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ABSTRACT

Information theoretic criteria for neural network adap-

tation laws have recently become an important focus of

attention. We consider the problem of adaptively max-

imizing the entropy of the outputs of a deterministic

feedforward neural network with real valued stochas-

tic input signals, as considered by Bell and Sejnowski.

We give a new explanation for the relevance of output

information (entropy) maximization for source separa-

tion applications and reinterpret Bell and Sejnowski's

approach in a more general context of probability den-

sity estimation. This insight is the basis for a gener-

alization of the approach, and we consider a family of

gradient based algorithms.

1. BLIND SOURCE SEPARATION,

INFORMATION MAXIMIZATION AND

PROBABILITY ESTIMATION

The problem of blind separation of independent sources

can be formulated as follows. A vector of n stationary

input signals x(t) 2 Rn is known to result from mixing

n stochastically independent sources s(t) 2 Rn :

x(t) = 	A(s(t));

where A parameterizes a family of invertible mixing

maps 	A, and t denotes continuous or discrete time.

Below we will mostly work in continuous-time terms.
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We will omit t when no confusion is possible. The prob-
lem is to reconstruct A and the original sources s from
the given input x (and the knowledge that the original

sources were independent). The sources s can at best

be reconstructed up to a permutation and scaling of the

signals. We will assume all signals to be zero mean.

If we consider linear mixtures only, we have x = As,
where A is a nonsingular n� n matrix. In general sec-

ond order statistics EfxxT g are not su�cient to re-

construct s (except if A is further constrained to be

orthogonal or triangular for instance). If more than

one source is Gaussian, they can be separated from

the others but cannot be reconstructed individually. If

apart from small \noise sources" there are only m < n
sources, one can �rst apply subspace estimation tech-

niques to reduce the problem to dimension m.

Bell and Sejnowski propose to separate linear mix-

tures with a one-layer invertible neural network, i.e. an

invertible linear transformation, followed by bounded,

monotonously increasing, nonlinear functions applied

to all outputs separately, and maximize the output

entropy[1]. They argue that this approximately min-

imizes the mutual information between di�erent out-

puts and therefore achieves independence. Below we

give a di�erent justi�cation. The following statements

are equivalent:

1. The input signals result from a linear mixture

of independent sources, with probability density

functions (pdf) psk(sk), k = 1; : : : ; n.

2. The input signals result from a "nonlinear mix-

ture" of independent "pre-sources" uk, uniform
on (0; 1), consisting of �rst a nonlinear trans-

formation c�1sk (uk) on all pre-sources separately

(yielding sk), followed by a linear mixing trans-

formation, where csk (s) =
R s
�1

psk (�)d� is the

cumulative density of sk.

3. The input signals can be transformed into a uni-



formly distributed signal on (0; 1)n by a one-layer
neural net with nonlinearities csk (:), playing the

role of inverse �lter in a reconstruction of the uni-

form pre-sources.

4. The input pdf belongs to a family of pdfs that

can be parameterized as the determinant of the

Jacobian (di�erential) of a one-layer neural net

with invertible weight matrix and nonlinearities

csk(:). The linear part of this net models the

linear mixture.

Let x(t) 2 R
n be a real-valued stochastic signal.

Let y(t) be the output of a one-layer neural network.

For the sake of generalization we consider a family of

invertible nonlinear maps, parameterized by a "weight

vector" w: y = �w(x). The third formulation above

justi�es adaptation of w as to maximize output entropy,

since the uniform distribution on (0; 1)n has maximal

entropy. Bell and Sejnowski propose to maximize the

output entropy

Ef� ln py(y)g = Ef� ln px(x)g+Efln j det d�w
dx

jg,

where px and py denote the pdfs of x and y. The �rst
term is independent of w and can be dropped, leading

to an objective function

F (w) = Efln j det(d�w
dx

(x))jg.

The fourth formulation is explained as follows. If the

map �w transforms x into uniformly distributed sig-

nals on (0; 1)n, we have py(y) = px(x)=j det
d�w
dx

j = 1

and px(x) = j det d�w
dx

j. Now, we can look at the prob-

lem as a probability density estimation problem and

parameterize the pdf estimate as qw(x) = det kd�w
dx

k.

