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Figure 2: Distance of the given subspace graph (S) and the
modelled subspace span (TX0). The distance is measured
as the gap metric between the two subspaces.

5. CONCLUSION

We have demonstrated that the numerical quality of certain
matrix factorizations based on noncompact groups can be
significantly improved when studying Lie groups operating
on graphs of matrices (Grassmannian approch) instead of
applying conventional row and column transformations on
the matrices. This can be achieved exploiting the inherent
degree of freedom to perform locally a change of basis dur-
ing the algorithm if numerical problems are detected. Ex-
perimental results on the noncompact Lie group On;n so far
indicate that based on this approach one can impose an priori
upper bound on the norm of elementary transfomation ma-
trices (e.g. plane reflections). The problems discussed here
partly are characteristic for lossless or On;n transformations
due to the mirror image property of the eigenvalues of these
“rigid motions” with respect to the unit circle. Nevertheless,
there is no doubt that one may achieve improved numerical
results even in more general cases. Clearly, the preliminary
implementation of the investigated modifications leads to an
increase in computational complexity. No algorithmic op-
timization in any way has been performed so far. We sim-
ply wanted to show that (i) there are new perspectives for
algorithm design, especially when dealing with noncompact
groups, (ii) there is much work to be done in order to fully
exploit the potential gains and insights of this approach.
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Figure 3: Frobenius norm of the error matrixS� Ŝ between
the originally given matrix S and the modelled matrix Ŝ as
a function of the singular value �1 for three values for the
parameter �.
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is made to determine the parameter for a hyperbolic plane re-
flection.

In comparison to the procedure proposed in [4] the
following algorithmic changes have been investigated to
achieve the goal stated in the previous section:

1. When at step i of the recursion the parameters for a hy-
perbolic plane reflection shall be determined, the value
of the parameter � is checked to satisfy j�j < 1� � for
a given 0 � � < 1.

2. If the constraint (6) on j�j is not met, try to find appro-
priate orthogonal matrices TQ 2 On�On and QM 2

On to perform the transformation

�
~Ai
~Bi

�
= TQ

�
Ai
Bi

�
QM (7)

such that the constraint (6) is satisfied, and the n� n–
matricesAi; Bi; ~Ai; ~Bi are all upper triangular shaped.

3. If appropriate orthogonal matrices cannot be found, a
totally isotropic subspace has been detected.

4. The matrices TQ and QM are produced as the product
of elementary euclidean plane reflections exclusively.

4. NUMERICAL EXPERIMENTS

For this particular case study an implementation of the gen-
eralized Schur algorithm as given in [2] and [4] has been
used. The implementation has been enhanced to include the
algorithmic changes described in the previous section. Nu-
merical experiments were performed to get a first grip at
the conjectured numerical effects of the modifications with-
out paying attention to the computational efficiency of the
method.

To perform the numerical experiments, families of matri-
ces S 2 R6�6 were generated as

S = U � diag(�i) � V T
2 R6�6;

with orthogonal matrices U and V . The singular values
�i; i = 2; 3; : : :6 were randomly drawn from a Rayleigh
distribution. One of the singular values was varied as 0:0 �
�1 � 4:0 and used a parameter.

Starting out with such matrices and the formulation as in
eq. (1) the generalized Schur algorithm including the men-
tioned modifications was used to determine a solution to
eq.(3), i.e. the matrices T , X0 and M according to eq. (3)
were computed.

To study the effects of the algorithmic modification on the
numerical performance we reconstruct the originally given
matrix S as

X̂ :=

�
16
Ŝ

�
= TX0M;
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Figure 1: Deviation of T from orthogonality as a function of
the singular value �1 for three values for the parameter �.

and measure the subspace error as

EGraph := gap(span (X); span (X̂)):

The error on the individual matrix elements is measured by
means of

jjES jjF = jjS � ŜjjF :

The impact of the modifications on the condition number
and the operator norm of the matrix T are analysed by cal-
culating

jjET jjF = jj12n � T TT jjF :

One set of typical results is displayed in Figs. 1–3. All re-
sults are computed as the average over 100 idependent trials
for 6�6 matices S. In Fig. 1 it can be seen that deviation of
T from orthogonality, and hence the 2–norm and the condi-
tion number of T can be reduced by several orders of mag-
nitude, when numerical problems with hyperbolic transfor-
mations occur. Furthermore, a numerical improvement can
be observed even for more generic cases by means of a more
stringent bound on j�j.

