results for these tracks, shown in Fig. 6.29.
The PG results where averaged over 100 independent model initializations.

Comparing the results in Fig. 6.29 with those in Fig. 6.21 (i.e., with the SAGE-
based prediction), we can notice a slight improvement (around 1dB) for all the
observed tracks. This slight improvement might well be explained by the more
smooth power envelopes of SAGE-RVM estimated tracks in Fig. 6.27 as compared to
those estimated with the SAGE algorithm in Fig. 6.19. The parameter trajectories
are smoother and, as a result, less noise is injected in the hypermodel update. Note
that the PG increase is not that significant, but still it is better than in Example 3.
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(a) Track delay.
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(b) Doppler frequency.
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Figure 6.26: (Example 5) Reconstructed multipath tracks. (SAGE-RVM).



142 6. Multipath forecasting

20 40 60

−100

−90

−80

−70

α−
1 , d

B
track N 1

20 40 60

−100

−90

−80

−70

α−
1 , d

B

track N 2

20 40 60

−100

−90

−80

−70

α−
1 , d

B

track N 3

20 40 60

−100

−90

−80

−70

α−
1 , d

B

track N 4

10 20 30 40 50 60 70

−100

−90

−80

−70

α−
1 , d

B

track N 5

Figure 6.27: Evidence of the tracked components.
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Figure 6.28: Evolution of the real and imaginary parts of the gain for the estimated
tracks.
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(a) Track N1
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(b) Track N2
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(c) Track N3
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(d) Track N4
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Figure 6.29: (Example 5) PG evaluated for K = 5 reconstructed tracks.
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6.5 Discussion of the obtained tracking and

prediction results

Based on the demonstrated experiments we can now discuss the obtained tracking
and prediction results. Let us first begin with the tracking results.

6.5.1 Tracking

In this chapter we have considered several examples that demonstrate our multipath
prediction approach. A short summary of the key experiment parameters is shown
in Table 6.4.

Estimation alg. Tracking length K L
Experiment 1 SAGE 28λ 1 9
Experiment 2 SAGE 71λ 1 9
Experiment 3 SAGE 71λ 5 15
Experiment 4 SAGE-RVM 71λ 1 20
Experiment 5 SAGE-RVM 71λ 5 20

Table 6.4: Summary of the tracking and prediction experiments.

A first observation we can make from all the experiments, is that it is difficult,
if not impossible, to track a component over an infinitely long time interval. There
are areas, where tracking is quite stable, for example in Experiment 2 between
0λ and 30λ. During this tracking interval we expect a relatively good prediction
performance. However, between 30λ and 40λ there are several instances where the
tracker definitely picks up a wrong component, most likely an estimation artifact. It
can well be seen that these power drops coinside in almost all cases with the jumps
of the delay trajectory to the neighboring sampling instant. This is definitely the
result of insufficient delay resolution: for the FTW data the estimation algorithm
is simply unable to reliably estimate a component between the sampling instants.
Indeed, the FTW data sampling period is 160MHz and the channel bandwidth is
120MHz, which corresponds to the oversampling factor of 1.33, which is too low.
Such “jumps” lead to transients in the corresponding hypermodels and as the result
to the further propagation of tracking errors.

The remedy to this situation is twofold: first of all, we should provide data with the
highest possible resolution. And second, we should employ some track management
algorithm that constantly monitors the “track health” and when the inconsistent
behavior is detected, starts tracking anew, from scratch, possibly using different
physical components from the set of estimated ones.

Of course, when the data has low resolution we can still make use of our prediction
scheme. As we have shown in the examples, we obtain the best prediction results
from agile hypermodels, which adapts fast to changing data, yet which are complex
enough to adequately model the multipath dynamics.
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In case of structure hypermodels, their agility can be controlled mainly through
the specification of the disturbance parameters in the corresponding state-space for-
mulation of the DLLT. We found these values empirically, but in the future it is
imperative to find a functional relationship between the model disturbance param-
eters and the measured data resolution.

Let us now discuss the hypermodels we used for gain prediction.

6.5.2 Gain prediction

We will begin by highlighting some general observations about the hypermodels we
used for gain prediction.

Previously we classified the hypermodels according to the way predictions are
realized, i.e., iterated predictors (trained using the joint EKF algorithm) and L-step
predictors (trained using the RLS algorithm), as well as according to their structure,
i.e., linear or nonlinear.

With respect to the way predictions are realized, we observed that iterative predic-
tors perform a bit better than their L-step counterparts. As a rule, they converge
faster, and result in higher predictions gains. We should, however, be careful in
the interpretation of these results. This difference might come from the fact that
the iterated predictors are trained within the Kalman Filter framework and the
corresponding predictions are based on the filtered hypermodel states. Also, the
KF-based learning has more free parameters, than the RLS-based algorithm. This
basically means that these parameters can be tuned to allow better performance.
The set of these “tunable” parameters includes the specification of the observation
and state noise variances, which in the RLS case is not needed. This extra degree
of freedom allows fitting the models better to the data. Although we cannot say
how to tune these parameters in a systematic way, we see that, since we found good
parameters empirically, there must be an objective optimum that minimizes the
prediction error.

