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ABSTRACT

A fully integrated approach to Speech-Input Language
Translation in limited-domain applications is presented.
The mapping from the input to the output language is
modeled in terms of a �nite state translation model which
is learned from examples of input-output sentences of the
task considered. This model is tightly integrated with stan-
dard acoustic-phonetic models of the input language and
the resulting global model directly supplies, through Viterbi
search, an optimal output-language sentence for each in-
put-language utterance. Several extensions to this frame-
work, recently developed to cope with the increasing di�-
culty of translation tasks, are reviewed. Finally, results for
a task in the framework of hotel front-desk communication,
with a vocabulary of about 700 words, are reported.

1. INTRODUCTION

Language Translation (LT) has been among the main ob-
jectives of the work carried out by the Linguistic Research
community over the last few decades, and a number of Text-
input LT (TLT) systems have been developed for practical
use. On the other hand, current Speech Recognition tech-
nology is already su�ciently developed to be used in many
speech recognition applications. Hence, the most straight-
forward approach to achieve speech-input LT (SLT) is to se-
rially couple an input speech recognition front-end followed
by a conventional TLT program. However, these conven-
tional TLT systems are by no means perfect and a great
deal of false responses and lack of coverage occurs in real
applications. Clearly, if such inaccuracies are (serially) com-
bined with the also imperfect behavior of our speech-input
front-ends, only poor overall performance can be expected.
These considerations suggest that SLT needs a muchmore

integrated approach. In attempting to develop such an ap-
proach, we try to formulate the problem under a framework
that is closer to the standard assumptions under which our
successful speech recognition systems are currently devel-
oped. This means i) to devise simple and easily under-
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standable models for LT, ii) to formulate (S)LT as some
kind of optimal search through an adequate structure based
on these models, and iii) to develop techniques to actually
learn the LT models from training data of each considered
task. All these requirements can be easily met through the
use of Finite-State Translation Models.
The capabilities of Finite-State Models (FSM) have been

the object of much debate in the past few years. On the
one hand, in the Natural Language (NL) community, FSMs
have often been ruled out for many NL processing applica-
tions, including MT, even in limited domains. On the other
hand, in Speech Recognition, the use of N-Gram models,
which are just among the simplest types of FSMs [17, 8, 18],
is �rmly established nowadays as a state of the art tech-
nique for Language Modeling, even for open-domain appli-
cations. Recently, many NL and Computational Linguistic
researchers are (re-)considering the interesting features of
FSMs for their use in NL processing applications [10].
Simple as they are, FSMs generally need to be huge in

order to be useful approximations to complex languages.
For instance, an adequate 3{Gram Language Model for the
language of the Wall Street Journal is a FSM that may have
as many as 20 million edges [15]. Obviously, there is no
point in trying to manually build such models on the base
of a priori knowledge about the language to be modeled:
the success lies in the possibility of automatically learning
them from large enough sets of training data [8, 15]. This
is also the case for the �nite-state translation models used
in the work presented in this paper [11, 16, 17].

2. SUBSEQUENTIAL TRANSDUCERS

The di�culty of a translation task depends on many fac-
tors. One of the most important is the \asynchrony", or
distance at which words of the output sentences tend to
appear with respect to their corresponding input-language
words. A conventional hierarchy that emphasizes this view,
along with some examples of translation tasks (possibly) be-
longing to each to each level of the hierarchy are shown in
Figure 1 [16].

Other more complex Transduction Tasks ...

Rational or Finite-State
Subsequential

Sequential
6?5?

1   2
3     4

1= Spanish into English word by word 

2= Integer division 

3= English written numbers into decimal n

4= Roman numerals into decimal numbers  

5= English into semantic representation 

6= Spanish into English 

Figure 1. Some interesting classes of Formal Transduction
and examples of real tasks (possibly) belonging to these classes.

