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ABSTRACT

We consider a multi-input, multi-output lattice realiza-
tion for linear time-varying analysis banks which are
all pass. Such a realization was given for LTI systems
in [4]; and under certain conditions generalizes to the
LTV case. Moreover, our implementation is simpler
than the one presented in [4]. Finally, we describe the
anticausal inverse of a lattice realization which is used
in the synthesis bank.

1. INTRODUCTION

In recent years there has been considerable interest
in the theory and design of linear time varying (LTV)
�lter banks (FB) [2]. Two requirements often imposed
on FB design are that the analysis bank (AB) be col-
lectively all pass (individual analysis �lters of course
will not be all pass), and that the overall FB have the
perfect reconstruction (PR) property.

More precisely [1], it is known that a LTVFB can be
represented as in �gure 1, where q�1 is the unit delay
operator, k is the time index, u(k) is the FB input,

û(k) is the output, E(k; q�1) is the M -inputM -output
type I polyphase matrix of the AB, and R(q�1; k) is
the M �M type II polyphase matrix of the synthesis
bank (SB). For the purposes of this paper, E(k; q�1)
and R(q�1; k) can be treated as two M �M matrix
LTV systems, the presence of k indicating their time
varying nature. Then the all pass requirement on the
AB boils down to the requirement that with E(k; q�1)
at initial rest and `y' the hermition transpose, for all
square summable ui(k),
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Figure 1: A PR �lter bank

The PR requirement boils down to

R(q�1; k)E(k; q�1) = I: (1.2)

Generally E(k; q�1) is causal, and R(q�1; k) anticausal
[3]. See [3] for details on how an anticausal R(q�1; k)
can be implemented through the transmission of judi-
ciously chosen samples of the states of the AB.

It is known that a limited class of FIR, LTV, all
pass E(k; q�1) admit a dyadic implementation [1]. In
[6], we have shown that a wide class of LTV, IIR, all
pass E(k; q�1) also admits a more general dyadic im-

plementation. This implementation also covers certain
LTV, FIR all pass E(k; q�1) not covered by [1].

Equally, it is known that should the FB be LTI then
the all pass requirement in 1.1 allows E(k; q�1) to have
a lattice implementation. This lattice structure, pro-
posed by Vaidyanathan and Mitra [4], generalizes the
normalized Gray and Markel lattice to multiple input,
multiple output (MIMO) systems. We will call this
lattice the VM lattice after its enunciators.

The questions addressed here are twofold. First un-
der what conditions does the VM lattice generalize to
the LTV case? Second, what is its corresponding anti-
causal inverse? Our principle result is to show that
all LTV, IIR, all pass E(k; q�1) covered by our re-
sult referred to in the foregoing, admit a lattice based
implementation. Since the implemenation presented
here, even in its LTI specialization, is simpler than



its counterpart in [4], we label it as the Simpli�ed
Vaidyanathan Mitra (SVM) lattice.

Section 2 gives some necessary preliminaries. Sec-
tion 3 presents the SVM lattice together with a com-
parison with the VM lattice. Section 4 contains the
main results. Section 5 is the conclusion.

2. PRELIMINARIES

Throughout we are concerned with M �M , IIR all
pass systems. We call a matrix P (k) uniformly positive
de�nite (upd) if 9 �1; �2 > 0 such that 8 k,

�1I � P (k) � �2I: (2.1)

We then say that an M �M system has McMillan de-

gree n, if there exist time varying matrices A(k), B(k),
C(k), and D(k) with dimensions n�n, n�M ,M �n,
and M �M respectively, if with

�(k; k0) = A(k � 1)A(k � 2) � � �A(k0) (2.2)

the following hold:
(i) The system has a state variable realization

x(k + 1) = A(k)x(k) + B(k)U (k) (2.3)

Y (k) = C(k)x(k) +D(k)U (k) (2.4)

(ii) [A(k); C(k)] is a uniformly completely observable
(UCO) pair, i.e. there exist positive N1 such that the

matrix
Pk+N1

i=k �y(i; k)Cy(i)C(i)�(i; k) is upd, and

(iii) [A(k); B(k)] is a uniformly completely controllable
(UCC) pair, i.e. there exist positive N2 such that the

matrix
Pk+N2

i=k �(k+N2; i)B(i�1)B
y(i�1)�y(k+N2; i)

is upd.