Fig. 2 depicts the corresponding results for the numeri-
cal quality of the subspace. Here also, the positive effect of
bounding � can be seen, while the subspace measure does
not exhibit such disastrous numerical behaviour after all.
The results are confirmed by the numbers depicted in Fig. 3,
where the Frobenius norm has been used to measure the er-
ror between S and Ŝ.



2. NUMERICAL PROBLEMS

We base our discussion on the generalized Schur algorithm,
which is described e.g. in [2] – [3]. The recursive compu-
tation of solutions for (3) corresponds to decompositions of
T =

Q
Ti into a product of transformationsTi that are “ele-

mentary” in some sense. For brevity, we focus on decompo-
sitions of On;n into the standard euclidean (Givens) and hy-
perbolic plane transformations. Numerical problems arise
from applications of hyperbolic transformations like

Th =
1p

1� �2

�
1 ��

� �1

�
; �2 < 1 ; (4)

and we shall briefly review the reason for these problems.
The eigenvalues of T T

h
Th can easily be computed as

�1 =
1� �

1 + �
; �2 =

1

�1
=

1 + �

1� �
;

which show that theoretically detT T
h
Th = 1 even though

�1 ! 0; �2 ! 1 when j�j ! 1. Dramatic cancellation
errors (�2 � 1) or breakdown of algorithms (�2 = 1) have
frequently been reported in these situations.

The case �2 = 1 results in a breakdown of the algorithm
and is due to isotropic vectors in the basis X . It occurs in
exactly two cases [4], [5]:

1. An isotropic vector in X corresponds to a totally
isotropic subspace of span (X), (i.e. n0 6= 0). If this
situation is not detected correctly, the algorithm tries to
assign span (X0) to another On;n-orbit than span (X).
Since the J-signature (n+; n�; n0) is an invariant, the
algorithm is misled to switch to another J-signature by
proceeding along geodesics on the group manifold to-
wards1.

2. An isotropic vector in X corresponds to a vanishing
principle minor of the J-gramian that is due to n0 6= 0
or due to ill-conditioned data – a problem that may be
easily circumvented by a local change of basis (see be-
low). One should note that not a few numerical prob-
lems of this type arise from the fact that transformations
acting along preassigned coordinate (hyper)planes may
run inevitably into ill-conditioned data constellations.

The case j�j � 1 produces serious numerical difficul-
ties due to the noncompactness of On;n, since in this case
kTk ! 1. The normalization constant

p
1� �2 is usu-

ally considered responsible for this undesirable numerical
behaviour due to the unbounded growth of matrix entries.
This fact variously led to conjectures about the superiority of
alternative algorithmic schemes which minimize the number
of used hyperbolic plane transformations 2 (4). The failure

2Clearly, this number must not exceed the Witt-index of the metric

of such an approach can be easily seen by looking at the ele-
mentary hyperbolic plane reflection when dropping the nor-
malization constant, i.e. considering the transformation

~Th =

�
1 ��

� �1

�
; j�j2 < 1 : (5)

In this case the, eigenvalues of ~T T
h
~Th are

�1 = 1 + 3�2; �2 = 1� �2:

Therefore, once j�j ! 1 the transformation matrix tends to
become singular, even though the matrix elements are not
blown up due to the small normalization constant, and the
cancellation argument ceases to hold. In general, one sin-
gular, or nearly singular transformation in a product decom-
position is enough to produce a singular or nearly singular
result.

3. MODIFICATION OF ALGORITHM

It is the goal of this investigation to assess the feasibility of
bounding j�j away from unity, that is, either to avoid the ex-
treme values j�j � 1, or to somehow achieve that � satisfies
an a priori bound, given in terms of the parameter �, i.e.

j�j < 1� �; 0 � � < 1; (6)

while still computing recursively solutions to (3). Such a re-
sult may render possible the development of modified algo-
rithms which will produce solutions with a bounded norm
kTk and improved numerical accurarcy.

The basic idea is as follows: The Grassmannian approach
offers the possibility to perform an a posteriori improve-
ment of ill–conditioned data inX 2 Stn;2n at any stage “i”
of the algorithm with actual dataXi. This can be done by use
of group actions on Stn;2n that lie in the kernel of the pro-
jection � : Stn;2n ! Grn;2n; Xi 7! �(Xi) = span (Xi) :
Here, we will limit ourselves solely to a change of basis for
span (Xi) by postmultiplication of Xi by some M 2 GLn.
This comprises known pivoting strategies when M is a per-
mutation matrix [6], [3] as well as a (algorithmically pro-
hibitive) complete orthogonalization of the basis Xi.