Particularly interesting for our purposes is the class
known as Subsequential Transduction [2]. In the transduc-
tions of this class, output symbols or substrings are gener-
ated only after having seen enough input symbols to guar-
antee a correct output. The amount of symbols to wait for
may be variable and context-dependent and it can even be
necessary to append some additional symbol or substring to



the output string which can only be determined after having
detected the end of the input string.
It should be noted that many translation tasks that may

appear much more complex, are inherently of this subse-
quential nature. For instance, we can always translate nat-
ural English sentences into correct Spanish by successively
outputting Spanish words that can be determined from a �-
nite (often short) sequence of previously seen English words.
In other words, we do not need to wait for a whole discourse
to end before starting the translation.
A Subsequential Transducer (SST) is a deterministic net-

work having a �nite set of states and a set of edges or tran-
sitions linking these states. Each transition is labeled with
a (non-empty) input symbol and a (possibly empty) string
of output symbols. Each (�nal) state is also labeled with a
(possibly empty) string of output symbols. The translation
of an input string, x, is produced by concatenating the out-
put strings of the edges used to parse the successive symbols
of x and �nally appending the output string associated to
the last state reached through the parsing [2].
Apart from their adequateness for many language process-

ing applications [10], most attractive is the fact that SSTs
are learnable from training input-output sentence pairs, us-
ing a very e�cient algorithm called Onward Subsequential
Transducer Inference Algorithm (OSTIA) [11].
SSTs and OSTIA have been successfully used in a variety

of applications, including Language Understanding [4, 14,
16], and LT as will be discussed below.

3. AN EXPERIMENTAL TASK: MLA

Most of the early work on the application of SSTs and
OSTIA to LT was carried out by testing the di�erent con-
cepts and techniques on a simple and exible Language
Learning task originally introduced by Feldman and his col-
laborators. The task is called \Miniature Language Acqui-
sition" (MLA) and involves description and manipulation of
simple visual scenes [6]. This task, which has proved very
useful for experimentation purposes, was adequately refor-
mulated as a LT task. The original formulation involved
fairly simple syntax and small lexicon (about 30 words), but
it was extended, as required, in order to study the impact
of increasing degree of input-output asynchrony, vocabulary
size, etc. [5, 19]. A large corpus of Spanish-English paired
sentences of this task was generated semi-automatically [5],
following the syntax directions dictated by the original for-
mulation of the task [6], as well as by the adopted extensions.
Examples of MLA sentences are shown in Figure 2.

Spanish: un cuadrado mediano y claro y un c��rculo tocan
a un c��rculo claro y un cuadrado mediano

English: a medium light square and a circle touch
a light circle and a medium square

Spanish: se elimina el c��rculo grande que esta encima
del cuadrado y del tri�angulo mediano

English: the large circle which is above
the square and the medium triangle is removed

Figure 2. Spanish-English sentences from the MLA task.

4. MLA TRANSLATION EXPERIMENTS

4.1. Basic Text-Input Results

A �rst series of experiments1 were carried out with the sim-
plest versions of the MLA translation task using the basic
version of OSTIA [11]. The results of these experiments
were encouraging. Performance of the learned transducers
gradually improved with the amount of training data. In
the case of Spanish-to-English, translation accuracy higher
than 99% was obtained with transducers learnt from 16,000
training pairs, and almost perfect results were achieved by

1Only Spanish-English experiments are reviewed here. Ger-
man output was also considered with similar results [5, 12, 9].

training with 50,000 pairs. These transducers were very
small, typically less than 20 states and 200 edges, and learn-
ing time was less than 100 seg. on a HP9715/35 computer.
English-to-Spanish proved somewhat more di�cult, requir-
ing more than 50,000 pairs to reach 99% accuracy [5].

