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ABSTRACT

The paper presents a quick and simpli�ed aggregation

method for a large class of Markov chain functionals

based on the concept of stochastic complementation.

Aggregation results in a reduction in the number of

Markov states by grouping them into a smaller num-

ber of aggregated states, thereby producing a consid-

erable saving on computational complexity associated

with maximum likelihood parameter and state estima-

tion for hidden Markov models. The importance of the

proposed aggregation method stems from the ease with

which Markov chains with a large number of states can

be aggregated. Three Markov chain functionals which

have widespread use are considered to illustrate the ap-

plication of our aggregation method.

1. INTRODUCTION

The computational complexity for maximum likelihood

(ML) estimation of hidden Markov models (HMMs) [1]

is proportional to the square of the number of Markov

states, which rules out the implementation of ML esti-

mators in many practical applications where the num-

ber of Markov states is large. One way of reducing the

computational cost is to aggregate the Markov chain

by grouping the states into a smaller number of ag-

gregated states. In this paper we consider the use of

stochastic complementation [2] for aggregating a cer-

tain class of Markov chain functionals which are shown

to have a special \invariance" property making their

aggregation trivial.

Apart from certain special cases where the Markov

chain is \exactly lumpable" [3], aggregation generally

results in an approximation to the original Markov chain.

Stochastic complementation meets the requirement of

exact steady state aggregation and, in addition, has
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several important properties: (i) the resulting aggre-

gated matrix is stochastic and is irreducible if the orig-

inal transition matrix is irreducible, (ii) for a certain

class of Markov chains known as nearly completely de-

composable Markov chains (NCDMCs) [2] stochastic

complementation is an accurate approximation for the

state probabilities at any time k.

The Simon-Ando theory for nearly completely de-

composable chains [4] provides the theoretical basis for

most aggregation techniques. In [5] the Simon-Ando

theory has been applied to numerical aspects of queue-

ing networks. The aggregation method developed in [5]

is not exact in that it produces only an approximation

to the stationary probability distribution of the unag-

gregated chain.

To begin with, we present our main aggregation re-

sult and state the conditions for its validity. Section 3

presents a number of Markov chain functionals which

can be aggregated by our quick aggregation method.

Section 4 demonstrates an application of the quick ag-

gregation method to parameter estimation.

2. MAIN RESULT

Let us assume that fx(k)g, k 2 Z+, is an N -state, ho-

mogeneous, irreducible Markov chain with state space

fe1; e2; : : : ; eNg where ei is the N�1 unit column vec-

tor of RN with one in its ith entry and zero elsewhere.

Let P denote the N �N transition probability matrix

with its (i; j)th entry given by pij = Prfx(k + 1) =

ej j x(k) = eig and
PN

j=1 pi;j = 1, 8i 2 f1; : : : ; Ng
(i.e. P is a stochastic matrix). Assume that P has the

following K-level partition

P =

26664
P 11 P 12 � � � P 1K

P 21 P 22 � � � P 2K

...
...

. . .
...

PK1 PK2 � � � PKK

37775
N�N

(1)



where all diagonal blocks P ii are square matrices of

size Ni � Ni such that
PK

i=1Ni = N . The following

theorem formally states our main result.

Theorem 1. Let P be an N�N irreducible stochastic

matrix with a K-level partition as in (1). If the matrix

partitions P ij satisfy the following condition

P ij1Nj
= nij1Ni

8i; j 2 f1; : : : ;Kg (2)

where 0 < nij < 1 and 1Ni
is the Ni� 1 column vector

of ones, then the K-level aggregation of P is given by

C =

26664
n11 n12 � � � n1K
n21 n22 � � � n2K
...

...
. . .

...

nK1 nK2 � � � nKK

37775
which is an exact aggregation of P in that the station-

ary (steady state) distribution of P can be recovered

exactly from C.

Proof. Stochastic complements of P ii are given by [2]

Sii = P ii+P i�(I�P i)
�1P �i where P i is the principal

block submatrix of P obtained by deleting the ith row

and ith column of blocks from P , P i� is the ith row of

blocks with P ii removed, and P �i is the ith column of

blocks with P ii removed.

The (i; j)th entry of the K�K aggregation matrix

(or the coupling matrix) C is given by [2]

cij = sTi P ij1Nj
; i; j 2 f1; : : : ;Kg (3)

where si = [si1; : : : ; siNi
]T is the Ni � 1 unique sta-

tionary distribution vector for the Ni � Ni stochastic

complement Sii. The vector si, which is the Perron-

Frobenius eigenvector of Sii, is de�ned by sTi Sii = sTi ,

sij > 0 and
PNi

j=1 sij = 1. If (2) holds, (3) reduces to

cij = nijs
T
i 1Ni

= nij since s
T
i 1Ni

= 1.

An important consequence of Theorem 1 is that if

(2) holds, the aggregation matrix C can be obtained

directly from P without having to compute stochas-

tic complements Sii and their stationary distribution

vectors.

