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ABSTRACT

Numerical algorithms for signal processing and control
are quite often constructed by intuition. When the sys-
tem to be designed contains algebraic or other invari-
ants, then these constraints can be exploited to find
appropriate transformations. The transformations in
system theory are usually Lie groups. One has to find
Lie groups which are consistent with the invariants.

We show how this point of view can be applied to
construct pole placement algorithms for symmetric and
skew-symmetric realizations.

However, Lie group theory only reveals the appro-
priate transformations but is not able to reduce the
design process to a trivial task. The problem discussed
here also shows this limitation.

1. INTRODUCTION

System design is typically an iterative or recursive pro-
cess starting from an initial design and application of
transformations. In many cases this process is con-
strained by conditions on the systems parameters. They
should be satisfied in all steps, i.e., by all transforma-
tions. State space transformations for linear systems
are a well known example for this procedure. Non-
singular transformations of the state vector leave the
transfer function invariant while changing the internal
structure. Other examples from signal processing and
systems theory are listed in the table below.

In this paper we consider linear time-invariant systems.
Their parameters constitue a manifold. In this case
Lie groups provide a powerful class of transformations.
The structure comes in from physical constraints, e.g.,
reciprocity or losslessness. We take pole placement as
an example because it is of interest in a variety of ap-
plications in linear systems theory. However, our way
of thinking is appropriate for other problems as well.

Task Constraint Transformation
Eigenvalue dec. eigenvalues sim. trans.
Signature signs of EVs cong. trans.
lossless synth. energy appr. group act.
Feedback given poles this paper

Table 1: SP tasks, constraints and transformations

Issues of solvability, discussed in control literature over
the last decades, are beyond the scope of this paper
and will be published elsewhere.

2. INVARIANCE PRINCIPLE

Group theory proves to be indispensible for a system-
atic system design of algorithms. In fact, if the trans-
formations applied in the algorithm are elements of a
group, one can use rather powerful tools from group
theory to investigate the behavior of the algorithm.
Primarily, we are interested in the case of a group ac-
tion on a manifold.

Structural properties of a linear system can be con-
sidered in this framework if it is possible to express
the structural constraints as invariants under group ac-
tions. First we give a definition of what invariance
means in this respect.

Definition 2.1 (Invariance [8]) Let G be a transfor-
mation group acting on a manifoldM. An invariant of
G is a real valued function I :M→ R, which satisfies

I(g · x) = I(x) (∀g ∈ G). (1)

Given one or more invariants I and the action of
the transformation group onM in terms of a mapping,
groups G satisfying (1) have to be found. The group
action is simply how the rules of transformations are



          
applied to the system parameters as long as groups
axioms are satisfied.
Example: For eigenvalues computation the group ac-
tion is defined as A 7→ TAT−1 (T ∈ GL(n)). This
group action leaves the eigenvalues invariant.
Remark: Continuous transformation groups leaving
dynamical systems invariant were already considered
S. Lie [6] and F. Klein. Here we apply their ideas to
algebraic invariants.
Remark: Invariance priciples were applied in network
synthesis for lossless systems. This is a special case of
the general principle defined above, which goes beyond
system theory.

3. PROBLEM DESCRIPTION

Assigning poles to linear time-invariant systems by feed-
back amounts to the solution of a set of nonlinear equa-
tions. Recently, pole placement problems were attacked
by embedding plant and compensator in a projective
space and using Plücker coodinates. This allows the
application of optimization methods on Grassmanni-
ans as done by Helmke/Hüper [5] because the problem
is reduced to a symmetric eigenvalue problem. This
can be solved, e.g., using Jacobi-type methods.

We consider pole placement for symmetric (skew-
symmetric) realizations, that is the realization matrix[
A B
C D

]
∈ R(m+n)×(m+n) of the linear time-invariant

system becomes symmetric (skew-symmetric) and so
are the transfer function and the feedback.

Such compensators for state space realizations were
considered by Helmke and Mahony with gradient flow
techniques [4], [7].

In this paper we show how to express structural
constraints in terms of invariants and compute the ad-
missible transformations according to Definition 2.1.