In [4] it has been discussed how to detect singular situa-
tions, and how these singularirites can be circumvented by
means of a change of basis. In the course of a recursive,
Schur–type elimination scheme, the occurence of such sin-
gular situations is indicated by j�j = 1, whenever an attempt

space (the dimension of the maximally totally isotropic subspace). How-
ever, it can definitely not be shown that minimization of this number gen-
erally leads to better numerical behaviour. Questions of this type amount
to the investigation of the sensitivity of On;n-orbits with respect to differ-
ent parametrizations of T =

Q
Ti under finite precision arithmetic. This

problem highly depends on the concrete dataX in (3) and answers can be
seriously expected only when additional information on the data is given.
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ABSTRACT

Numerical matrix computations involving actions of non-
compact transformation groups are known to produce nu-
merical problems since the elements of the pertaining ma-
trix representations are inherently unbounded. In this case
study we analyse numerical problems occuring in a class of
algorithms that is based on actions of the pseudo-orthogonal
group On;m – a group that is noncompact (hyperbolic geom-
etry) and well established in signal processing (Schur meth-
ods). As a major result, it is shown how to exploit the addi-
tional degrees of freedom in defining coordinate frames in a
Grassmannian setting in order to impose an a priori bound
on the norm of the transformation matrices. This way, nu-
merically disastrous situations can be circumvented system-
atically. Hence, it becomes possible to develop modified al-
gorithms which exhibit superior numerical performance for
a large class of problems based on e.g. hyperbolic transfor-
mations.

1. MOTIVATION AND BACKGROUND

In contrast to the prevailing use of orthogonal transforma-
tions in matrix computations, signal processing algorithms
related to identification, approximation or decomposition
of physical systems involve actions of noncompact groups.
The (real) pseudo-orthogonal group On;m preserves energy
flow of n-input m-output systems, where

On;m = fT 2 GLn+m : T TJT = Jg

J =

�
1n 0n�m

0m�n �1m

�
:

On;m is noncompact (hyperbolic geometry) and has On�

Om as its maximal compact subgroup, where On�Om de-
notes the set of block-diagonal matrices of the formU � V ,
where U 2 On ; V 2 Om.

Conventional matrix factorization algorithms split a given
matrix A 2 Rn�n into a product A = GR, with G and
R belonging to two different subgroups of the general lin-
ear group GLn . Such factorizations with A belonging e.g.
to On;m have been investigated by Della-Dora [1]. A more

comprehensive type of factorizations may be motivated by
a network theoretic approach to the design of matrix algo-
rithms (cf.[2]). Instead of a group operating directly on a
matrix A, one studies natural group actions on graph sub-
spaces of linear input-output maps, i.e. a matrixA 2 Rn�n

is identified with the linear space

graph (A) = f(x;Ax) : x 2 Rng (1)

= span (

�
1n
A

�
) 2 Grn;2n ;

and hence with a point on a Grassmannian manifold Grn;2n
of n-dimensional subspaces of 2n-space1.

In order to perform computations it is useful to represent
these subspaces by equivalence classes of 2n� n basis ma-
tricesX 2 Stn;2n (the Stiefel manifold of full rank matrices
from R

2n�n), where any two bases X and Y are equivalent
whenever

span (X) = span (Y )() Y = XM; (2)

X;Y 2 Stn;2n ; M 2 GLn :

Note that a change of basis induced by M 2 GLn pro-
vides for free parameters in the representation of the matrix
A , graph (A). The Grassmannian approach leads to a
very natural theoretical framework for factorizations such as

X =

�
1n
A

�
= TX0M; (3)

X;X0 2 Stn;2n ; T 2 On;n; M 2 GLn

Here, depending on the application at hand,M may achieve
upper (block-)triangular form and X0 may be some ‘nice’
canonical form ofX (preferably two stacked n�n diagonal
matrices).

On;n does not act transitively on Grn;2n. More pre-
cisely, it exhibits

�
n+2

2

�
orbits that may be labeled by the J-

signature (n+; n�; n0) of the space span (X), wheren+, n
�

and n0 (n++n
�
+n0 = n) are the inertia of the J-gramian

XTJX . Since span (X) and span (X0) according to (3) be-
long to the same On;n-orbit, the J-gramians of X and X0

must belong to the same congruence class.
1One should note that the “extension” of this framework to non-square

matrices is trivial due to the Grassmannian approach.