We also consider linear and nonlinear structures for the hypermodel designs. Lin-
ear structures attract by their simplicity, which consequently results in easier hy-
permodel training. The nonlinear structures, however, also deserve attention.

Our empirical observation shows that the signals we are predicting are in fact
chirped complex exponentials or, more generally, polynomial phase signals. For such
kind of signals the linear predictors are not optimal, and a nonlinear predictor would
be a more appropriate one. We do not claim that the nonlinear structures we use
here are optimal, but they can still capture at least some of the nonlinear structure
present in the signal. Theoretically, this might extend the model validity range and
require less frequent adaptation. Unfortunately in practice we see that since more
data is needed for training a nonlinear structure, the resulting models can not be
fully trained, and, as a consequence, result in lower PG. The linear hypermodels,
though not optimal in capturing the nonlinear dynamics of the observed signal, turn
out to be more effective in multipath prediction since they adapt faster. Indeed,
in some cases, usage of the nonlinear models might be an overcomplication. The
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dynamics of a single component is much simpler than that of the whole channel,
so an adaptive linear predictor with only a few coefficients might solve the task
of predicting/tracking a time-varying narrowband signal sufficiently well. This is
exactly what we observe in all experiments.

Let us now consider the performance of the used gain hypermodels in more details.

Adaptive Linear Predictor (ALP)

The ALP hypermodel is one of the simplest. It implements an AR model and,
due to the linearity, it can be easily estimated and tracked using the classical RLS
algorithm. The linearity of this model is a very attractive feature, since there are
many algorithms that can be used to estimate the coefficients of the hypermodel.
Especially, if one considers the hardware implementation of such filter. We use the
RLS algorithm for fitting this hypermodel because it has a very fast convergence,
but other adaptation algorithms, like LMS or its modifications, can also be used to
recursively adapt filter coefficients.

In order to allow the algorithm to adapt to nonstationary data, we can specify
a forgetting constant that allows only the recent data to influence the coefficient
update. In our simulations the forgetting constant is fixed, but it might, however,
be profitable to adjust it depending on the track performance. Weak tracks, with
unstable structure, should rely more on the current information, while the stronger
tracks should exploit their past dynamics more heavily.

The ALP hypermodel has quite good adaptation properties. We have observed
that the predictions converge within a relatively short period of time spanning ≈ 4λ.
Taking into account that the channel acquisition period was 20msec, with roughly
7 samples per wavelength, we conclude that the predictor needs around ≈ 500msec
of training time. Depending on how well the component can be tracked we can
expect the prediction horizons for this hypermodel to extend1 as far as 2.5λ−3λ, or
equivalently ≈ 350−420msec. Note that the time scales we specify here are obtained
for the FTW channel data. If, for instance, we take a higher channel acquisition
times to be able to estimate Doppler frequencies induced by, e.g., high-speed trains,
we will need to rescale the 3λ-horizon appropriately. In this case we will certainly
obtain shorter temporal (i.e., in seconds) prediction horizons.

Iterated Adaptive Linear Predictor (IALP)

This type of hypermodel again represents a linear predictor that relies on different
learning strategy than the ALP. With the IALP, we employ the Kalman Filter
framework to estimate filter coefficients. Although it is possible to formulate the KF
to estimate the coefficients of the hypermodel for the fixed L-step prediction, such
iterative structure computationally is more efficient, since we can obtain forecasts
for any desired prediction horizon without re-training the predictor.

1Measured with respect to the positive PG
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The price we pay for this, however, is the stability of the predicted signal, es-
pecially for long prediction intervals. This requires extra measures for detecting
instabilities.

The agility of the IALP predictor is regulated through the parameters of the dis-
turbance terms in the state space model formulation. Indirectly these parameters
influence the convergence properties of the algorithm in a similar way the RLS for-
getting constant influences the performance of the ALP hypermodel. They definitely
increase the list of parameters that are to be set up. For simplicity we chose the cor-
responding parameters empirically. However, we admit that a more rigorous study
is needed to find objective rules for choosing the proper values so as to minimize the
resulting prediction error.

These extra degrees of freedom allow to obtain more agile hypermodels. That is
why the IALP predictor performs a bit better than the ALP hypermodel, especially
for short prediction horizons. The IALP requires ≈ 2λ (or equivalently 280msec) to
converge and achieves roughly similar prediction horizon of 2.5λ− 3λ.

Adaptive Volterra-Based Nonlinear Predictors (AVNP)

This predictor is a nonlinear extension of the ALP hypermodel. In the AVNP, the
relationship between the input and output are captured by a nonlinear polynomial
filter – a Volterra filter. The major advantage of the Volterra models is the relatively
simple learning procedure, which conceptually does not differ from learning the ALP.

The AVNP hypermodel has more degrees of freedom as compared to the ALP
hypermodel, namely the order of the nonlinearity, and the memory size for each
nonlinearity order. In our simulations we set these parameters empirically by trying
several different model structures.

