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ABSTRACT

This paper introduces the latest advances in research at
ATR on speech translation for spontaneous conversations,
especially focusing on speech recognition e�orts. For recog-
nition, we employ a word search technique that generates
moderate sized word graphs in real-time. To cope with a
variety in length of utterances, e.g., word, phrase, sentence
fragment, sentence, and concatenated sentences in sponta-
neous speech, we have adopted a two pass search strategy
that uses variable-order word n-gram statistics in the �rst
stage and task dependent language constraints in the sec-
ond stage. This strategy is evaluated using the \ATRTravel
Arrangement" corpus.

1. INTRODUCTION

Currently, a next-generation speech translation system that
aims for natural trans-language communication is under de-
velopment at ATR. This system recognizes Japanese con-
versational speech, translates it into English, German and
Korean, and outputs synthesized speech for each language.
To cope with spontaneous speech phenomena such as �lled
pauses, hesitations and corrections, a large number of word
(sentence) hypotheses have to be considered during the
speech recognition process. Since the conventional CFG
based one-pass search strategy (HMM-LR) adopted in our
previous speech translation system (ASURA) [1], required
much computation to manage both the acoustic state and
syntactic state, especially for long sentences or ill-formed
sentences, a recognition scheme using word graphs has been
applied in our new speech recognition system.
In Section 2, the target domain of our speech transla-

tion research and characteristics of the data collected are
described. In Section 3, the con�guration of the speech-
translation system, which adopts a word graph as an inter-
face between speech processing and linguistic processing, is
described. Next, in Sections 4 and 5, a recognizer overview
and the method for fast word graph generation are given.
Finally, we present current experimental results obtained
using the \ATR Travel Arrangement" corpus.

2. TRAVEL ARRANGEMENT TASK

At ATR, a speech-translation system is under development
using the \ATR Travel Arrangement" corpus [2, 3]. This
task provides an image of a useful application for people
who have felt a real need for automatic speech translation

on some occasions, such as when conversing with a travel
agent or hotel sta� in a foreign country.
The database used for speech recognition research is com-

posed of two parts: an integrated speech and language
database (bilingual) and a speech database (monolingual).
The integrated speech and language database includes con-
versations that take place between native Japanese and En-
glish speakers through human interpreters. This database
has been designed for a moderate degree of spontaneity and
a fairly large-sized (-104) vocabulary. The speech database,
on the other hand, is designed to cover speaker variations
and high spontaneity.
Table 1 and Figure 1 show the database size used for de-

veloping the speech recognizer (English data is shown for
reference) and vocabulary growth of the bilingual database,
respectively. The vocabulary size for 150,000 spoken words
is 5,405 (English) and 4,526 (Japanese), compared to 2,000
(English) for the \Scheduling Task", which has been col-
lected at CMU for spontaneous speech translation research
[4]. It is interesting that the \Hotel Reservation Task",
which is a subset of the \Travel Arrangement Task" and
accounts for 19% of the conversations, requires a larger vo-
cabulary than the \Scheduling Task" of CMU.
The characteristics for spontaneous Japanese speech are

listed in Table 2. The spontaneity of the bilingual speech
data has been a�ected by constraints associated with speak-
ing through interpreters.

Table 1. Size of database used for system develop-
ment

dialogues words speakers

Japanese

(bilingual) 618 240,522 52

(monolingual) 228 74,533 143

English

(bilingual) 618 202,746 -

Table 2. Number of �lled pauses, corrections and
false starts per utterance (Japanese customer utter-
ance only)

�lled pauses corrections,

false starts

bilingual 0.29 0.006

monolingual 0.46 0.039
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Figure 1. Comparison of vocabulary growth be-
tween English and Japanese (bilingual database)

3. SYSTEM OVERVIEW

The current speech translation system consists of 1) a spon-
taneous continuous speech recognizer that generates a com-
pact word graph (ATRSPREC) [5], 2) a transfer-driven ma-
chine translator that uses high-speed translation-example
retrieval and incremental parsing (TDMT) [6], 3) a multi-
lingual speech re-sequencing synthesis system (CHATR) [7],
and 4) a lattice rescoring and sub-lattice generation proce-
dure, which supplies a word graph with reasonable size to
be processed in the translation stage. In all of these four
components, statistical methods are employed to cope with
the huge number of word hypotheses resulting from highly
coarticulated spontaneous speech and di�erences in speak-
ing conditions between training and testing. A word graph
data structure has been adopted as an interface between
speech processing and linguistic processing to transfer mul-
tiple sentence hypotheses in a compact form (Figure 2).