3. EXAMPLES OF MARKOV CHAIN

FUNCTIONALS

We now apply Theorem 1 to three examples of Markov

chain functionals for which (2) is readily satis�ed. The

examples are in no way arti�cial as they cover a wide

range of applications in signal processing and telecom-

munications.

3.1. FIR Filtered Markov Chains

In many telecommunications problems, �ltered Markov

chains naturally arise as a result of channel coding and

linear channel characteristics (see e.g. [6]).

Suppose that a K-state Markov chain u(k) with

state space fe1; : : : ; eKg (ei is the K � 1 unit column

vector), transition probability matrix

A =

26664
a11 a12 � � � a1K
a21 a22 � � � a2K
...

...
. . .

...

aK1 aK2 � � � aKK

37775
and levels g = [g1; : : : ; gK ]

T is passed through an FIR

�lter of length L H(z) =
PL�1

i=0 hiz
�i. Denote the im-

pulse response of H(z) by h = [h0; : : : ; hL�1]. The

process X(k) = [u(k);u(k � 1); : : : ;u(k � L + 1)]T

associated with the output of the FIR �lter is also a

Markov chain with N = KL states and state space

fE1; : : : ;ENg where Ei = [ei1 ; ei2 ; : : : ; eiL ]K�L with

i 2 f1; : : : ; Ng and i1; : : : ; iL 2 f1; : : : ;Kg. The tran-
sition probabilities of X(k) are

pij = PrfX(k + 1) = Ej jX(k) = Eig

= Prfu(k + 1) = ej1 ; : : : ;u(k � L+ 2) = ejL j

u(k) = ei1 ; : : : ;u(k � L+ 1) = eiLg

= Prfu(k + 1) = ej1 j u(k) = ei1g�(j2 � i1)

� � � �(jL � iL�1)

= ai1j1�(j2 � i1) � � � �(jL � iL�1)

(4)

for i; j 2 f1; : : : ; Ng, where �(�) is the Kronecker delta

function.

The levels of the �ltered Markov chain are given by

the functional

y(k) = h
T
XT (k)g =

L�1X
i=0

hihg;u(k � i)i (5)

where h�; �i denotes inner product.
The transition probability matrixP ofX(k), whose

entries are given by (4), can be written as follows after

an appropriate permutation of the states:

eP =

26664
eP 11

eP 12 � � � eP 1KeP 21
eP 22 � � � eP 2K

...
...

. . .
...ePK1

ePK2 � � � ePKK

37775
N�N

where theK-level partitions are eP ij = [0p�q ;Aij ;0p�r]

with 0m�n denoting the m � n matrix of zeros, p =



KL�1, q = i� 1, r = KL�1 �KL�2 � i+ 1, and

Aij =

264aij1K 0
. . .

0 aij1K

375
KL�1�KL�2

; L � 2:

It is easy to see that the blocks eP ij satisfy (2) with

cij = aij . Thus the K-level aggregation of y(k) in (5)

is given by the transition C = A, whether or not A

itself can be partitioned in accordance with (2).

3.2. Binary Operations on Independent Markov

Chains

In various signal processing problems such as pulse

train de-interleaving and biological signal analysis [7],

the signal of interest can often be modelled as the sum

or product of independent Markov chains.

Let us assume that a given Markov chain is made

up of L statistically independent Ki-state, homoge-

neous, irreducible, constituent Markov chains u(i)(k),

i = 1; 2; : : : ; L. The chain u(i)(k) has state space fe
(i)
1 ;

: : : ; e
(i)

Ki
g, transition probability matrix A(i) and levels

g(i) = [g
(i)
1 ; : : : ; g

(i)

Ki
]T . Obviously, the process x(k) =

[u(1)(k)T ; : : : ;u(L)(k)T ] associated with a binary op-

eration on the chains is also a Markov chain with N =QL

i=1Ki states and the N � N transition probability

matrix

P = A(1) 
A(2) 
 � � � 
A(L) (6)

where 
 denotes the Kronecker product.

The sum of chains u(i)(k) is given by the func-

tional ys(k) =
PL

i=1hg
(i);u(i)(k)i and the product by

yp(k) =
QL

i=1

�
g(i)
�T
u(i)(k). We note that the transi-

tion probability matrix P in (6) associated with ys(k)

and yp(k) can be rewritten as

P = A(1) 
B

=

266664
a
(1)
11 B a

(1)
12 B � � � a

(1)

1K1
B

a
(1)
21 B a

(1)
22 B � � � a

(1)

2K1
B

...
...

. . .
...

a
(1)

K11
B a

(1)

K12
B � � � a

(1)

K1K1
B

377775
(7)

where B = A(2) 
 � � � 
 A(L) is a stochastic matrix.

