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ABSTRACT

Envelope-constrained �ltering is concerned with the de-
sign of a time-invariant �lter to process a given input sig-
nal such that the noiseless output of the �lter is guaran-
teed to lie within a prespeci�ed output mask. In this pa-
per, using Laguerre �lters andH1 optimization techniques,
the continuous-time envelope-constrained �lter design prob-
lem has been reformulated and solved as a constrained H1
model-matching problem. To illustrate the e�ectiveness of
the design method, a numerical example is presented which
deals with the design of an equalization �lter for a digital
transmission channel.

1. INTRODUCTION

Envelope-constrained (EC) �ltering is concerned with the
design of a linear time invariant (LTI) �lter U(s) with im-
pulse response u(t) to process a given input pulse s(t) which
is corrupted by zero mean white noise n(t), see Fig. 1(a).
The noiseless output  (t) is required to �t into a prespec-
i�ed pulse shape envelope de�ned by the lower and upper
boundaries "�(t) and "+(t) as shown in Fig. 1(b).
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Figure 1. Envelope-constrained �ltering problem: (a) Block
diagram. (b) Pulse shape envelope

Previously, the optimal EC �lter has been de�ned as the
�lter which minimizes the output noise power while satisfy-
ing the pulse shape constraints. It can be easily veri�ed that
the output noise power is proportional to the squared L2
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norm of the �lter. Hence the EC �ltering problem, denoted
as problem (P0), can be posed as

min kuk22 subject to "
�(t) �  (t) � "

+(t); 8 t 2 R+
where R+ = [0;1) and

kuk2 �
=

�Z 1

0

ju(t)j2dt
�1=2

;  (t) =

Z 1

0

s(� )u(t� �)d�:

Traditionally, problems of this type were often treated
by minimizing the mean-square di�erence between  and
some desired pulse shape. However, in many applications
this \soft" least-squares approach is unsatisfactory because
large narrow excursions from the desired shape occur and
the norm of the �lter can be large. It was argued in [3] that
the EC �ltering problem as de�ned above is more relevant
than the \soft" least-squares approach in a variety of signal
processing �elds such as robust antenna and �lter design
[1], communication channel equalization [2], [6], and pulse
compression in radar and sonar [8].
Although the EC �ltering problem was initially posed in

the continuous-time domain as a constrained L2 space op-
timization problem, only the discretized version has been
solved using various approaches, see, e.g., [3], [12], [14]. As-
sume that both the input signal and the impulse response of
the �lter to be designed are time-limited L2 space functions,
the solution to the discretized version EC �ltering problem
is an FIR �lter. Although FIR �lters are attractive due
to their simplicity, they general require a large number of
taps. Furthermore, the number of taps needed in general
turns out to be highly sensitive to sampling rate.
In this paper, we shall directly tackle the continuous time

EC �ltering problem by using continuous-time Laguerre se-
ries representation. Furthermore, instead of solving the con-
strained L2 minimization problem (P0), we shall seek to
design an LTI �lter U(s) such that its H1 norm, de�ned as
kUk1 = sup!2R jU(j!)j (see, e.g., [4]), is minimized sub-
ject to the same constraints. We shall demonstrate that the
use of Laguerre series representation and H1 norm o�ers a
more robust, low order alternative to FIR �lters. Further-
more, the solution procedure does not involve discretization
of either the �lter or the input signal.
The use of orthogonal functions such as Laguerre �lters

for signal representation and �lter synthesis is classical and
can be traced back to the 1930's (see [5] for a summary of
this early work), however, their application subject to time
domain envelope constraints have not yet been addressed.



The motivation for minimizing the H1 norm of the �lter
is as follows: In the EC �ltering problem (P0), the design
objective is to minimize the output noise power while forc-
ing the noiseless output response to �t into a prespeci�ed
output mask. The problem formulation depends on the as-
sumption that the additive noise n is white with known
constant spectral density. Even for a more general ap-
proach, the power spectral density function of the addi-
tive noise n has to be available for design. In practical
applications, information about the noise's power spectral
density is often limited. In this case, we may assume that
the noise spectral density, denoted as �N (!), is in a class
BN of spectra bounded by a known upper bound. That is,
BN = f�N : �N (!) � bN (!)g. It is easy to verify that the
output noise power due to the input noise n is given by

PN =
1

2�

Z 1

�1

�N (!)jU(j!)j2d!:

Assume that for any �N 2 BN its noise power satis�es

k�Nk �
= 1

2�

R1
�1

�(!)d! � 1 but otherwise unknown (Since

BN is a bounded set, this can be achieved through scaling).
It makes sense to design a �lter U(s) so that the output
noise power PN is minimized for the worst case input noise
in BN . That is, we seek to solve the following minimax
problem subject to the time domain constraint speci�ed in
problem (P0).

min
U

max
k�Nk�1

PN = min
U

max
k�Nk�1

1

2�

Z 1

�1

�N (!)jU(j!)j2d!:

It is known (see, e.g., [4]) that

kUk21 = max
k�Nk�1

1

2�

Z 1

�1

�N (!)jU(j!)j2d!:

Hence, minimizing the output noise power for the worst
case input noise is equivalent to designing a �lter U(s) with
minimumH1 norm. Therefore, in cases in which the input
signal is subject to random disturbance with unknown but
bounded power spectrum, the H1 optimization approach
should o�er a more robust design.