The word graph format is based on the Standard Lattice
Format in HTK version 2.0 (SLF), enhanced in a number of
ways to deal with online speech translation. For example,
allowing multiple graphs in a stream, outputting absolute
time (wall clock time) at the start of the utterance to im-
plement a multi-modal speech interface, emitting a �nite
state automaton (FSA) node label for the simultaneous use
of FSA and n-gram, discriminating between phonetically
identical words (homonyms), and outputting the acoustic
model name (when multiple competing acoustic models are
used) to synthesize translated speech using speaker charac-
teristics as close as possible to the input speaker.

4. RECOGNIZER OVERVIEW

In continuous speech recognition, especially during a fast
search for real-time implementation, reducing the number
of word (sentence) hypotheses is a crucial issue. To reduce
both the processing time and the time delay between the
end of an utterance and the recognition result output, most
of the computation in our multi-pass approach is concen-
trated in the �rst pass. Precise acoustic models and lan-
guage models are applied in the �rst pass, and a language
score is re-evaluated to reduce the overall graph size in the
second pass.
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Figure 2. Current con�guration of the ATR speech
translation system

Acoustic model: The acoustic model is a state shared
phoneme HMM (HMnet), which is a contextual dependent
model with a small number of parameters generated by us-
ing the maximum likelihood-based successive state splitting
(ML-SSS) algorithm [8]. To quickly adapt parameters us-
ing a small amount of input speech (by balancing the reli-
ability of original parameters in existing models and newly
estimated parameters), MAP-VFS speaker adaptation [9] is
applied.
Language model: The language model is a variable-order
n-gram that provides reliable statistical constraints from a
given language corpus with fewer parameters than conven-
tional n-grams. A variable-order n-gram language model is
generated using a word-class splitting and consecutive word
grouping algorithm [10].
Lexicon: The lexicon is represented phonemically using
a set of 26 phonemes and allows multiple pronunciations.
The lexicon includes both prede�ned words and consecutive
word sequences, which are generated during the process of
variable order n-gram model generation.
Decoding: The recognizer uses a time-synchronous beam
search based fast word graph generation algorithm that
includes both intra-word and inter-word context depen-
dent phone models, and time-asynchronous graph search
for rescoring the graph [5].



5. FAST WORD GRAPH GENERATION

We de�ne a word hypothesis in the word graph to be (t, tb,
s, h, c, V , QA(t; tb; s; h; c), QL(s; v), QP (tb; v)),
where
t: time
tb: start time (word)
s: lexicon node
h: HMM state at lexicon node s
c: allophone of word head
V : set of preceding words
v: preceding word !Jv 2 V !K
QA(t; tb; s; h; c): acoustic likelihood at t, tb!$ s!$ h!$ c
QL(s; v): language likelihood at s, v
QP (tb; v): accumulated likelihood from start

of utterance at tb!$ v.
Word hypothesis merging and pruning have to be consid-

ered to reduce the computational cost of the acoustic like-
lihood (QA(t; tb; s; h; c)) and language likelihood (QL(s; v))
calculations.

5.1. Cross-word context approximation

Word hypothesis pruning, which determines tb from several
possibilities, is well known as a \word-pair approximation"
[11]. This pruning has the e�ect of reducing the acoustic
likelihood (QA(t; tb; s; h; c)) calculation. However, as the
\word-pair approximation" uses the preceding word when
determining the word boundary tb, the number of preceding
words for each word hypothesis is restricted to one (size V is
equal to one), even though many preceding words have the
same word ending portion (tb might be the same for words
sharing the same word end pronunciation, e.g., in English
hotel and tell).
To share word hypotheses as much as possible (size V

could be larger than one), we use \cross-word context" as
the preceding word information (\cross-word context ap-
proximation") [5].

5.2. Language score look-ahead and tying

Language score look-ahead techniques have been proposed
to apply language likelihoods as early as possible in a tree
lexicon [12, 13]. The estimated language likelihood of the
word hypotheses sharing the same lexicon node s is derived
considering the probabilities of all possible word continu-
ations Es. This technique has an e�ect on word hypoth-
esis merging, since word hypotheses that have the same
initial phone sequence share the same language likelihood
(QL(s; v)). Another advantage of this method is that the
correct language likelihood of word w is applied at the word
end lexicon node S(w).

