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ABSTRACT

The problem of finding the generalized eigen-
values and eigenvectors of a pair of real sym-
metric matrices A and B, with B > 0, can be
viewed as a smooth optimization problem on a
smooth manifold. We present a cost function
approach to the generalized eigenvalue problem
which is posed on the product of the n-sphere
and Euclidian space R. The critical point set
of this cost function is studied. An algorithm
is presented based on constrained optimization.
A proof of local quadratic convergence is given.

1. INTRODUCTION

In this paper a cost function approach for the
generalized eigenvalue problem is presented. It
is related to methods minimizing the Rayleigh
quotient, cf. [1] and [2], but is different in a
number of important points.

The generalized Rayleigh quotient when re-
stricted to the n-sphere Sn−1 has a minimum,
a maximum, as well as saddle points. Our cost
function is defined on a noncompact manifold,
the product Sn−1×R. Moreover, it is bounded
from below by 0 and we will show that there
exist only global minima but no further critical
points.

The optimization of our cost function in
terms of Jacobi-type rotations coupled with a

shift-type strategy, known from inverse itera-
tion and QR-type methods, results in a very
efficient algorithm. Because we use orthogonal
Jacobi-type transformations a VLSI-realization
is probably easy to implement due to its inher-
ent regularity and parallelism. Local quadratic
convergence is shown using elementary tools of
analysis.

2. COST FUNCTION APPROACH
TO THE GENERALIZED
EIGENVALUE PROBLEM

We aim at finding real generalized eigenvalues
for a definitizable pair of real symmetric ma-
trices. That is, for

det(A− λB) 6≡ 0,

solve
det(A− λB) = 0

with
λ ∈ R,

A = A′ ∈ Rn×n,
and

B = B′ ∈ Rn×n, B > 0.

Equivalently, we want to find all real solutions
λ ∈ R, x ∈ Rn with ‖x‖ = 1, of

(A− λB)x = 0.



             

Then x ∈ Sn−1 is called a real generalized
eigenvector of (A,B) and λ ∈ R a real gen-
eralized eigenvalue; characterized as

det(A− λB) = 0.

Real generalized eigenvalues/eigenvectors are
thus the real eigenvalues/eigenvectors ofB−1A.

The next result characterizes the structure
of the set of critical points of our cost function.

Theorem 2.1 Consider the smooth function

f : Sn−1 × R→ R,

defined by

f(x, λ) = ‖(A− λB)x‖2

= x′(A− λB)2x.

(a) (x, λ) ∈ Sn−1 × R is a critical point of
f : Sn−1 × R→ R if and only if

B−1Ax = λx

holds.

(b) All critical points are global minima with
critical value equal to 0.

Proof. The derivative of f : Sn−1 × R → R
at a point (x, λ) ∈ Sn−1 × R vanishes if and
only if

(A− λB)2x = µ2x, µ ∈ R,

as well as

x′(A− λB)Bx = 0

hold. Because B is nonsingular and A− λB is
symmetric it follows that µ = 0 and thus

x ∈ ker(A− λB)

must hold. Equivalently,

Ax = λBx

holds and by the invertibility of B we get

B−1Ax = λx.

It is easily seen that the critical values are
all equal to 0 which is the global minimum
value of the function f : Sn−1 × R→ R. ¤

Recall the generalized Rayleigh quotient

rA,B : Sn−1 → R,
defined by

rA,B(x) =
x′Ax

x′Bx
.

Here x is a critical point of rA,B with critical
value λ if and only if

B−1Ax = λx

holds. But not all critical points of rA,B are
minima. There are a maximum and saddle
points as well. For a discussion of the ordinary
Rayleigh quotient, cf. [3].

3. CONSTRAINED OPTIMIZATION
PROCEDURE

Consider the following optimization procedure
of the function f : Sn−1 × R → R where xk+1

and λk+1 are recursively defined by

xk+1 = arg min
x∈Sn−1

x′(A− λkB)2x,

λk+1 =
x′k+1Axk+1

x′k+1Bxk+1

.

Thus we minimize f(x, λ) = x′(A − λB)2x on
Sn−1 leaving λ fixed and then minimize (x′(A−
λB)x)2 with respect to λ leaving invariant x.
By this choice of λk it follows that xk becomes
isotropic with respect to the quadratic form
corresponding to the matrix A−λkB. The vec-
tor xk+1 ∈ Sn−1 then is chosen as an eigenvec-
tor of (A−λkB)2 corresponding to the smallest
eigenvalue. Equivalently, xk+1 is a right sin-
gular vector of A − λkB corresponding to the
smallest singular value.