This way, w parameterizes the density of the signal

that would be obtained by applying the inverse trans-

formation ��1w to uniformly distributed signals. A clas-

sical estimation procedure consists in minimizing the

Kullback-Leibler distance Efln(px(x)=qw(x))g between
the real and the estimated distribution, or equivalently

maximizing Efln qw(x)g. This yields exactly the same

objective function F (w) as above.

2. APPLICATIONS

The above interpretation leads to several generaliza-

tions, both in the context of probability density esti-

mation and in the context of source separation. The

main di�erence between these two types of problems is

that for source separation applications it is important

to reach the global maximum as one is interested in the

parameters that correspond to the solution of the op-

timization problem. On the other hand, if one is only

interested in a good approximation of the probability

density, a local maximum can be a good solution too.

In the next section we will derive gradient algo-

rithms for the case where the map �w is a composition

of linear transformations with positive determinant and

nonlinear, elementwise monotonously increasing trans-

formations (with positive diagonal Jacobian). In this

section we consider di�erent applications.

The case of a linear transformation, followed by a

�xed nonlinear transformation corresponds to the one-

layer neural network as considered by Bell and Se-

jnowski. Algorithms for this case can be used for source

separation. If the pdf of the sources is known, the �xed

nonlinearities should be taken equal to the cumulative

density functions of the sources. Optimality conditions

give strong necessary conditions for independence of

the reconstructed sources. Simulations show good re-

sults for nonlinearities that don't exactly match the

inequalities. Cardoso and Laheld show for a related al-

gorithm that the separating solution is attractive under

an inequality condition involving nonlinear moments of

the input signals, which is satis�ed in many practical

applications[2].

One can also work with adaptable nonlinearities pa-

rameterized by a small number of parameters. One

way to achieve such modeling is by considering fam-

ilies of nonlinearities parameterized by extra parame-

ters. Another way consists in replacing the nonlinear

transformation, by a sequence of linear and nonlinear

elementwise transformations, where the linear trans-

formations are diagonal. The latter idea can also be

generalized to the case of block diagonal layers instead

of diagonal layers. We can think of this case as the

separation of vector sources. The �rst linear transfor-

mation can be thought of as separating a mixture while

the diagonal linear transformations and the nonlinear

transformations model the probability distributions of

the sources. The adaptation of the source density mod-

els could adapt on a slower time scale, as to prevent fast

adaptation to output signals when the mixture is still

far from the separating mixture. Simulations with this

setting have not yet been carried out.

An alternation of full linear maps with positive de-

terminant (implying an equal number of nodes in every

layer) and elementwise monotonously increasing non-

linear maps, where only the last layer of nonlinear func-

tions has to map the signals into (0; 1)n, results in

a multilayer perceptron. In this case, the interpreta-

tion as a source separation algorithm is less appealing.

The algorithm can be considered to separate nonlinear

mixtures of sources, but only if the unknown nonlin-

ear mixture is known to belong to the family of maps

that result from inverting such perceptrons with exclu-



sion of the last layer of nonlinear functions (by analogy

with argument of the previous section). However, this

objection does not apply to applications in probabil-

ity estimation and we believe that the presented way

of parameterizing pdfs as the determinant of the Jaco-

bian of a neural network type transformation, may be

advantageous in di�erent applications where pdfs are

now often directly parameterized as a neural network.

3. GRADIENT ALGORITHMS

In this section we consider gradients of the objective

function, which can form the basis for di�erent opti-

mization strategies. As the objective function is the

expectation of a random variable, this is also the case

for the gradient. Stochastic gradient algorithms are ob-

tained by instantaneously estimating the gradient with

the current sample of x, that is by omitting the expec-

tation operator.