Note that frozen versions of an LTV system hav-
ing a McMillan degree may have time varying degrees.
Further, we will assume that (2.3,2.4) is exponentially
asymptotically stable (eas), i.e., B(k), C(k) and D(k)
are bounded and there exist some constants c, 0 < � <

1 such that for all k0 and k � k0

kx(k)k � ckx(k0)k�
k�k0: (2.5)

One can write (2.3,2.4) as�
x(k + 1)
Y (k)

�
= �(k)

�
x(k)
U (k)

�
(2.6)

where the realization matrix

�(k) =

�
A(k) B(k)

C(k) D(k)

�
: (2.7)

We will call �(k) compatible if the uco, ucc, and eas
assumptions apply.

Our goal is to treat only all pass E(k; q�1), for
which an eas lattice implementation exists. As noted
in [6], this often requires that E(k; q�1) itself have a
compatible realization. Further, for the sake of brevity,
only real implementations will be considered, although
as in [6], all results easily extend to complex cases.
Thus the following will be a standing assumption on
the E(k; q�1) considered here.
Assumption 2.1 TheM�M causal system E(k; q�1),
with input U (k) and output Y (k) is all pass, i.e. it

obeys for all U (k) 2 l2
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whenever it is at initial rest. Further, E(k; q�1) has

a real compatible realization, as in (2.3,2.4), and has

McMillan degree n.

We next state the following result fron [6]

Theorem 2.1 Suppose E(k; q�1) obeys Assumption 2.1.

Then it has a real compatible SVR such that the real-

ization matrix �(k) obeys for all k

�0(k)�(k) = I (2.9)

i.e. �(k) is unitary. Further if �(k) is a unitary real-

ization matrix of E(k; q�1), then E(k; q�1) is all pass.

Finally, we note that every symmetric positive semidef-
inite (psd) N � N matrix G has a unique, real, sym-
metric, psd square root [5, pp. 180-181] S = S0 � 0 for
which S2 = G. We denote the square root by S = G1=2.

3. SIMPLIFIED VAIDYANATHAN MITRA

LATTICE

We present two versions. Recall, we are concerned
withM �M , LTV, IIR systems with McMillan degree
n. De�ne

l = n div M (3.1)

m = n mod M: (3.2)

Then the �rst form, labelled SVM1, is as in �gure 2
with the following de�nitions. The operator q�1 is the
delay operator. If m = 0, then F (k; q�1) is a zeroth
order matrix,G(k), otherwise it is as in �gure 3. Ui(k),
Yi(k), 1 � i � l are all M � 1, as are Ul+1(k) and
Yl+1(k). In �gure 3, w1(k), w2(k), and w4(k), are m�1
and w3(k) is (M �m)�1. Each Hi(k) is as in �gure 4,
where Ai(k), Bi(k), Ci(k), Di(k) are real and M �M
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Figure 2: Simpli�ed Vaidyanathan Mitra Lattice I

for 1 � i � l and m � m for i = l + 1. Di(k) obeys
I � D0

i(k)Di(k) � 0 and hence I � Di(k)D
0

i(k) � 0.
Then

Ai(k) = �D0

i(k); (3.3)

Bi(k) = [I �D0

i(k)Di(k)]
1=2

; (3.4)

Ci(k) = [I �Di(k)D
0

i(k)]
1=2

: (3.5)

Finally,G(k), G1(k), G2(k), and G3(k) are real unitary
matrices respectively having dimensionsM �M , M �
M , M �M , and m�m.

The second SVM lattice (SVM2) is depicted in �g-
ure 5 with Hi(k) precisely as in the SVM1 case, but
with F (k; q�1) for m > 0 as shown in �gure 6. Ob-
serve that for the SISO LTI case with M = 1, �gure 5
reduces to the celebrated Gray-Markel lattice.