                

4. CONVERGENCE PROPERTIES

In this section we discuss the local convergence
properties of our algorithm. At the moment
we have no proof for global convergence. Stan-
dard approaches, e.g., a Lyapunov-type argu-
ment combined with continuity properties of
the functions

f : Sn−1 × R → R,

f(x, λ) = x′(A− λB)2x

and

h : Sn−1 → R,

h(x) = min
x∈Sn−1

{x′(A− λB)2x|λ ∈ R}

will fail to work. On the other hand there is nu-
merical evidence that the algorithm is indeed
globally convergent.

To prove the next result we use elementary
tools from global analysis.

Theorem 4.1 Let two symmetric matrices A,
B ∈ Rn×n be given. Let B be positive definite.
Given an arbitrary but fixed λ ∈ R, let

sλ : Sn−1 → Sn−1 (1)

with

xk+1 = sλ(xk), k ∈ N0,

be a quadratical fast algorithm or, alternatively,
one step of a quadratical fast algorithm to com-
pute

min
x∈Sn−1

x′(A− λB)2x.

Consider the sequence ((xk, λk)), with k = 0,
1, 2, . . ., generated by the recursions

xk+1 = sλ(xk),

λk+1 =
x′k+1Axk+1

x′k+1Bxk+1

,

with x0 ∈ Sn−1 arbitrary and λ0 :=
x′0Ax0

x′0Bx0

.

If the sequence ((xk,λk)) converges to (x,λ),
where B−1Ax = λx holds, then it converges
locally quadratically.

Proof. The derivative of sλ at x ∈ Sn−1 is the
linear mapping that assigns to a tangent vector
ψ ∈ TxSn−1 the valueDsλ(x)·ψ. Because sλ(x)
minimizes x′(A− λB)2x

Dsλ(xmin) · ξ = 0 (2)

must hold, with ξ ∈ Txmin
Sn−1. Now consider

the mapping

τ : Sn−1 → Sn−1,

defined by
τ(x) = sλ(x)(x).

Note that τ : Sn−1 → Sn−1 is smooth in an
open neighborhood of xmin if (1) is the socalled
Sort-Jacobi algorithm, cf. [4]. This can be
shown by applying the implicit function theo-
rem to a suitable function, cf. [4], [5], and [6]
for a general discussion of Jacobi-type methods
and related arguments.

Then

Dτ(xmin)·ξ =
∂s

∂λ
Dλ(xmin)·ξ +Ds(xmin)·ξ

=
∂s

∂λ
Dλ(xmin)·ξ

holds because of (2). Furthermore, Dλ(xmin) ·
ξ = 0 holds if λ is chosen as

λk+1 =
x′k+1Axk+1

x′k+1Bxk+1

.

Thus
Dτ(xmin) · ξ = 0

vanishes. Now quadratic convergence follows
by the smoothness of the mapping sλ : Sn−1 →
Sn−1 around the point xmin together with a
standard Taylor expansion argument

‖sλ(xk)(xk)−xmin‖≤sup‖D2sλ(x)(x)‖‖xk−xmin‖2.
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5. DISCUSSION

As stated above one step

xk+1 = sλ(xk)

of a quadratical fast algorithm is sufficient to
ensure the local quadratic convergence of the
whole scheme. For that purpose one sweep of
the socalled Sort-Jacobi algorithm for singular
value computations, introduced in [4], seems to
be well suited. On the one hand because the
Sort-Jacobi algorithm converges globally and
locally quadratically even in the case of multi-
ple singular values, on the other hand because
this method is able to sort the singular val-
ues in any prescribed order on the diagonal.
Both features are neither shared by standard
Jacobi-type methods nor by Kogbetliantz al-
gorithms, cf. [1] and related literature. The
basic difference to standard textbook Jacobi
algorithms is that the Sort-Jacobi algorithm
minimizes Brockett’s linear trace function, cf.
[7], in each step, rather than minimizing the
quadratic off-norm function.

It seems to be new to interpret shifts known
from QR-type methods and inverse iterations
as additional optimization parameters for func-
tion optimization on differentiable manifolds.
On the other hand as a shortcoming of this
strategy the function f : Sn−1 × R → R is
no longer strictly decreasing on the sequence
((xk, λk)).

Numerical experiments and a more detailed
discussion on the convergence properties of our
algorithm will be published elsewhere.
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