Finding an optimal structure that would minimize the prediction error is also
possible, but it has not been addressed in our work. This can be solved by exploiting
the Description Length criterion or the Evidence framework similar to the way we
solved the model selection problem in the multipath estimation algorithm.

Although the best structure was found by trial and error, we did observe that the
performance of the Volterra based predictor degrades with the growing nonlinearity
order and memory length of nonlinear terms. This leads us to conclude that the
used models simply do not capture the signal dynamics well. By increasing the
number of parameters we simply overfit the data. As the result, the corresponding
hypermodel fails to produce good predictions once it is applied to the prediction of
unseen data. The higher number of coefficients involved in the model also increases
the adaptation time of the predictor.

For example, in case of the AVNP3 hypermodel, the number of coefficients is
19. The corresponding learning time is similar to that of the ALP, i.e., ≈ 4λ. In
general we can say that with the AVNP predictors we have not achieved a desired
performance and the higher model complexity does not bring any visible advantage.
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Iterated Adaptive Neural Network-based Predictor (IANNP)

This is a second type of nonlinear structure we consider in our work. The IANNP
is a nonlinear extension of the IALP predictor, with the distinction from the AVNP
that the nonlinearity is represented with a neural network.

Similarly to the AVNP, selecting the optimal structure for this hypermodel is not
trivial. In this case we need to specify the number of input neurons as well as the
number of neurons in the hidden layer. Furthermore, the usage of the KF framework
to learn the coefficients of the network also requires specification of the state and
observation noise parameters, just like for the IALP hypermodel. This all creates
extra degrees of freedom that have to be specified.

Again, it is possible to employ algorithms that optimize the network structure
as it has been done in [Nea96], and estimate noise parameters so as to achieve the
minimum of the prediction error. We stress, however, that the development of these
algorithms falls outside the scope of this work. Here we also find suitable parameters
by a simple trial and error approach.

The IANNP hypermodel utilizes more parameters than its linear counterpart
IALP. The IANNP3 predictor, used in Experiments 2 to 5 has 19 coefficients. How-
ever, although the IANNP does not deliver outstanding performance for the short
prediction horizons, it performs better than other hypermodels for long prediction
intervals (approx. longer than 1.5 to 2λ). In favorable conditions (Track 5 in Exam-
ples 3 and 5) the positive PG extends as far as 3λ and even outperforms the linear
models.



Chapter 7

Discussion and conclusions

Now, let us conclude the results obtained in this work and outline the future exten-
sions of the multipath-based channel prediction.

The presented work addresses the prediction of multipath wireless MIMO chan-
nels. Common approaches attempt to model the dynamics of channel taps by build-
ing models using sampled channel data. Although such approaches are viable, they
differ for wideband and narrowband channels, as well as for MIMO, SIMO/MISO
and SISO channels. They often neglect the physical channel “background”, i.e., the
rich internal channel structure. Furthermore, they do not attempt to cancel the
“fading” at its source by decoupling the interfering components.

In our work we account for the channel physics by viewing a channel as a sum
of contributing wavefronts – multipath components. First of all, our approach is a
general strategy. This framework can be applied not only to SIMO channels, as was
demonstrated, but similarly to the MISO, MIMO, and SISO channels. It can also
be easily adapted for wideband, as well as narrowband channels.

On a very abstract level, we simply decompose the channel into smaller sub-
components that eventually have simpler dynamics than the whole channel – divide
et impera principle. This also removes the fading since the interfering components
are resolved. The multipath-based decomposition we used in our work is just a
possible way to go. Let us however explicitly state that other decompositions are
also possible. In particular, we can model a channel as a collection of multipath
clusters. Estimating clusters instead of the multipath components might result in
easier tracking. We have observed that tracking individual components in a cluster,
i.e., in areas with dense multipath components, might be difficult. Clusters might be
superior in a sense that they “average” the trajectories of the individual multipath
components to the trajectories of the cluster centers. The artifacts in this case will
influence the cluster trajectory significantly less. In case of cluster tracking, it is
quite possible there will be a need to redefine the learning algorithms, as well as to
fit the hypermodels to the dynamics of the clusters.

Channel representation is basically a first step of our multistage channel prediction
framework. Once we extract the appropriate structure, the next step is to keep this
structure up-to-date. Thus, proper tracking is essential for the further prediction
stage. In our work we implemented coupled tracking and hypermodel building.
The concept we applied is not new in sequential data processing. Similar ideas are
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implemented in Dual Kalman filter estimation [Hay01, ch. 5]. What is significantly
different in our work is that usually we have estimated components than tracks.
Thus, additionally we have to find proper associations between the estimates and
the tracked components. We have solved the association quite effectively using
Dynamical Programming techniques. However, this clearly increases the overall
complexity of the tracker. Nonetheless, the obtained results prove the feasibility of
the proposed scheme.