2. SUMMARY OF DESIGN RESULTS

Let L2(R+) denote the Hilbert space of all real-valued
Lebesgue measurable and square integrable functions f(t)
in R+. In [11] the time-domain Laguerre polynomials are
de�ned as

ln(t) =
et

n!

dn

dtn

�
e
�t
t
n
�
; n = 0; 1; 2; :::

For a given p > 0, the Laguerre functions with scale factor
p are de�ned as

�
p
n(t) =

p
2p e�ptln(2pt); n = 0; 1; 2; :::

It is known that the sequence f�pn(t)g forms a uniformly
bounded orthonormal basis for the Hilbert space L2(R+)
(cf. [7], [11]).

Let H2 denote the Hardy space which consists of all
complex-valued functions which are analytic and square in-
tegrable in the open right-half-plane with square integrable
boundary functions. The H2 space Laguerre functions are
de�ned as

�p
n(s) =

p
2p

s+ p

�
s� p

s+ p

�n

; n = 0; 1; 2; ::: (1)

The sequence f�p
n(s)g forms a uniformly bounded orthonor-

mal basis for the Hilbert space H2, see, [7].
Since Laguerre function sequence f�png forms an or-

thonormal basis of L2(R+), any u 2 L2(R+) can be ex-
panded as

u(t) =

1X
k=0

xn�
p
n(t) (2)

where xn =
R1
0
u(t)�n(t)dt (n = 0; 1; :::). Let U denote

the Laplace transform of u 2 L2(R+), then U 2 H2. Since
f�p

ng forms an orthonormal basis of H2, U can be expanded
as

U(s) =

1X
k=0

xn�
p
n(s) (3)

De�ne

uN (t) =

N�1X
n=0

xn�
p
n(t); UN (s) =

N�1X
n=0

xn�
p
n(s) (4)

Let us consider those �lters whose Laplace transforms are
stable real-rational transfer functions. The H1 EC �ltering
problem, denoted as problem (P), can be posed as

min kUk21 subject to "
�(t) �  N (t) � "

+(t); 8 t 2 R+

where

 N (t) =

Z 1

0

uN (� )s(t� � )d�:

To avoid the trivial solution U(s) = 0, assume that there
exists a t0 2 R+ such that "�(t0)"

+(t0) > 0. Furthermore,
let us assume that "+(t) � "�(t); t 2 R+ since the problem
has no solution otherwise.
By de�ning x = [x0; x1; x2; :::; xN�1]

T , it can be veri�ed
that the output  N (t) can be written as

 N (t) = '
T (t)x

where '(t) = [y0(t); y1(t); y2(t); :::; yN�1(t)]
T and yn(t) =R1

0
�pn(� )s(t� � )d� . It is clear that for a given input pulse

s(t), '(t) is a known vector-valued function. De�ne


N
�
= fx 2 RN : "�(t) � '

T (t)x � "
+(t); t 2 R+g (5)


N is a convex set which completely characterises the time-
domain constraint de�ned in the EC �ltering problem (P).



Through simple algebraic manipulation, the objective
function kUk21 can be written as

kUk21 = kRa �Xk21 (6)

where

Ra(s) =

N�1X
n=0

xN�n�1

p
2p

s� p

�
s+ p

s� p

�n

X(s) = �
1X
n=0

xN+n

p
2p

s+ p

�
s� p

s+ p

�n

:

Clearly, X(s) is stable and Ra(s) is antistable. For any
given x 2 RN , Ra(s) is a known real-rational transfer func-
tion. Let Wc = Wc(x), Wo = Wo(x) be, respectively,
the controllability and observability matrices of Ra(s) and
�i(Wc(x)Wo(x)) the ith eigenvalue of Wc(x)Wo(x). It is
known that kUk21 = maxi �i(Wc(x)Wo(x)) (cf. [4]). There-
fore, the minimization of the objective function de�ned in
(P) can be expressed as

minkUk21 = min
x

max
i
�i(Wc(x)Wo(x))

This is a minimax problem.
To sum up, the EC �ltering problem (P) can be recast

as the following constrained H1 model matching problem:
For any given integer N > 0, �nd a vector x 2 RN and a

stable transfer function X(s) such that

min
x2
N

min
X2RH1

kRa �Xk21 = min
x2
N

max
i
�i(Wc(x)Wo(x))

This constrained minimax problem can be solved using the
recently developed H1 model matching theory and convex
optimization techniques, see, e.g., [4], [10], [13].
Summarizing the above procedure in the form of an al-

gorithm, we have

Algorithm

Step 1: Solve minx2
N fmaxi �i(Wc(x)Wo(x))g to ob-
tain the minimizer x� = [x�0; x

�
1; x

�
2; :::; x

�
N�1]

T .
Step 2: Substitute x� into Ra; solve the unconstrained

model matching problem minX kRa �Xk1 to obtain X�.
Step 3: Construct U�(s) by setting U�(s) = UN(s) ��
s�p

s+p

�N
X�(s).

