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ABSTRACT

The performance and complexity of blind algorithms
in a digital receiver is dependent on the pre�lter prior
to discretization of the received continuous time signal
and the sampling rate. This paper shows that sym-
bol spaced blind equalization algorithms are in general
sub-optimal, since a matched �lter cannot be used. We
show that, for fractionally spaced equalizers, the pre-
�lter can be a general low-pass �lter and does not need
to be matched to the unknown channel. This 
exibility
on choosing the pre�lter can result in di�erent discrete
time models with di�erent complexities for the signal
processing algorithms to follow. As for example, a sim-
pler whitening �lter design which is needed for the suc-
cess of several important blind equalization algorithms
can be realized using this 
exibility.

1. INTRODUCTION

Blind deconvolution algorithms involve determination
of the impulse response of a system or the input sig-
nal, from the observed output signal, when neither the
input signal nor the impulse response of the system is
known beforehand. The need for blind deconvolution
arises in application areas such as digital communica-
tion, seismic deconvolution, image restoration and so
on. This paper focusses on the digital communica-
tion scenerio, where it is necessary to overcome the
e�ects of the intersymbol interference (ISI) caused by
unknown channel amplitude and phase distortion. In
this case the aim of the blind deconvolution algorithm
or the equalizer is to restore the transmitted informa-
tion symbols from the received signal.

Many blind algorithms have been proposed to ad-
dress the above problem in the past few decades
[1, 2, 3, 4, 5] and these are either based on symbol

spaced or fractionally spaced samples of the received
continuous time signal. Higher sampling rate is as-
sociated with higher complexity and it is well known
that symbol rate sampling is su�cient for various de-
tection criteria including the maximum likelihood se-
quence estimation (MLSE) if the received signal is
passed through a matched �lter prior to sampling. Fol-
lowing on the theory developed for the case when the
channel is known, where symbol spaced discrete chan-
nel models are well-justi�ed, many blind equalization
algorithms [3, 4, 5] based on symbol rate samples have
appeared in the literature with no justi�cation for the
channel model. In contrast to the symbol spaced equal-
ization, there have been growing interest, in recent
times, in developing fractionally spaced blind equal-
ization algorithms [1, 2]. These equalizers work on
samples obtained at a rate higher than the symbol rate,
usually satisfying the Nyquist sampling criteria. Al-
though there is increase in the complexity of the A/D
converter, these equalizers o�er potentially signi�cant
advantages over the conventional symbol spaced equal-
izers in terms of lower timing phase sensitivity, reduced
noise enhancement, superior identi�cation strategies
by exploiting cyclostationary information. We show
here that such a fractionally spaced approach can have
additional signi�cant impacts on pre�lter design and
hence on blind equalization algorithms.

This paper addresses the discretization issues for
blind equalization algorithms and attempts to �ll the
gap between the received analog signal and the discrete
time samples used in the algorithm. The important
conclusions of this paper are:

� Symbol spaced blind equalizers are in general
sub-optimal due to the information lossy discret-
ization process. Hence it is di�cult to assess
the performance of these equalizers because the



discrete channel model may not be functionally
equivalent to the actual continuous time channel.

� In the context of fractionally spaced blind al-
gorithms, the analog pre�lter prior to discret-
ization can be a general low pass �lter and need
not be restricted to be matched to the overall
channel response or the input pulse as suggested
in [6].

� The 
exibility of the pre�lter can lead to dif-
ferent discrete time models with identical poten-
tial optimal performance. However, the perform-
ance might be di�erent for sub-optimal detection
strategies and, therefore, represents an import-
ant design consideration.

� The equalizer structure and the algorithm need
to be coupled to the choice of the pre�lter.
An example is a simpler whitening �lter design
which is necessary to implement several import-
ant blind algorithms, such as [2], proposed in the
literature.