The increased tracker complexity inevitably leads to possible tracking errors and
very undesirable hypermodel adaptation transients. The latter leads to prediction
quality worsening. Further, we observed that proper tracking of individual compo-
nents in clutter is difficult. Such cluttering occurs naturally in the vicinity of the
LOS and of other strong components, as well as due to possible presence of estima-
tion artifacts. Minimizing the tracking errors in such situations must be a prime
goal of the future development of the tracking algorithm. The artifacts, for example,
are best identified by the fast decay of their power envelope. This information is not
available to the channel estimator but it is available to the tracker. By exploiting
the knowledge of the component dynamics we can minimize the artifacts estimation
by improving SAGE or SAGE-RVM initialization.

Furthermore, the tracking algorithm can be significantly improved, if we develop
an intelligent way to control which components are to be tracked and which should
be dropped from the tracker. In other words, we would like to maximize the num-
ber of tracked components, but at the same time save resources by tracking only
those components that are potentially useful for applications where the tracking and
prediction algorithm is to be used.

The final stage of our framework is the hypermodel construction. As we already
mentioned, we have coupled this stage with the tracking algorithm to ease solving
the association problem. Clearly, the goal of the hypermodels is to represent the
dynamics of the multipath components, or other structures that are used to model a
wireless channel, for instance clusters. In our work we have used hypermodels with
a relatively small number of coefficients to ensure that the models a less sensitive
to tracking errors. As can be seen, our main goal was long-term prediction of the
multipath complex gain. For prediction of structure parameters, i.e., delay, Doppler
frequency, and DoA we used a relatively simple structure, since for these parameters
we mainly need one-step-ahead predictions that can be accomplished using simple
linear models. For gain prediction we have used more elaborate, linear as well as
nonlinear predictors, but have still tried to keep the structure as simple as possible.

From our empirical studies it follows that even with few coefficients we can ensure
a positive prediction gain as far as 3λ into the future, which is significantly longer
than any of the results known to us from the literature. We should also mention
that the data we have used has very low spatial sampling.

For gain prediction, we tried both linear as well as nonlinear hypermodels, but
generally linear models are preferred. They are simpler to interpret and to adapt.
Moreover, once the components are extracted their dynamics is much simpler as
compared to the dynamics of the whole channel, and thus simple linear predictors
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might be sufficient. Nonlinear predictors might be usefull once we can improve the
tracker and obtain longer segments that can be used for model building. Among
the proposed linear models, we can say the ALP and IALP are, to a certain extent,
equivalent. Altough for short prediction horizons we think that IALP should be
used, while for longer horizons ALP is more appropriate since it avoids generating
unstable predictors.

Keep in mind that when clusters are to be used instead of the multipath com-
ponents, it is possible that linear models will no longer be adequate for prediction.
Still, we believe that the main emphasis should stay more on developing accurate
tracking methods, rather than on further refinements of hypermodels. The consid-
ered hypermodels are quite general and can be applied to different problems. Thus
it will only be needed to try several off-the-shelf hypermodel structures to find the
appropriate one. But without proper tracking, learning might go amiss for these
models.

What is certainly left to be done in hypermodel design is the minimization of the
number of free parameters, which were selected empirically in our work. Relating
these parameters to the resolution of the channel data, as well as to the character-
istics of the estimation algorithm is a possible way to proceed.

In conclusion, let us again point out that we have proved the viability of the
multipath-based prediction approach. We have described and discussed the multi-
stage wireless channel prediction procedure. We have also shown that it is possible
to make use of hypermodels that allow long-term forecasts of channel parameters,
which in turn can be used to mitigate fading in wireless communication.
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Appendix A

Taylor approximation to the electrical
distance (SIMO case)

Here we consider an approximation to the electrical distance −κ‖rl,p(t)‖ term for
the simplified scenario. We assume a single wave source that contributes to the
channel moving along the direction specified by the vector x.

The corresponding scenario is depicted in Figure A.1.
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Figure A.1: Computing the electrical distance term for the SIMO case.

Here, the receiving antenna D(P ) is equipped with P sensors, p = 0, . . . , P − 1.
The vectors dp points from the arbitrary reference sensor ( here indexed as p = 0)
to another sensor in the array.

The distance rl,p(t) can be computed as

rl,p(t) = rl,p(0) − x = rl,0(0) + dp − x. (A.1)

Further, from eq. (A.1) the squared norm ‖rl,p(t)‖2 of this distance can be computed
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as

‖rl,p(t)‖2 = 〈rl,0(0) + dp − x, rl,0(0) + dp − x〉 =

= ‖rl,0(0)‖2 − 2〈rl,0(0),dp〉 − 2〈rl,0(0),x〉 + ‖dp‖2 + ‖x‖2 − 2〈dp,x〉 =

= ‖rl,0(0)‖2

[

1 +
‖dp − x‖2

‖rl,0(0)‖2
− 2‖x‖ cos(θl)

‖rl,0(0)‖ +
2‖dp‖ sin(φl)

‖rl,0(0)‖

]

.