Remark:

(i) Clearly, the major task to solve the constrained H1
model-matching problem is to solve the equivalent minimax
problem

min
x2
N

max
i
�i(Wc(x)Wo(x))

Although this is a convex optimization problem de�ned on
a convex set (see, e.g. [10]), it is in general nondi�eren-
tiable. Special numerical techniques are needed to perform
the optimization task for large N . In [9] and [10] it is sug-
gested that the ellipsoid algorithm combined with vector
Lanczos procedure can be used to solve the minimax prob-
lem e�ciently. Alternatively, it can also be solved using
semide�nite programming techniques [13]. It is worth not-
ing that in many situations minimizing the Euclidean norm

of x or the trace of Wc(x)Wo(x) (which is much easier to
do) often yields a satisfactory suboptimal solution.
(ii) Note that the time-domain constraints are imposed

on  N instead of  . This means that, due to the add-
on term X(s), the output response  (t) of the �lter U(s)
to the given input signal s(t) could violates the envelope
constraints. However, by using Theorem 2.1 the constraint
violations can be made as small as desired by choosing N
su�ciently large. Also, if small increase of the �lter's H1
norm is permitted, the constraint violations can be con-
trolled by using pole placement techniques (see, [9], [10]).
(iii) From H1 model-matching theory we know (see [4])

that in general the order of the optimal �lter U�(s) is 2N .
Using existing model reduction techniques such as balanced
realization truncation or optimal Hankel-norm approxima-
tions, a lower order suboptimal �lter can be obtained for a
prespeci�ed level of small output constraint violation. This
will be illustrated in the simulation section.

Let us introduce the following notation: gn = O(fn)
means that there exists a constant C > 0 and an integer
N > 0 such that jgnj � Cjfnj for any n � N . The following
H1 approximation result can be established:

Theorem 2..1 Given an input signal s(t) 2 L2(R+), let
U�(s), with impulse response u�(t), denote the solution of

the following EC �ltering problem

min kUk21 subject to "
�(t) �  (t) � "

+(t); 8 t 2 R+ (7)

where

 (t) =

Z 1

0

s(� )u(t� �)d�:

If U� is a stable real-rational function, then there exists a

positive constant � < 1 such that

kU� � U
�
Nk1 = O(�N )

Furthermore, for any �1 > 0, �2 > 0, there exists an N0 > 0
such that for all N � N0,

kU�k1 � �1 � kU�Nk1 � kU�k1 + �1

"
�(t)� �2 �  

�
N (t) � "

+(t) + �2

Remark: Theorem 2.1 shows that UN converges to U ex-
ponentially fast. It also shows that the �rst Nth partial
sum UN can provide a good suboptimal solution to the H1
optimal EC �ltering problem (7).

3. NUMERICAL EXAMPLE

Let us now apply the method presented in previous section
to the design of an equalization �lter for a digital transmis-
sion channel consisting of a coaxial cable on which data is
transmitted according to the DX3 standard (see [2]). For
this �lter design problem, both the input signal (the im-
pulse response of a coaxial cable) and the output envelope
are given in continuous time domain. For computational
purpose, we shall discretize both the input signal and the
output mask (note that the approach presented in Section



2 does not require the discretization of either the input sig-
nal or the output mask). The design objective is to �nd
an equalizing �lter which takes a sampled impulse response
of a coaxial cable with a loss of 30dB at a normalized fre-
quency of 1/T as input and produces an output which lies
within the envelope given by the DSX-3 pulse template (cf.
[2]). To have a good representation of the input signal,
the sampling rate should be fast enough. In our numerical
studies, 1024 samples are used over the normalized time in-
terval of [0, 32T], i.e. the sampling period is T/32. The
simulation results are now summarized as follows: Apply-
ing the Algorithm of Section 2 to this �lter design problem,
we obtain a 12th order LTI �lter. Through model reduction
(using balanced truncation method), a 5th order LTI model
is obtained. Fig. 2 is the plot of the sampled input signal
and output response. The plot of magnitude spectra of the
input-output signals is shown in Fig. 3.
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Figure 2. Plot of the sampled time domain output signal
(solid line), input signal (dashedline), ,and the output mask
(dash-dotted lines).
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Figure 3. Magnitude spectrum plot of the output signal
(solid line) and the corresponding input signal (dashed line).

Remark: It is evident from Fig. 2 that the time domain
output signal �ts into the output mask. From a di�er-
ent perspective it is evident from Fig. 3 that equalization
in terms of designing a transfer function with a atter fre-
quency response has also been achieved. However, it can
be easily seen from Fig. 2 that part of the output signal at

certain points actually meets the output mask. This means
that any disturbance at the input of the channel or any �l-
ter implementation errors could cause the output to violate
the envelope constraint. The modi�cation of the proposed
algorithms to achieve a robust design with respect to time
domain constraints is a current topic of research.
Extensive simulations indicate that for the worst case in-

put noise (cf. [4]) the suboptimal H1 EC �lter can achieve
between 30 to 40 percent better performance than the same
order optimal L2 EC �lter in terms of output noise power
reduction.
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