2. CONVENTIONAL SYMBOL SPACED

RECEIVER

Consider a transmitted waveform

s(t) =
X
n

ang(t � nT )

where fang is the input data sequence, T is the symbol
interval and g(t) is the impulse response of the pulse
shaping �lter. As shown in Fig.1, the signal passes
through a channel c(t) and the received signal is

z(t) =
X
n

anh(t� nT ) + n(t)

where h(t) = c(t) 
 g(t) =
R
1

�1
c(� )g(t � � )d� is the

response of the channel to the input signal pulse g(t),
and is assumed to be of �nite length and �nite energy,
n(t) is additive white gaussian noise with power spec-
tral density N0=2. It is well known that [3] a matched
�lter having an impulse response f(t) = h

�(�t), where
`*' denotes complex conjugation, is the front end of a
receiver designed for optimum detection of the input
data sequence from symbol spaced samples of the sig-
nal z(t). The symbol rate samples fyng of the output
of the matched �lter are given by

yn = y(nT ) =

Z
1

�1

z(t)h�(t� nT )dt (1)

These samples fyng form a set of su�cient statistics
for various detection criteria including the MLSE and
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Figure 1: Block diagram showing part of a data com-
munication system

provide discrete time stationary samples as input to
the equalizer. As the noise is colored while passing
through the matched �lter, a noise whitening �lter may
be used to whiten the noise before feeding the samples
to an optimal detector such as the Viterbi Algorithm
[7].

3. PREFILTER FOR SYMBOL SPACED

BLIND EQUALIZERS

In the context of blind channel equalization, the chan-
nel is not known a priori and hence the matched �lter
cannot be implemented perfectly. Suppose we use an
arbitrary pre�lter f(t) and sample the signal at the
symbol rate. The signal just prior to discretization is,

y(t) = z(t) 
 f(t)

=
X
n

anx(t� nT ) + n(t) 
 f(t) (2)

where x(t) = h(t) 
 f(t) is the overall pulse response.
The symbol spaced samples, therefore, become

y(kT ) =
X
n

anx(kT � nT ) + n(t) 
 f(t) jt=kT : (3)

The blind channel equalization algorithms then work
on the samples y(kT ) to equalize the e�ective channel
x(�). It should be noted that the discretization (3) of
equation (2) is information lossy [7] if f(t) 6= h

�(�t)
and the performance of the equalizer becomes depend-
ent on the choice of f(t). As an example, consider a
zero-forcing linear equalizer. For communication sys-
tems with excess bandwidth, that is with nonzero fre-
quency components for jf j > 1

2T
, the equalizer must

have a transfer function

G(f) =
1P

l
H(f + l

T
)F (f + l

T
)

; jf j �
1

2T

The noise power at the output of the equalizer becomes
proportional to

Z 1

2T

�
1

2T

P
m
jF (f + m

T
)j2

j
P

l
H(f + l

T
)F (f + l

T
)j2

df: (4)



It is easy to see from (4) that the pre�lter frequency
response F (f) becomes dependent on the channel re-
sponse H(f) to achieve maximumSNR under the zero-
forcing condition. This dependence is because of the
overlap in the folded spectrum due to undersampling.
As a result, a sub-optimal choice of f(t) can result in
serious degradation of the performance of the equal-
izer. On the other hand, if this �lter is chosen to be
the matched �lter, the noise power at the output of
the equalizer becomes proportional to

Z 1

2T

�
1

2T

1P
l
jH(f + l

T
)j2

df

and the dependence on the pre�lter disappears. Since
this requires knowledge of the channel, therefore, it
is not feasible to rely on a matched �lter for blind
equalization.