The transition probability matrix in (7) can now be

aggregated intoK1 levels with block partitions given by

P ij = a
(1)

ij B. In this case the condition (2) is satis�ed

with nij = a
(1)
ij or C = A(1). The states of x(k) can be

re-labelled so as to change the order of matrices A(i)

in the Kronecker product in (6).

3.3. Markov Modulated Markov Chains

Markov modulated Markov chains (MMMCs) arise in

the context of binary time series. Speci�cally, MMMCs

can be used to model 1-bit quantised Markov modu-

lated autoregressive (AR) time series with applications

in pulse train de-interleaving [8].

An MMMC is de�ned as a Markov chain whose

transition probabilities are determined by the states

of another independent Markov chain. Assume that

u(1)(k) is aK1-state Markov chain with transition prob-

ability matrixA(1) and u(2)(k) is aK2-state condition-

ally Markov chain (conditioned on u(1)(k)). In this case

the MMMC is de�ned by x(k) =

�
u(1)(k)

u(2)(k)

�
. Using the

usual state space de�nition, the transition probabilities

of x(k) are given by

Pr
n
x(k + 1) =

"
e
(1)
j

e
(2)
n

# ���x(k) = "e(1)i

e
(2)
m

#o
= Pr

�
u(1)(k + 1) = ej j u

(1)(k) = ei
	

� Pr
�
u(2)(k + 1) = en j u

(2)(k) = em;

u(1)(k + 1) = ej
	

= a
(1)
ij vjmn

whence, upon appropriate labelling of the states, the

transition probability matrix P of x(k) can be written

as

P =

266664
a
(1)
11 V 1 a

(1)
12 V 2 � � � a

(1)

1K1
V K1

a
(1)
21 V 1 a

(1)
22 V 2 � � � a

(1)

2K1
V K1

...
...

. . .
...

a
(1)

K11
V 1 a

(1)

K12
V 2 � � � a

(1)

K1K1
V K1

377775
where

V i =

26664
vi11 vi12 � � � vi1K2

vi21 vi22 � � � vi2K2

...
...

. . .
...

viK21 viK22 � � � viK2K2

37775 ; i = 1; : : : ;K1:

It is easy to show that V i is a stochastic matrix. Then

the K1-level partitions of P given by P ij = a
(1)
ij V j

can be immediately seen to satisfy (2), resulting in the

aggregated transition probability matrix C = A(1).

4. APPLICATION OF AGGREGATION TO

NCDMCS

Suppose that a four-level NCDMC u(k), k 2 Z+, with

state space fe1; : : : ; e4g and levels g = [1; 2; 3; 4]T is



observed in zero-mean white Gaussian noise with vari-

ance �2n = 0:5. The transition probability matrix of

the chain is

P =

2664
0:900 0:050 0:020 0:030

0:650 0:300 0:010 0:040

0:015 0:015 0:800 0:170

0:020 0:010 0:400 0:570

3775 :
The observations are given by s(k) = hg;u(k)i+ n(k).

The probability density function of the observations

given the levels is

bi
�
s(k)

�
=

1p
2��2n

exp

 
�

�
s(k)� gi

�2
2�2n

!
; 1 � i � 4:

We wish to estimate the levels of the Markov chain and

the noise variance �2n. To do so, we �rstly aggregate

the �ltered chain using (2)

C =

�
0:950 0:050

0:030 0:970

�
:

The probability density function of aggregated levels in

noise is given by [9]

ebi�s(k)� = X
j2Si

�jbj
�
s(k)

�
=�i; i = 1; 2

where S1 = f1; 2g, S2 = f3; 4g, and � = [�1; : : : ; �8]
T

and � = [�1; �2]
T are the stationary distribution vectors

for the transition probability matrix P and C, respec-

tively.

Given the observation sequence fs(1); : : : ; s(T )g, the
likelihood for the aggregated chain can be computed

using the forward part of the forward-backward algo-

rithm [1]:

�1(j) = �jebj�s(1)�
�k+1(j) =

 
2X
i=1

�k(i)cij

!ebj�s(k + 1)
�

for j = 1; 2 and k = 1; : : : ; T � 1, where we used � as

the initial probability distribution for C.

The likelihood function is given by L(�) = �T (1) +

�T (2) where � = [g; �2n]
T . An ML estimate of � for

the reduced chain is obtained from b� = argmax� L(�).

In a simulation experiment, we have generated a 1000-

point sequence fs(1); : : : ; s(1000)g and computed L(�).
An o�-line simplex maximisation algorithm yielded the

estimates b� = [1:0263; 2:2395; 3:0685; 3:8470; 0:5494]T :

5. CONCLUSION

We have presented a class of Markov chain function-

als for which stochastic complementation based aggre-

gation can be achieved in an e�ortless manner. The

multitude and generality of such Markov chain func-

tionals points to the potential bene�t of the simpli�ed

aggregation method. As an application, the parameter

estimation of an NCDMC in white Gaussian noise was

considered.
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