(A.2)

where 〈·, ·〉 denotes the inner product operator. Since we are interested in ‖rl,p(t)‖
rather than its squared value, we compute the square root of (A.2). In order to
simplify the resulting expression we expand the square root of the right-hand side
of (A.2) in a second-order Taylor series around zero. Using the fact that

√
1 + y ≈

1 + y/2 − y2/8, we continue as follows:

‖rl,p(t)‖ = ‖rl,0(0)‖
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− 1

2

‖dp‖2 sin(φl)
2
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=
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1
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‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl)−

− 1

8

‖dp − x‖4

‖rl,0(0)‖3
− 1

2

‖dp − x‖2(‖dp‖ sin(φl) − ‖x‖ cos(θl))

‖rl,0(0)‖2
− 1

2

‖x‖2 cos(θl)
2

‖rl,0(0)‖ +

+
‖x‖‖dp‖ cos(θl) sin(φl)

‖rl,0(0)‖ − 1

2

‖dp‖2 sin(φl)
2

‖rl,0(0)‖ .

By collecting together terms with the same order of the denominator, we finally
arrive to the second-order approximation to the electrical distance term

‖rl,p(t)‖ ≈ ‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl)−
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.
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Thus, the second-order approximation of ‖rl,p(t)‖ is given as

‖rl,p(t)‖ ≈ ‖rl,0(0)‖ + ‖dp‖ sin(φl) − ‖x‖ cos(θl)−

− 1

2

‖dp − x‖2 − (‖dp‖ sin(φl) − ‖x‖ cos(θl))
2

‖rl,0(0)‖ −

− 1

2

‖dp − x‖2(‖dp‖ sin(φl) − ‖x‖ cos(θl))

‖rl,0(0)‖2
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8

‖dp − x‖4

‖rl,0(0)‖3
.

(A.3)
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Appendix B

Taylor approximation to the electrical
distance (MIMO case)

Let us now examine the change of the electrical distance −κ‖rl,m,p(t)‖ for the sim-
plified MIMO case. We consider a MIMO channel with a transmitting sensor array
F (M) with M sensors, and a receiving array D(P ) with P sensors, respectively.
The transmitting array F (M) is assumed to be moving along the direction specified
by the vector x without any rotation. We also assume linear sensor arrays at both
channel ends to simplify the derivation. This is, however, not a critical assumption
and extensions to more complex array geometries are quite straight forward.

The scenario corresponding to this case is depicted in Figure B.1
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Figure B.1: Computing the electrical distance term for the MIMO case.

By following similar steps as in the SIMO case, we represent the rl,m,p(t) term as

rl,m,p(t) = rl,m,p(0) − x = rl,m,0(0) + dp − x = rl,0,0(0) − fm + dp − x. (B.1)
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Similarly to the SIMO case, the squared norm ‖rl,m,p(t)‖2 of the term of interest
is then computed from (B.1) as

‖rl,m,p(t)‖2 =〈rl,0,0(0) − fm + dp − x, rl,0,0(0) − fm + dp − x〉 =

=‖rl,0,0(0)‖2 + ‖x‖2 + ‖fm‖2 + ‖dp‖2+

+ 2〈rl,0,0(0),dp〉 − 2〈rl,0,0(0),fm〉 − 2〈rl,0,0(0),x〉+
− 2〈dp,fm〉 − 2〈dp,x〉 + 2〈fm,x〉,

where 〈·, ·〉 denotes the inner product operator. Thus, the length of the path is
expressed as
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(B.2)

To simplify further analysis, we approximate the square root on the right-hand
side of the previous expression around zero. By using the fact that

√
1 + y ≈

1 + y/2 − y2/8, we approximate (B.2) as
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Thus we arrive to the final second order approximation of the path distance ‖rl,m,p(t)‖:
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Appendix C

Description of the channel data
(FTW)

Here we provide the details on the measured channel data, provided by the Forschungszen-
trum Telekommunkation Wien (FTW). This data has been mainly used to demon-
strate different aspects and stages of the multipath-based channel prediction algo-
rithm.

C.1 General data description

The MIMO channel sounding measurements were performed by Forschungszentrum
Telekommunikation Wien, in Vienna, Austria, under the supervision of Helmut
Hofstetter[BHMS01]. The measurements were done with the MIMO capable wide-
band vector channel sounder RUSK-ATM, manufactured by MEDAV [THR+00].

The sounder was specifically adapted to operate at the center frequency of 2GHz.
The transmitted signal is generated in the frequency domain to ensure a pre-defined
spectrum over 120MHz bandwidth, and an approximately constant envelope over
time.

Two simultaneously multiplexed antenna arrays have been used at the transmitter
and receiver side (Fig. C.1). The transmitter was a uniform circular array (Fig.
C.1(a)) with 15 sensors spaced at approx. 6.45cm apart. The receiver was a fixed
uniform linear array (Fig. C.1(b)), with 8 sensors spaced half a wavelength apart,
which for the 2GHz carrier frequency corresponds to λ/2 ≈ 7.5cm.