If the map �w(x) is a composition of maps � =

�
(n)

w(n) � � � � � �
(1)

w(1) , the objective function F (w) falls

apart into a sum of terms. Let y(0) = x and y(i) =

�(i)(y(i�1)), then

F (w) =
Pn

i=1 F
(i)(w)

=
Pn

i=1 Efln j det(
d�

(i)

w
(i)

dy(i�1) (y
(i�1)))jg:

We will consider maps �
(i)

w(i) that are either linear,

�
(i)

W (i) = W (i)y(i�1) with detW (i) > 0, or elementwise

nonlinear and monotonously increasing, �
(i)

k (y(i�1)) =

fk(y
(i�1)

k ), where fk, k = 1; : : : ; n, are n monotonously

increasing functions from R to (0; 1). That is, �(i) has

a positive diagonal Jacobian matrix

J (i)(y(i�1)) = d�(i)=dy(i�1)

= diag(f 01(y
(i�1)
1 ); : : : ; f 0n(y

(i�1)
n ));

where 0 denotes the derivative, and the subscript k in-

dicates the k-th component. With every linear map

�(i) corresponds a term F (i)(W ) = ln detW (i). With a

nonlinear map corresponds a term ln det d�(i)=dy(i�1)

=
P

ln f 0k(y
(i�1)

k ).

First consider the case of a one-layer neural net-

work, with �xed nonlinearities . Let y(1) = �(1)(x) =
Wx with detW > 0 and y = y(2) = �(2)(y(1)) where

�
(2)

k (y(1)) = fk(y
(1)

k ).

The objective function F (W ) is now

F (W ) =
Pn

k=1 Efln f
0

k(y
(1)

k )g+ ln detW .

Bell and Sejnowski[1] �nd a gradient

rF (W ) = Efh(y(1))xT +W�T g,

where h is an elementwise nonlinear function, de�ned

by hk(y
(1)

k ) = f 00k (y
(1))=f 0k(y

(1)). The vector h(y(1)) is

the gradient of
Pn

k=1 ln f
0(y

(1)

k ) as a function of y(1). If
fk(:) = tanh(:) one �nds hk(:) = �2 tanh(:). The sec-

ond term in the objective function, ln detW , gives rise

to the term W�T in the gradient, which is responsible

for much of the computational cost and complicates

parallel realization.

However, a simpler gradient can be obtained by

working with a di�erent inner product. We will use

the de�ning property that rF (w) is the gradient of

F if any velocity dw
ds

at w (i.e. considering any path

through w) results in a corresponding change dF=ds =
hrF (w); dw=dsi. This de�nition is easily generalized

for w belonging to a di�erentiable Riemannian mani-

fold, by requiring rF to be a tangent vector at w.

The above result can then be written as

d
ds
F (W ) = Tr(( d

ds
W )TEfh(y(1))xT +W�T g).

Now, it pays to parameterize velocity vectors (i.e. tan-

gent vectors) at W as d
ds
W = KW , and work with

the standard inner product as applied to the param-

eters K instead of the vector KW : hK1W;K2W i =

Tr(KT
1 K2). One �nds

d
ds
F (W ) = Tr(W TKTEfh(y(1))xT +W�T g)

= Tr(KTEfh(y(1))y(1)
T

+ I)g;

(using Tr(AB) = Tr(BA)). Therefore, with this inner

product, one �nds

rF (W ) = Ef(h(y(1))y(1)
T

+ I)Wg.

One can also work with hWK1;WK2i = Tr(KT
1 K2),

yielding

rF (W ) = EfW (W Th(y(1))xT + I)g.

Parameterizing d
ds
W as d

ds
W = KW or d

ds
W =

WK corresponds to considering �rst order perturba-

tions ~W = (I+�K)W+o(�2) or ~W =W (I+�K)+o(�2),
rather than additive perturbations. This can be intu-

itively interpreted as inserting an in�nitesimal linear

�lter, before or after W . This is closely related to the

idea of serial updating [2].

This approach can be generalized to the case where

W is constrained to belong to a Lie group or when W
is parameterized as a product of matrices that belong

to Lie groups. For instance if one considers W to be

constrained to the group of matrices with determinant

1 (to simplify the cost function), one should simply

constrain K to belong to the corresponding Lie Alge-

bra of traceless matrices. Similarly, if W belongs to

the group of orthogonal matrices, K should be skew

symmetric. If W is triangular with unit diagonal, K



should be strictly triangular. If W is block diagonal

(and invertible), K should be block diagonal.