Let a linear time-invariant systemA,B,C of McMil-
lan degree n with m inputs and outputs, respectively,
and a set of n real (imaginary) eigenvalues L =
{s1, s2, . . . , sn} be given. Compute a feedback compen-
sator K such that the eigenvalues of the closed-loop
system match L, that is,

det(siI − (A−BKBT)) = 0, i = 1, . . . , n (2)

and K is symmetric (skew-symmetric).
This condition can also be written as an intersection

of linear spaces

dim
[
colspan

[
I
K

]
∩ colspan

[
N(si)
D(si)

]]
≥ 1

i = 1, . . . , n (3)

with transfer function H = ND−1 and the special
restriction to a symmetric (skew-symmetric) feedback
K.

4. GROUP ACTIONS

Now we express the structural constraints as invari-
ants of group actions and determine the groups to be
applied.

4.1. SYMPLECTIC STRUCTURE –
SYMMETRIC FEEDBACK

Define a linear symplectic structure on R2m by

〈a, b〉 = −〈b, a〉 =
2m∑
i,i=1

ωijaibj ωij = −ωji (4)

and 〈a, b〉 = 0 for ∀a ∈ R2m if and only if b = 0. A
subspace L of R2n is called symplectic if the restriction
to it of the symplectic structure is nondegenerate.

A k-plane W in the symplectic space is isotropic if
it is skew-orthogonal to itself. For k = m the plane
is called Lagrangian [2], [1], [3]. It is the maximal
isotropic subspace of a symplectic space.

The symmetry constraint of a system can be ex-
pressed in terms of (4) by[

I
K

]T [
In

−In

] [
I
K

]
= 0 (5)

for the graph of K. These subspaces are called La-
grange Grassmannian. This means that the matrix K
is symmetric. For the derivation of a proper algorithm
it is crucial to characterize the group action, i.e., what

matrix group leaves the space span
[
I
K

]
isotropic.

Q

[
I
K

]
∈ span

[
I
K

]
. (6)

It is easy to verify that symplectic matrices Sp(2m,R)
work. [

I
K

]T

QT
[

In
−In

]
Q︸ ︷︷ ︸[

In
−In

]
[
I
K

]
= 0

Q ∈ Sp(2m,R). (7)

Note that equation (5) is also called the condition for
reciprocity of a linear (resitive) multiport.



            

We consider a linear system as a linear subspace.
Clearly, every subspace can be described by a base sub-
ject to coordinate changes. It is convenient to work
with an orthogonal base[

X
Y

]
=
[
I
K

]
(I +KTK)−1/2 (8)

disregarding issues of numerical accuracy at this point.

For the Lagrange Grassmannian
[
X
Y

]
(5) holds, sub-

ject to orthogonal coordinate changes by right multi-

plication. For the form
[
I
K

]
, coordinate changes by

the general linear group are sufficient. Note that right
multiplication does not change the isotropy of the sub-
space. The projection matrix, parametrizing the La-
grange Grassmannian globally, is given by

P =
[
X
Y

] [
X
Y

]T

. (9)

Now the group action[
X ′

Y ′

]
:= Q

[
X ′

Y ′

]
(10)

has to be isotropic with respect to
[

In
−In

]
and

has to preserve orthogonality in the Euclidean sense
due to the orthogonality of (6). We obtain orthogonal
symplectic matrices as admitted transformations

OSp(2m) := O(2m) ∩ Sp(2m), (11)

the maxiaml compact subgroup of the symplectic group.
Such transformations have m2 parameters. The Lie al-
gebra osp(2m) of these matrices is given by

osp(2m) =
{[

A B

−BT A

]
,A,B ∈ Rm×m|

A = −AT,B = BT} . (12)

As an aside, note that the additional orthogonality re-
moves the noncompact part in Sp(2m) and avoids dif-
ficulties in terms of function minimization along curves
in Sp(2m).

Remark: In [7], symmetric realizations written in state
space form were considered. The similarity transforma-
tion was taken from O(n) because only such transfor-
mations leave the realization matrix symmetric.

4.2. LOSSLESS SYSTEMS

Assigning poles to a skew symmetric system is essen-
tially a pole placement problem for Hamiltonian sys-
tems. Since the state matrix A is assumed to be skew,

and this structure has to be preserved, only poles on
or symmetric to the imaginary axis can be assigned.