4. PREFILTER FOR FRACTIONALLY

SPACED BLIND EQUALIZERS

In this section, we consider the pre�lter for fractionally
spaced blind equalizers. Assume that h(t) is band lim-
ited to jf j � 1

2T 0
, where T 0 = rT with r < 1, typically

r = 1
2
for systems with less than 100% excess band-

width. Since h(t) is bandlimited, using the sampling
theorem, we can write,

h(t) =
1X

m=�1

hmsinc(
1

T 0
(t �mT

0))

for a suitable choice of coe�cients fhmg. Therefore,
the matched �lter output samples fyng given by equa-
tion (1) can be written as

yn =

Z
1

�1

z(t)
1X

m=�1

h
�

m
sinc(

1

T 0
(t � nT �mT

0))

=
1X

m=�1

h
�

m

Z
1

�1

z(t)sinc(
1

T 0
(t � (

n

r
+m)T 0))dt

(5)

Let pm and qm be two arbitrary sequences such that

hm = pm 
 qm (6)

Using equation (6) in (5) we can write

yn =
X
k

p
�

k
[z(t) 
 q

�(�t)]
t=(n

r
+k)T 0 (7)

where

[z(t)
q�(�t)]
t=(n

r
+k)T 0 =

Z
1

�1

z(t)q�(t�(
n

r
+k)T 0))dt

(8)
and

q(t) =
1X

m=�1

qmsinc(
1

T 0
(t �mT

0))

is the bandlimited analog �lter corresponding to the
sequence qm satisfying (6). It is clear from (7) that
the Nyquist rate samples at rate 1

T
0
at the output of

the �lter f(t) = q
�(�t) can be used to generate the

su�cient statistics fyng. Hence, these samples them-
selves are su�cient statistics and the algorithm can
operate on these discrete time samples. Thus the front
end �lter f(t) can be a general �lter q�(�t) satisfying
(6). However, that �lter should not have nulls in the
bandwidth of interest.

Since the above result holds independent of
the equalizer structure employed, fractionally spaced
equalizers, therefore, can have an additional advantage
in terms of 
exibility of the pre�lter. The pre�lter can
now be coupled to the blind algorithm design problem
and can be exploited to �nd the best possible equal-
izer structure in terms of performance and complexity
of implementation.

5. EXAMPLE

We present here an example showing the realization of
a noise whitening �lter for fractionally spaced equal-
izers. If the pre�lter has zeros close to the unit circle,
the whitening �lter design may be di�cult to achieve,
and the white noise model as assumed in several blind
algorithms such as [2] may not be valid. We consider
two low-pass �lters, one of which has zeros very close
to the unit circle, and the other is a minimum phase
�lter with none of the zeros near the unit circle. We
have chosen a minimum phase �lter so that the com-
bination of the pre�lter and the noise whitening �lter
does not lead to additional all-pass �lter terms. We call
the two �lters as �lter 1 and �lter 2 respectively. The
frequency response of the �lters are shown in Fig.2.
Although the impulse response of the noise whitening
�lter corresponding to �lter 1 does not converge even
after hundreds of samples, �lter 2 does not give rise to
such problem. This can be observed from the impulse
response of the noise whitening �lter corresponding to
�lter 2 shown in Fig.3. Hence if �lter 1 happens to be
the pulse shaping �lter, we can prefer �lter 2 to �lter
1 for the pre�lter and thus realize the whitening �lter.
It is to be mentioned that we have not explored all
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Figure 2: Frequency response of the two �lters.
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Figure 3: Impulse response of the noise whitening �l-
ter.

the possible pre�lters to get the best solution for real-
izing the whitening �lter. Also, this example is not
exhaustive in terms of all the possible implications the
pre�lter can have for the design of blind equalization
algorithms.

6. CONCLUSION

In this paper we have shown that symbol spaced blind
equalization algorithms are sub-optimal due to the in-
formation lossy discretization process, and hence the
performance of these algorithms are di�cult to char-
acterize. To achieve optimality, these blind equalizers
must have a �lter matched to the overall unknown
channel impulse response prior to the sampler which

is not possible to realize. On the other hand, fraction-
ally spaced equalizers can have a more general pre�lter.
This can result in di�erent discrete time models with
identical potential optimal performance but with dif-
ferent possible implications with regard to the design
of blind algorithms. The equalizer structure and the
algorithm, therefore, cannot be decoupled from the
choice of the pre�lter. We have shown an example
of a whitening �lter design using this 
exibility. We
have not explored all the possible implications that
the choice of the pre�lter might have for the design of
the blind algorithms and, therefore, this needs further
investigation.
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