4.2. Speech-Input Experiments: Learning with
Input-Output Language Model Constraints

The learning strategies followed by OSTIA try to general-
ize the training pairs as much as possible. As discussed in
the last section, this often leads to very compact transduc-
ers that accurately translate correct input text. However,
this compactness often entails excessive over-generalization
of the input and output languages, allowing nearly mean-
ingless input sentences to be accepted, and translated into
even more meaningless output! While this is not actually a
problem for perfectly correct text input, it leads to dramatic
failures when dealing with not exactly correct text or (even
\correct") speech input.
A possible way to overcome this problem is to limit gener-

alization by imposing adequate Language Model (LM) con-
straints: the learned SSTs should not accept input sentences
or produce output sentences which are not consistent with
given LMs of the input and output languages. These LMs
are also known as Domain and Range models [13]. Learning
with Domain and/or Range constraints can be carried out
with a version of OSTIA called OSTIA-DR [12, 13]. This
version was used in [9] in a series of Spanish-English MLA
speech-input translation experiments.
To deal with acoustic input, very simple, 3-state acoustic-

phonetic discrete Hidden Markov Models, trained with
Spanish speech from other applications, were used to rep-
resent (expand) the input words associated to each edge of
the learned transducers.
Transducer learning was based on 50; 000 randomly se-

lected Spanish{English training pairs of the task. From
these pairs, 4{Gram Input and Output LMs were obtained
from the input and output sentences, respectively, and then
OSTIA(-DR) was used to learn four di�erent translation
models: the �rst one was learnt with the original OSTIA
(no input or output LMs); in the second case, for the sake of
comparison, a \decoupled" (as opposed to integrated) archi-
tecture was tried in which a conventional speech recognition
front-end, having the input 4{Gram as its LM, was used to
recognize the input utterances and the recognized sentences
were submitted to translation by the transducer obtained by
OSTIA; the third and fourth models were fully integrated
models learnt with OSTIA-DR, constrained by either the
input 4{Gram or both input and output 4{Grams, respec-
tively. These integrated SSTs were not large; typically less
than 100 states and 400 edges.
Testing was carried out using 100 random Spanish sen-

tences (none of them used as training), uttered by 4 di�er-
ent speakers (400 utterances in total). Although integrated
transducers directly provide only output-language transla-
tions, the corresponding input-language sentences are eas-
ily obtained as a by-product. This allows us to measure
both the \recognition" and translation Word Error Rates
for these models. Table 1 shows the results

Table 1. Speech-Input Recognition and Translation Word
Error Rates (in %) for di�erent usages of Input and Output
4{Gram Language Models.

Language Model Usage Recog. Trans.
No LMs (only the basic SST) 98.0 96.5
Decoupled (Input LM front-end) 4.8 15.2
Integrated: Input LM Only 3.5 3.7
Integrated: Input/Output LMs 2.6 2.8

As expected, the original transducer was completely use-
less for speech-input operation. The speech recognition



front-end with the 4{Gram input LM led to better re-
sults but, even with a relatively high recognition accuracy
(4.8% WER), large translation errors were produced (15.2%
WER). This lack of translation robustness improved dra-
matically when integrated models were used, and more so
as more syntactic constraints were taken into account.
It is worth noting that the speech recognition results ob-

tained for the integrated transducers are signi�cantly better
than those achieved by the (decoupled) front-end using the
very same input-language 4{Gram. This means that the in-
tegrated transducers o�er better \implicit" modeling of the
input language than the input 4{Gram itself.

4.3. Reducing the demand for training data

The amount of training data required by OSTIA(-DR){
learning is directly related with the size of the vocabularies
and the amount of input-output asynchrony of the transla-
tion task considered. This is due to the need of \delaying"
the output until enough input has been seen. In the worst
case, the number of states required by a SST to achieve this
delaying mechanism can grow as much as O(nk), where n
is the number of (functionally equivalent) words and k the
length of the delay.
Techniques to reduce the impact of k were studied

in [20, 21]. The proposed methods rely on reordering the
words of the (training) output sentences on the base of
partial alignments obtained by statistical translation meth-
ods [3]. Obviously, adequate mechanisms are provided to
recover the correct word order for the translation of new
test input sentences [21]. Using these techniques under the
same conditions as those of the experiments reported in Ta-
ble 1 for integrated models, the results shown in Table 2
were obtained. Only 4,000 training pairs were required to
achieve similar results as the direct approach with at least
four times more training data [20].