The measurements were performed outdoors, with the receiver array mounted
on the roof of a building and the transmitter moving with a velocity of ≈ 1m/s. A
MIMO channel snapshot was recorded every Tr = 20msec, thus resulting in a spatial
resolution of ≈ λ/7. Each MIMO snapshot thus consists in total of 15×8 individual
SISO channel IR’s that where obtained by temporal antenna multiplexing.

The individual SISO channels are sampled with the sampling rate Fs = 1/Ts =
160MHz, resulting in N = 512 samples. Some of the crucial sounding parameters
are summarized in Table C.1.

In Fig. C.2 we show the relationship between some of the channel sounding pa-
rameters and the structure of the resulting MIMO channel impulse response.

161



162 C. Description of the channel data (FTW)

(a) Transmitting antenna. (b) Receiving antenna.

Figure C.1: Transmitter and receiver array configurations.

Center frequency Fc = 2000MHz
Measurement double-sided bandwidth Bm = 120MHz
Channel sampling frequency Fs = 160MHz
MIMO channel acquisition period Tr = 20msec
Number of delay bins N = 512
RX-array aperture 120◦

TX-array aperture in azimuth 360◦

TX-array aperture in elevation 60◦

Table C.1: Parameters used in channel sounding.

0 N-1

N-1

MIMO

MIMO
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t = qTr
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q = 1
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Figure C.2: Relationship between some of the sounding parameters and the structure
of the impulse response.
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C.1.1 Sample impulse response

The time domain representation of the channel impulse response often reveals a
lot of useful details, in particular about the possible positions of the multipath
components. A sample IR of the wireless SIMO channel from the FTW database is
shown in Fig. C.3
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Figure C.3: A sample impulse response of the wireless SIMO channel.

From this example we can clearly identify some of the strongest components ar-
riving around 2msec, it is also possible to see some distinct but relatively week
multipaths around 2.8msec.

C.1.2 Doppler-Delay profile

Doppler spread is a key characteristic that defines the rate of channel variation with
time. It is known that the channel coherence time TC , i.e., the time span over which
the channel remains roughly time-invariant, is inversely proportional to the Doppler
bandwidth. Thus, the Doppler bandwidth defines the rate at which the channel is
fading.

In Fig. C.4 we show the power spectral density (PSD) of the Doppler variation for
the FTW measurement data. The estimate of the PSD was obtained by applying
the Welch periodogram methods to the whole data set consisting of 4000 SIMO
channel snapshots.

The PSD shown in Fig. C.4 reveals a very important message. First of all, the
maximum Doppler shift νmax is bounded, i.e., νmax ≤ 20 Hz. Since the channel
acquisition period was 20msec, or equivalently, 50Hz, we can say the channel data
was not undersampled and no aliasing has been incurred. This allows re-sampling
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Figure C.4: Estimated Doppler bandwidth.

the channels to a higher spatial resolution, since this eases the task of multipath
tracking. In our experiments with the FTW data, the channels were up-sampled by
a factor of 5. Then in the estimation algorithm we used a length of the estimation
window to be exactly I = 5, and thus the spatial sampling of the estimated multipath
parameters remains 20msec.



Appendix D

Description of the channel data
(Elektrobit)

Here we provide the details on the measured channel data provided by Elektrobit Oy,
Finland. The measurement includes only a single MIMO channel snapshot, which
prohibited the application of tracking and forecasting algorithms to it. However, we
use this data to illustrate the performance of the Evidence Procedure algorithm.

Channel measurements were done with the MIMO-capable channel sounder Prop-
Sound manufactured by Elektrobit Oy. Parameters in the delay domain are esti-
mated using the Spread Spectrum Direct Sequence technique (also known as the
Pulse Compression technique), while other domains are measured by means of time-
domain multiplexing. The DS sounding implementation is equivalent to the block
diagram of the channel sounding shown in Fig. 3.1.

The PropSound channel sounder is designed to operate in the frequency range
from 5.1 to 5.9GHz, with a chip rate of 1/Tp = 100Mchips/sec.

−3 −2 −1 0 1 2 3

x 10
−7

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

delay, sec
−3 −2 −1 0 1 2 3 4

x 10
−9

−0.2

0

0.2

0.4

0.6

0.8

1

delay, seca) b)

Figure D.1: Evaluated normalized autocorrelation sequence of the sounding signal
u(t). a) autocorrelation Ruu(t), b) close-up on the main lobe of the
Ruu(t).

The output of the matched filter is sampled with the period Ts = Tp/2, thus
resulting in 2 samples per chip resolution. The used sounding sequence consists of
M = 255 chips resulting in the burst waveform duration of Tu = 0.255µsec.

In Fig. D.1 we show the resulting deterministic correlation function Ruu(τ) that
is used in the estimation algorithm.
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Figure D.2: Computed Power Delay Profile for the PropSound data

The measurement we use was performed indoor, in the Non-Line-Of-Sight setup.
The measurement data includes a single MIMO channel, with PTX = 50 transmitting
and PRX = 33 receiving sensors.