Imposing constraints on W is meaningful in linear

blind source separation applications in view of the fact

that the sources, if their densities are unknown, can

only be reconstructed up to a scaling (and a permu-

tation). Alternatively, one can reparameterize W to

separate the scaling from the real separation. As an

example, parameterization of W as DLQ with D di-

agonal, L lower triangular with unit diagonal and Q
orthogonal (with determinant 1), is a way to separate

the scaling of the sources byD (which can be thought of

as source density modeling) and the separation of the

sources, and replacing the term ln detW in the cost

function, by the simpler term ln detD, since both L
and Q have determinant 1. Also, if the sources are

known to be spatially white, W can be constrained to

be an orthogonal matrix.

Next, we consider multilayer neural networks, with

�xed nonlinearities. For the sake of clarity we focus

on a two-layer network. Let y(1) = �(1)(x) = W (1)x,

y
(2)

k = �
(2)

k (y(1)) = f
(2)

k (y
(1)

k ), y(3) = �(3)(y(2)) =

W (3)y(2) and yk = y
(4)

k = �
(4)

k (y(3)) = f
(4)

k (y
(3)

k ) The

objective function F (W ) is now

F (w) =
Pn

k=1 Efln f
(4)0

k (y
(3)

k )g+ ln detW (3).

+
Pn

k=1 Efln f
(2)0

k (y
(1)

k )g+ ln detW (1).

(where w = (W (1);W (3))). If we parameterize again
d
ds
W (1) asK(1)W (1) and d

ds
W (3) asK(3)W (3), the deri-

vation is similar to the one above. The main di�erence

is the in
uence of the d
ds
W (1) = KW (1) on the term

Pn

k=1Efln f
(4)0

k (y
(3)

k )g through y
(3)

k =W (3)�(2)(W (1)x),
yielding

d
ds

Pn

k=1 Efln f
(4)0

k (y
(3)

k )g

= Ef(h(4)(y(3)))T d
ds
y
(3)

k g

= Ef(h(4)(y(3)))TW (3)J (2)(y(1))dW
(1)

ds
xg

= Tr(K(1)TEfJ (2)(y(1))W (3)Th(4)(y(3))(W (1)x)T g);

where J (2)(y(1)) denotes the Jacobian d�(2)

dy(1)
(y(1)) as

above.

This yields the following (partial) gradients of the

total objective function as a function ofW (1) andW (2)

(together forming the gradient of F (w)).

rW (1)F (w) =

Ef([h(2)(y(1)) + J (2)(y(1))W (3)Th(4)(y(3))]y(1)
T

+ I)

W (1)g

rW (3)F (w) = Ef(h(4)(y(3))y(3)
T

+ I)W (3)g:

Except for the choice of the inner product and extra

terms due to costs of the type ln detW (i), this deriva-

tion is equivalent to backpropagation schemes. The

given formulas can easily be extended to more than

two layers.

Generalization to the case of adaptable nonlinear-

ities is straightforward. The case where the nonlinear

maps are replaced by an alternation of diagonal lin-

ear maps and nonlinear maps, is a special case of the

above. If the �xed nonlinear functions are f (i)(:) are re-

placed f
(i)

w(i)(:) parameterized by w(i), the maps h(:) and

J(:), in the formulas for the partial gradients for W (1)

and W (3), become also dependent on the parameters,

and the extra partial gradients for the extra parame-

ters take the form rw(i)F (w) =
@f

(i)

w
(i)

@w(i) (y
(i�1)). (Note

that fw(i) itself is not needed and need not be easily

computable).

4. CONCLUSION

We have considered the problem of adaptively maxi-

mizing the entropy of the outputs of a deterministic

feedforward neural network with real valued stochastic

input signals, and derived di�erent gradient algorithms

that can be used for source separation and probability

estimation.
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