The computation of the admitted transformation
group goes along the same line as above but starting
from the isotropy:[

I
K

]T [
In

In

] [
I
K

]
= 0. (13)

This amounts to KT = −K. The Lie algebra for a
matrix leaving (13) invariant and being orthogonal for
the same reasons as above is given by:

oso(m,m) =
{[

A B

−BT A

]
,A,B ∈ Rm×m|

AT = −A,BT = −B
}
. (14)

This Lie algebra is of dimension m2 −m.

5. ALGORITHM

The construction of a pole placement algorithm can
be summarized by the following steps. Details for the
problem will be given below.

Algorithm Design

1. Express the problem to be solved by the ac-
tion of a Lie group

2. Write the structural constraint as isotropy
condition (or invariance) of a group action
and find the group which leaves the isotropy
invariant.

3. Use this group to compute Plücker embedding
or other strategies to solve the pole place-
ment problem. The construction of an objec-
tive function for a quadratically convergent
scheme will not be discussed here.

It was not possible to derive a quadratically con-
vergent scheme for the objective functions in [5] and
general K . This is to be expected for more the re-
stricted transformation groups as well.

The intersection condition (2) can be satisfied by
the vanishing determinants

det
[
I N(si)
K D(si)

]
= 0 i = 1, . . . n. (15)

From these determinants an objective function is de-
rived as

f(K) =
n∑
i=1

det
[
I N(si)
K D(si)

]
. (16)



                 

Details can be found in [5]. Following the exposition in
[5] we consider the Plücker embedding of Gr(2m,m) in
the projective space

pl : Gr(2m,m) ↪→ P(∧mR2m). (17)

This allows the objective function to be expressed as
Rayleigh quotient

f(P ) =
n∑
i=0

pl(P )TQ̂ipl(P ) (18)

with P as given above and Q̂i the Plücker embedding

of the orthogonal projector of
[
N(si)
D(si)

]
Q̂i = pl(qi)pl(qi)T. (19)

This is equivalent to the minimization of

h : pl(Gr(2m,m))→ R,

thus

h(y) = tr

[
yyT

n∑
i=1

Q̂i

]
(20)

y = pl

[
X
Y

]
, initialized with y0 =

[
Im
0m

]
. The iteration

scheme applied to (20) is identical to algorithm (22) in
[5] and is therefore not given here.
Example: The exponentiation of the exterior square
of the standard representation of osp(4) yields among
others (s = sin, c = cos)

Q2(τ) =



c(τ)2 s(2 τ)
2 0 0 −s(2 τ)

2 −s(τ)2

−s(2 τ)
2 c(τ)2 0 0 s(τ)2 −s(2 τ)

2

0 0 1 0 0 0

0 0 0 1 0 0
s(2 τ)

2 s(τ)2 0 0 c(τ)2 s(2 τ)
2

−s(τ)2 s(2 τ)
2 0 0 −s(2 τ)

2 c(τ)2



Q3(τ) =



c(t) 0 0 −s(τ) 0 0

0 1 0 0 0 0

0 0 c(τ) 0 0 s(τ)

s(τ) 0 0 c(τ) 0 0

0 0 0 0 1 0

0 0 −s(τ) 0 0 c(τ)


.
It is worth mentioning that the chosen objective

function suffers from slow convergence. This feature,
however, does not result from the chosen transforma-
tions but rather the objective function.

6. CONCLUSIONS

In this paper we have shown how system invariants can
be applied to find admissible transformation groups.
This method is not restricted to pole placement. It is
to be expected that this point of view can be used in
many other applications as well. It is just a matter of
patience to seek invariants. The group theory approach
shows what transformations are allowed to leave the
invariants fixed during the design process. We tacitly
assume that this is the best route to the solution of a
problem. Examples, e.g., similarity transformations of
linear systems by non-singular matrices or eigenvalue
computation of symmetric matrices by orthogonal ma-
trices, support this assumption. Different algorithms
exist for the symmetric and nonsymmetric case for the
eigenvalues problem. The former also respects the sym-
metry under round-off errors while the latter does not
obtain real eigenvalues when applied to a symmetric
matrix. It seems not appropriate to apply arbitrary
transformations at first and than to modify the desing
in order to meet the constraints.
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