Table 2. Impact of Word Reordering on model size (Edges)
and Speech{Input translation Word Error Rate (WER in %) for
increasing size of the training{set supplied to OSTIA-DR with
input/output 4-gram constraints.

Direct Reordered
Train.Pairs Edges WER Edges WER

1,000 2,023 45.5 1,338 17.5
2,000 3,353 38.7 979 7.3
4,000 4,051 28.2 440 3.2
8,000 719 4.8 344 3.0
16,000 363 3.2 183 3.3

On the other hand, techniques to cut down the impact of
vocabulary size were studied in [19]. The basic idea was to
substitute words or groups of words by labels representing
their syntactic (or semantic) category within a limited rank
of options. Learning was thus carried out with the catego-
rized sentences, which involved a (much) smaller e�ective
vocabulary. Obviously, categorization has to be done for
input/output paired clusters; therefore adequate techniques
are needed to represent the actual identity of input and out-
put words in the clusters and to recover this identity when
parsing test input sentences. Text{Input experiments using
these techniques were presented in [19] for extended ver-
sions of MLA. A summary of the results is shown in Table 3.
While the direct approach degrades rapidly with increasing
vocabulary sizes, categorization keeps the accuracy essen-
tially unchanged.

5. A MORE COMPLEX AND PRACTICAL
APPLICATION: THE \TRAVELER TASK"

After the basic studies carried out with the experimental
MLA task, a more ambitious and practically motivated task
has recently been considered [1]. The general domain is
that of a traveler (tourist) visiting a foreign country. It en-
compasses a variety of di�erent translation scenarios which

Table 3. Impact of Categorization on Text-Input trans-
lation Sentence Error Rate (in %) for two training-set sizes
and increasing vocabulary sizes.

Inp/Out 8,000 Tr.Pairs 32,000 Tr.Pairs
Voc.Sizes Direct Categ. Direct Categ.
37/28 3.1 0.9 0.5 0.2
50/38 42.1 1.5 5.7 0.3
63/48 62.5 3.0 26.5 0.6
363/248 91.3 3.4 98.0 0.7

range from limited-domain applications to unrestricted nat-
ural language. This allows for progressive experimentation
with increasing level of complexity. For the results reported
below, the domain has been limited to human-to-human
communication situations in the front-desk of a hotel.
In order to de�ne more precisely the chosen task, several

traveler-oriented booklets were collected and those pairs of
sentences �tting the above scenario were selected. This pro-
vided a (small) \seed corpus" from which a large set of sen-
tence pairs was generated in a semi-automatic way [1]. Data
was generated for the following language pairs: Spanish-
English, Spanish-German and Spanish-Italian. Table 4
shows some features of the �rst of these corpora2, along with
examples of paired sentences. Note that output-language
perplexity is lower than that of the input language. This
reects a real feature of the corpus: to be useful in prac-
tice, the translated sentences need not to exhibit the same
linguistic variability as the corresponding input sentences.
Obviously, the translation system should be prepared to ac-
cept all the relevant input variability, but should only pro-
duce correct, simple and concise output.

Table 4. Features of the Traveler Task Spanish-English Corpus
and some examples of input-output sentences.

Di�erent sentence pairs in the corpus 171,481
Input/output vocabulary sizes 689 / 514
Average input/output lengths 9.5 / 9.8
Input/output test-set perplexities 13.8 / 7.0

Spanish: Reserv�e una habitaci�on individual y tranquila
con televisi�on hasta pasado ma~nana.

English: I booked a quiet, single room
with a tv. until the day after tomorrow.

Spanish: Por favor, prep�arenos nuestra cuenta de la
habitaci�on dos veintid�os.

English: Could you prepare our bill for
room number two two two for us, please?