QL(s; v) = max
u

P (ujv) (1)

where u 2 Es.

QL(S(w); v) = P (wjv) (2)

However, even when language score look-ahead is ap-
plied, the computational cost is still huge, as short length
homonyms, which match local characteristics of the speech,
frequently appear and have di�erent language likelihoods.
In our implementation, homonyms are treated as one word
in the �rst pass, and they are separated into individual

words and language likelihood is re-evaluated in the second
pass. The language likelihood applied in the �rst pass for
homonym w is the maximum likelihood of all members of
the homonym class C(w).

QL(S(w); v) =max
k;l

P (wkjwl) (3)

where wk; w 2 C(w); wl; v 2 C(v).

5.3. Language score interpolation between lexicon
nodes

Undesirable pruning in the beam search may occur when
language likelihood is close to the pruning threshold. To
reduce these pruning errors, changes of the log likelihood
between succeeding lexicon nodes are linearly interpolated
[5].

6. SPEECH RECOGNITION RESULTS

As the word graph output from the speech recognizer is re-
evaluated in a lattice rescoring process (see Figure 2), it is
important that the correct words are included in the graph,
but not necessarily on the highest scoring path.
In our evaluation, word graph density and two recognition

rates \rank1" (word recognition rate of the highest likeli-
hood path), \max" (word recognition rate of the highest
recognition rate path, i.e., upper bound in the word graph)
are used. Word graph density that indicates the size of a
word graph is de�ned as follows.

word graphdensity =
number of wordhypotheses

number of spokenwords
(4)

As a test set, 7 dialogues (3 male, 4 female) were selected
from the integrated speech and language database. A 6.6K
lexicon, which includes the vocabulary of the whole task
(utterances of customer, clerk and interpreter), and a 1.3K
lexicon, which includes vocabulary from the customer's ut-
terances in the \Hotel Reservation Task", were used for
evaluation. Other experimental conditions are summarized
in Table 3.
Figure 3 gives the results for the test set. The \max"

word recognition rate for the 1.3K lexicon and 6.6K lexi-
con were 81.6% and 75.1%, respectively. Since the di�er-
ence between \max" and \rank1" was about 15% for a rea-
sonable sized word graph, the word graph data structure
seems to provide an e�cient interface. This is especially
true when model parameters are not reliable, e.g., when
speech is highly coarticulated or when speaking conditions
between training and testing are not matched.
Table 4 shows the e�ect of the approximation methods

described in Section 5. The approximation methods signif-
icantly reduce cpu-time. All tests were performed on a HP
9000/735 workstation (135Specint92).

7. SUMMARY

This paper has focused on speech recognition algorithms
within the framework of ATR's multi-lingual speech-to-
speech translation system, which is currently under devel-
opment.



Table 3. Experimental conditions
Analysis conditions

Sampling rate 12 kHz

Window Hamming window (20 ms)

Frame period 10 ms

Analysis log power + 16-order LPC-Cep +

�log power + 16-order �LPC-Cep

Acoustic model (HMnet)

Topology 401 states, 5 mixtures

Training 2,620 words

Retraining 150 sentences (read speech)

Adaptation

(speaking-style) 128 utterances (non-read speech)

(speaker) 1 dialogue (non-read speech)

Language model (variable-order n-gram)

Training 308,518 words (828 dialogues)

Number of classes 713

Word perplexity 49.6
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Figure 3. Word recognition rate for various word
graph sizes

This system uses context-dependent state sharing HMM's
and variable-order n-gram statistics trained by using a
travel arrangement dialogue corpus. A fast word graph gen-
eration method that allows almost real-time recognition on
a 135Specint92 workstation has been developed. Recog-
nition performance has been evaluated for test sets with
vocabularies of up to 6,600 words.

Currently, a number of techniques, such as discriminative
metric design for feature extraction [14], detailed acoustic
modeling using segment models and stochastic pronuncia-
tion networks [15], recurrent neural networks [16], and in-
cremental adaptation [17], are being studied and we plan to
incorporate them into our future system.
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Table 4. E�ect of cpu-time reduction by applying
approximations (6.6K lexicon, cpu-time to achieve
72% word recognition rate (max))

approximation method cpu-time

(x real-time)

look-ahead 117.8

look-ahead, tying 2.8

look-ahead, tying,

cross-word context approximation 1.6

look-ahead, tying,

cross-word context approximation,

language score interpolation 1.2
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