The delay profile shown in Fig. D.2 is the guiding tool we used to setup the EP
algorithm. We see that the multipath components are likely to have delays from
approx. 28nsec to 52nsec. This information is sufficient to select the initial delay
search space for the setup of the estimation algorithm.



Appendix E

Evidence update expressions

To derive the update expressions for the evidence parameters in the multiple chan-
nels case, let us first rewrite (4.13) for the definitions (4.16). Since both terms under
the integral are Gaussian densities, the result can be easily evaluated as

p(z̃|α, β) =

∫

p(z̃|w̃, β)p(w̃|α)dw̃

=
exp

(

− z̃H(β−1Λ̃ + K̃Ã
−1

K̃
H

)−1z̃
)

πPN |β−1Λ̃ + K̃Ã
−1

K̃
H |

(E.1)

Our goal is to find the values of α and β that maximize (E.1). Now, let us
define L(α, β|z̃) = log(p(z̃|α, β)). The desired values can be found by taking the
derivative of L(α, β|z̃) with respect to the parameters of interest and setting those
to zero [Ber85]. Since it is often convenient to assume non-informative hyperpriors
by setting a, b, c and d in (4.6) and (4.7) to very small values, the resulting prior
in logarithmic domain will become uniform. As the result, it is more convenient to
maximize with respect to log(αl) and log(β) since the derivatives of the prior terms
will vanish. Before we begin, we prove the following matrix identity that we will
exploit later

|B−1||A−1||A + KHBK| = |B−1 + KA−1KH | (E.2)

|B−1||A−1||A + KHBK| =

|B−1||A−1||KH [(KA−1KH)−1 + B]K| ==

|B−1||A−1||K||(KA−1KH)−1 + B||KH | =

|K||A−1||KH ||[(KA−1KH)−1 + B]B−1| =

|KA−1KH [(KA−1KH)−1B−1 + I]| =

|B−1 + KA−1KH |

Now, we can begin with the estimation of the hyperparameters αl. Let us define

B̃
−1

= β−1Λ̃. According to (E.2) we see that

|B̃−1
+ K̃Ã

−1
K̃

H | =

|B̃−1||Ã−1||Ã + K̃
H

B̃K̃| =|B̃−1||Ã−1||Φ̃−1|.
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Thus,

∂L(α, β|z̃)

∂ log(αl)
=

∂

∂ logαl

{

− log |B̃−1||Ã−1||Φ̃−1|−

z̃H(B̃
−1

+ K̃Ã
−1

K̃
H

)−1z̃ +
L∑

l=1

(a logαl − bαl)

}

=

∂ log |A|P
∂ logαl

+

P∑

p=1

∂ log |Φp|
∂ logαl

+ (a− bαl)

−z̃H
∂(B̃ − B̃K̃(Ã + K̃

H
B̃K̃)−1K̃

H
B̃)

∂ logαl
z̃

where in the latter expression the Woodbury inversion identity [GL96] was used to

expand the (B̃
−1

+ K̃Ã
−1

K̃
H

)−1 term. Further,

∂L(α, β|z̃)

∂ log(αl)
= P tr

[

A−1 ∂A

∂ logαl

]

+

P∑

p=1

tr
[

Φ−1
p

∂Φp

∂ logαl

]

+(a− bαl) − z̃HB̃K̃Φ̃
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H
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∂ logαl
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H
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p=1

tr
[

αlEllΦp

]

+ (a− bαl)−

z̃HB̃K̃Φ̃αlẼllΦ̃K̃
H
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Here Ell is a matrix with the lth element on the main diagonal equal to 1, and its
other elements being zero. Similarly, Ẽll is the P -times repetition of Ell on its main

diagonal. By noting that µ̃ = Φ̃K̃
H

B̃z̃, we arrive at

∂L(α, β|z̃)

∂ log(αl)
= P −

P∑

p=1

tr
[

αlEllΦp

]

+

(a− bαl) − µ̃HαlẼllµ̃ = 0.

Solving for αl, we arrive at the final expression for the hyperparameter update

αl =
P + a

∑P
p=1

(

Φp,ll + |µp,l|2
)

+ b
.
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Similarly, for the noise estimate we proceed as

∂L(α, β|z̃)

∂ log(β)
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Thus we arrive at the final expression:
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By solving for β we obtain

β = (PN + c)

(
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p=1
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p KpΦp
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[CBH+06] N. Czink, E. Bonek, L. Hentilä, J.-P. Nuutinen, and J. Ylitalo. Cluster-
based MIMO channel model parameters extracted from indoor time-
variant measurements. In Proceeeding of the GlobeCom Conference,
2006.

[CCS+06] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo.
Improving clustering performance using multipath component distance.
Electronics Letters, 42(1):33–5, 2006.

[CNSS03] K. Conradsen, A.A. Nielsen, J. Schou, and H. Skriver. A test statistic
in the complex Wishart distribution and its application to change detec-
tion in polarimetric SAR data. IEEE Transactions on Geoscience and
Remote Sensing, 41(1):4–19, 2003.