6. TRAVELER TASK EXPERIMENTS

6.1. Text-Input Experiments

From the corpus discussed in the previous section, increas-
ing amounts of randomly selected training pairs3 were used
to study the learning convergence of OSTIA-DR with input
and output 3-Gram LM constraints. Testing was carried
out on 2,730 di�erent input sentences which were not seen
in training. Two types of experiments were carried out. In
the �rst one, OSTIA-DR was directly used. In the second,
OSTIA-DR was assisted by categorization techniques simi-
lar to those discussed in Section 4.3. In this case, seven cate-
gories were adopted, including room numbers, dates, times-
of-day, names, surnames, etc. The results are shown in Ta-
ble 5. Useful accuracy was obtained starting with transduc-

2Only Spanish-English experiments will be reported here; sim-
ilar behavior was observed for the other language pairs [1]. Per-
plexity �gures correspond to a standard (at smoothed) trigram
model trained from a set of 20,000 randomly selected sentences
and tested with 10,000 independent sentences.

3Many (simple) training sentences like \Good morning",
\Thank you" etc, appeared many times in the corpus. The repe-
titions were removed for OSTIA-DR learning but not for proba-
bility estimation.



ers learnt with about 30,000 di�erent categorized training
pairs. The sizes of these transducers were quite a�ordable:
less than 4,300 states and 40,000 edges.

Table 5. Traveler Task Text-Input translation WER (in %)
using input and output 3{Gram LM constraints in OSTIA{DR
learning, with and without lexical categorization.

Training Pairs Translation WER in %
Di�erent Categorized Direct Categ.
12,218 9,981 54.9 22.5
21,664 16,207 47.9 13.7
38,438 25,665 38.4 7.7
67,492 39,747 26.0 3.7
119,048 60,401 17.4 1.4
168,629 77,499 13.3 0.7

6.2. Speech-Input Experiments

The best Spanish-English transducer obtained in the previ-
ous text-input experiments was used. The Spanish words
associated to the edges of the transducer were modeled as
a simple concatenation of phonetic elements, from a set of
31 (context-independent) units, including stressed and un-
stressed vowels plus two types of silence. These units were
modeled by context-independent continuous-density Hidden
Markov Models [7], whose parameters were estimated using
Spanish speech data from other applications (10,700 words
by 10 speakers), along with Spanish sentences of the Trav-
eler Task (11,000 words by 16 speakers). The test{set con-
sisted of 84 Traveler Task sentences, uttered by 4 speakers
(336 utterances {3,000 words approx.). None of these test
sentences or speakers were used in OSTIA-DR or HMM
training. Table 6 summarizes the results.

Table 6. Traveler Task speech{input results: recognition
and translation Word Error Rate (WER, in %), and computing
Real Time Factor (RTF) on a HP-9735 workstation, for di�erent
number of Gaussian distributions and beam width constants.

Number of Beam Comp. Recog. Trans.
Gaussians Width RTF WER WER

1663 200 3.2 4.5 4.6
1663 300 5.9 2.7 2.3
5590 300 11.3 2.2 1.9

Using tight beam-search thresholds, an adequate over-
all performance is obtained with conventional UNIX work-
stations, without resorting to any type of specialized hard-
ware or signal processing device. As assessed by on-line
tests with an implemented prototype [1] (which produced
speech output using a state-of-the-art text-to-speech syn-
thesizer made available by CNET { France Telecom), this
provides quite acceptable behavior for practical use.
As expected, a high degree of combined recogni-

tion/translation robustness is achieved. In fact, translation
WER tends to be slightly lower than recognition WER. This
is consistent with the relative perplexities of the input and
output languages reported above Table 4): the tight inte-
gration of acoustic, syntactic and translation models allows
taking advantage of the lower perplexity of the output lan-
guage to actually improve the overall accuracy! Note that
this behavior is in contrast with the degradation of results
that often plague current translation approaches which base
their operation on a loosely coupled \�rst-recognition-then-
translation" paradigm.

7. CONCLUDING REMARKS

Finite-State Formal Transduction techniques have been pro-
posed for language translation in limited domains, and novel
techniques for learning the required transducers have been
reviewed. Results show great potential for developing sim-
ple and e�ective systems for limited-domain speech-to-speech
language translation applications.
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