It is clear that matrices such as

�D =

"
�D0 [I �D0D]

1=2

[I �DD0]
1=2

D

#
(3.6)

play an important role in this structure. The following
Lemma makes this role clear.

Lemma 3.1 Suppose D is an N �N real matrix such

that

�D�
0

D = �0D�D = I: (3.7)
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Figure 3: F (k; q�1), m > 0
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Figure 4: Structure of Hi(k)

Thus �D is unitary. To understand why we use the
term SVM lattice for these structures, �rst note that
the last block in �gures 2 and 5 are more complicated
than the rest. In the VM lattice in the LTI case, �D
above is replaced by �K given by the matrix

�K =

�
A B

C D

�
(3.8)

where

A = �
�
(I �K0K)�1=2

�0
K0

�
(I �KK0)�1=2

�0
B = (I �KK0)1=2

C =
�
(I �K0K)1=2

�0
D = K

for some K. Two points are noteworthy. Evidently,
in the above, the unique square root is not employed.
Consequently to preserve the unitary nature of �K ,
the inversion noted above is needed. This is clearly
impossible if I �K0K or I�KK0 are not positive de�-
nite. Whenever that happens, some of the intermediate
stages must also be replaced by the more complicated
structure exempli�ed by F (k; q�1).

In the SVM lattice, however, this is not an issue.
The last stage is there only to ensure minimality when
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n is not a multiple of M . Observe the total number
of delays in both SVM1 and SVM2 is n, the assumed
McMillan degree.

4. MAIN RESULTS

We present the following Theorems. The �rst con-
cerns SVM1.

Theorem 4.1 Consider SVM1 de�ned in Section 3.

Then the system relating U (k) to Y (k) is all pass. Fur-
ther suppose a system, E(k; q�1) relating U (k) to Y (k)
is M �M , all pass and has McMillan degree n, with a

real compatible realization of degree n. Then E(k; q�1)
has a realization as in �gure 2 with the assumptions

stated in Section 3.

The second concerns SVM2.

Theorem 4.2 Consider SVM2 de�ned in Section 3.

Then the system relating U (k) to Y (k) is all pass. Fur-
ther suppose a system E(k; q�1) realating U (k) to Y (k)
is M �M , all pass and has McMillan degree n, with a

real compatible realization of degree n. Then E(k; q�1)
has a realization as in �gure 5 with the assumptions

stated in Section 3.

Finally, we describe the anticausal inverse of SVM1.
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Figure 6: F (k; q�1), m > 0

Theorem 4.3 The anticausal inverse of SVM1 (re-

spectively SVM2) is the same as SVM2 (SVM1) with

q�1 replaced by q, Bi(k) by C0i(k), Ci(k) by B0i(k),
G1(k) by G

0

2(k), G2(k) by G
0

1(k) and the matricesG(k),
Ai(k), Di(k) by their transposes.

5. CONCLUSION

We have shown that all all pass square LTV systems
with a well de�ned McMillan degree and uco, ucc, eas
realizations admit two lattice based realizations. We
have also characterized the anticausal inverse of such
systems.

6. REFERENCES

[1] S. Phoong and P.P. Vaidyanathan, \Factorizabil-
ity of lossless time-varying �lters and �lter banks",
CalTech Tech. Report, April 1995.

[2] S. Phoong and P.P. Vaidyanathan, \A polyphase
approach to time-varying �lter banks", Proc.

ICASSP, May 1996.

[3] P.P. Vaidyanathan and T. Chen, \Role of anti-
causal inverses in multirate �lter banks - part
I: system-theoretic fundamentals", IEEE Trans.,
ASSP-43, pp 1090-1102, May 1995.

[4] P.P. Vaidyanathan and S.K. Mitra, \A general
family of multivariable digital lattice �lters",
IEEE Trans., CAS-32, pp 1234-1245, Dec. 1985.

[5] P. Lancaster and M. Tismenetsky, The theory of

Matrices 2nd edition, Academic Press, 1985.

[6] C. Schwarz, S. Dasgupta, M. Fu, \Factorization
of all pass, IIR, LTV analysis banks, Part I: IIR
dyadic implementation", under preparation.