171



172 Bibliography

[DH00] H. Duel-Hallen, A. Shengquan Hu Hallen. Long-range prediction of fad-
ing signals. IEEE Signal Processing Magazine, 17(3):62 – 75, May 2000.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classifi-
cation. John Wiley & Sons, Inc., second edition, 2000.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. Royal Statist. Soc., 39(1):1–38,
1977.

[DMA97] G.M. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approxima-
tions. Journal of Constructive Approximation, 13:57–98, 1997.

[DXL01] Liang Dong, Guanghan Xu, and Hao Ling. Prediction of fast fading
mobile radio channels in wideband communication systems. In IEEE
Global Telec. Conf., GLOBECOM ’01., volume 6, pages 3287 – 3291,
Nov 2001.

[EDHH98] T. Eyceoz, A. Duel-Hallen, and H. Hallen. Deterministic channel model-
ing and long range prediction of fast fading mobile radio channels. IEEE
Communications Letters, 2(9):254–256, Sep. 1998.

[EHBP00] M. Evans, N. Hastings, B., and Peacock. Statistical Distributions. New
York: Wiley, 3rd ed. edition, 2000.

[EK99] T. Ekman and G. Kubin. Nonlinear prediction of mobile radio channels:
Measurements and MARS model designs. In Proceedings of the IEEE
Int. Conf. on Acoust., Speech, and Signal Proc., volume 5, pages 2667–
2670, 1999.

[Ekm02] T. Ekman. Prediction of Mobile Radio Channels: Modeling and Design.
PhD thesis, Uppsala University, Nov. 2002.

[FDHT96] B.H. Fleury, D. Dahlhaus, R. Heddergott, and M. Tschudin. Wideband
angle of arrival estimation using the SAGE algorithm. In IEEE 4th In-
ternational Symposium on Spread Spectrum Techniques and Applications
Proceedings, pages 79 – 85, September 1996.

[FH94] J.A. Fessler and A.O. Hero. Space-alternating generalized expectation-
maximization algorithm. IEEE Transactions on Signal Processing,
42:2664–2677, Oct. 1994.

[Fit98] W. J. Fitzgerald. The Bayesian approach to signal modelling. In Proc.
of IEE Colloquium on Non-Linear Signal and Image Processing (Ref.
No. 1998/284), pages 9/1–9/5, May 1998.



Bibliography 173

[FT02] A. C. Faul and M. E. Tipping. Analysis of sparse Bayesian learning. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems, volume 14, pages 383–389. MIT
Press, 2002.

[FTH+99] B.H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Inge-
man Pedersen. Channel parameter estimation in mobile radio environ-
ments using the SAGE algorithm. IEEE Journal on Selected Areas in
Communications, 17(3):434–450, March 1999.

[FW88] M. Feder and E. Weinstein. Parameter estimation of superimposed sig-
nals using the EM algorithm. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 36(4):477–489, April 1988.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, 1996.

[Goo63] N.T. Goodman. Statistical analysis based on a certain multivariate com-
plex Gaussian distribution (An introduction). Ann. Math. Stat., 34:152–
177, 1963.
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tive Übertragungstechniken im Mobilfunk. PhD thesis, Kassel Univeristy,
2003. Written in German.

[SF05] D. Shutin and B. Fleury. Application of the evidence procedure to the
estimation of the number of paths in wireless channels. In Proceed-
ings of International Conference on Acoustics Speech and Signal Pro-
cessing, ICASSP’2005, volume III, pages 749–752, Philadelphia, USA,
April 2005.

[SG04] D. Shutin and G.Kubin. Cluster analysis of wireless channel impulese
responses with Hidden Markov Models. In Proceedings of International
Conference on Acoustics Speech and Signal Processing, ICASSP’2004,
pages Vol.4, 949–952, Montreal, Canada, May 2004. IEEE.

[SG05] D. Shutin and G.Kubin. Power prediction of multipath components in
wireless MIMO channels. In Proceeding of the 5th International Confer-
ence on Information, Communications and Signal Processing, ICICS’05,
pages 1546–1550, Bangkok, Thailand, 2005.

[Shu04a] D. Shutin. Cluster analysis of wireless channel impulse responses. In Pro-
ceedings of International Zurich Seminar on Communications, IZS’2004,
pages 124–127, Zurich, Switzerland, February 2004.

[Shu04b] D. Shutin. Clustering wireless channel impulse responses in angular-
delay domains. In Proceedings of VI International Workshop on Signal
Processing Advances in Wireless Communications, SPAWC2004, pages
253 – 257, Lisbon, Portugal, July 2004.

[SK04] D. Shutin and H. Koeppl. Application of the evidence procedure to linear
problems in signal processing. In Proceedings of the 24th International
Workshop on Bayesian Inference and Maximum Entropy Methods in Sci-
ence and Engineering, pages 124–127, Munich, Germany, July 2004.

[SKF] D. Shutin, G. Kubin, and B.H. Fleury. Application of the Evidence Pro-
cedure to the estimation of wireless channels. Submitted for publication
in EURASIP journal on Applied Signal Processing.



Bibliography 177
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