
probability density function . The detailed derivation
and analysis of the cumulant based ICA can be found in
[17] and [19].

The cumulant based criterion for ICA is derived by
comparison of the cumulant expansion of the joint
probability density  and of the product of the
marginal output probabilities . The complete
factorization is achieved if the both expansions are the
same, i.e. if the non-diagonal coefficients in the higher
order cumulants of  take desired values (usually zero)
imposed by the statistical independence of . Since
the cumulant expansion of an arbitrary distribution has
infinite number of elements, for practical purposes only
cumulants up to the order four are considered. Hence, the
resulting ICA cumulants based criterion has the following
form:

(16)

where  defines the cumulant order, and where
and  are the non-diagonal cumulant
coefficients and their desired values for a given cumulant
order  of the joint probability density function . In
general, the desired coefficients  are
equal to zero. For every change of the matrix , the non-
diagonal coefficients are estimated and the cost function

 further minimized. The cumulant based ICA
criterion can be further simplified by using the properties
of cumulant expansion when M is a rotation matrix [17]. It
is the experience of the authors that the cumulant based
ICA criteria are numerically superior to the Kullback-
Leibler distance based ICA.

As the last point of this section, the authors would like to
mention that the ICA problem can be formulated also in
the case where the input-output map is not a matrix but an
invertible nonlinear function F. A parameterization of such
functions with the so called “triangular volume preserving
network” is presented in [12] and [19]. The reference [19]
presents several applications of the Nonlinear ICA.
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.

Hence, the ICA with the Kullback-Leibler information
measure and the maximum information transfer as defined
in this paper are posed as:

(12)

or, equivalently,

(13)

The initial parameterization of the derivatives  in
(13) has a possible interpretation as the prior on the
estimation of the actual marginal densities . As
mentioned earlier, both methods require parameterization
of  and . Hence, the problem statements in
(12) and (13) can be used to derive conditions for the
equivalence of solutions of ICA and InfoMax.

Lemma:

For a given input distribution , the ICA and InfoMax
problems achieve the same degree of statistical
independence if the derivatives  can be
parameterized in the form of the marginal distribution
estimates .

The proof is straightforward since it requires that the
parameterization of  and  are identical. This
can be illustrated on an example.

Example:

The marginal probabilities  have to be estimated
from the data. A typical way of doing that is to estimate
elements of a probability density function expansion up to
the desired order. Let us use the first element of the
Edgeworth expansion [19], i.e. let  have the form of
a Gaussian whose mean and standard deviation  is equal
to the those of the actual marginal distribution .
Without a loss of generality let us assume that the input
distribution  is zero-mean. In addition, let us
parameterize the derivatives  as zero-mean
Gaussian distributions whose standard deviations  are
optimization parameters. Hence, it is easy to see that the
MLE problems in (13) become
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i
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 log{ }⇒

INFOMAX MLE f i' yi( ) det M( )⋅
i

∏ 
 log{ }⇒
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σi

p yi( )

p x( )
f i' yi( )

ri

(14)

The resulting ICA problem is nothing more than the
covariance matrix diagonalization [19] where the
optimization is performed over the elements of the matrix
M. In the case of InfoMax, the unknown parameters are
not only the elements of M but also the Gaussian
parameters . It is easy to see that the optimal value of

 for every fixed matrix M is the actual standard
deviation  and, therefore, that the solution of InfoMax
problem will also result in the covariance matrix
diagonalization.

In practice, it is required that the solutions of both methods
are unique modulo transformations that preserve statistical
independence such as the component order permutation
and diagonal scaling. The uniqueness is achieved if the
number of Gaussian components of  does not exceed
one. In the case of multiple Gaussian distributions, it is
well known that there is an infinite number of matrix
transformations that diagonalize the covariance matrix.
Hence, the ICA and InfoMax algorithms will have unique
solutions only if the original signal  did not have more
than one Gaussian components. In addition, there can be
problems concerning the scaling of the elements of the
matrix M. Hence, it is the experience of the authors that
imposing the condition

(15)

makes the optimization numerically stable and avoids
possible scaling problems. Different parameterizations of
M such that the condition in (15) holds can be found in
[19].

3.   ALTERNATIVE REDUNDANCY MEASURES
AND NONLINEAR ICA

The previous section has demonstrated that ICA and
InfoMax are identical when the redundancy measure in
ICA is the Kullback-Leibler information distance and
when sufficient freedom is given to the marginal output
probability modelling and estimation. Nevertheless, there
are other measures that are easy to implement, especially
in the case of a linear mixing with a matrix M. The
following part of the paper briefly reviews ICA based on
the properties of cumulant expansion of the joint

ICA ⇒

MLE σi( )log[ ] det M( )( )log+∑–{ }

where σi yi
2〈 〉=

INFOMAX ⇒

MLE ri( )
yi

2

2ri
2

-------+log det M( )( )log+∑–
 
 
 

ri
ri

σi

p x( )

z

det M( ) 1=



Definition 2: Information maximization

Let the above defined random vector  be transmitted
through a combination of a matrix M and  nonlinear
functions  such that the resulting
components of the output vector  are defined as:

(3)

Under the assumption that the every nonlinear function
is differentiable and that its derivative  satisfies

(4)

the information maximization problem is defined as
maximization of the entropy

(5)

over the elements of matrix  and, possibly, the free
parameters in the parameterization of . Typical choices
for  are single or normalized sums of sigmoid functions.

At first glance the ICA and InfoMax problems seem to be
substantially different. Nevertheless, it is known that the
information maximization leads to the statistical
factorization of the output components , i.e. that it
essentially performs the same task as ICA [20]. In the
remaining part of the paper we give a rigorous proof that
these two problems are identical when the Kullback-
Leibler information is used as a measure of the statistical
independence in ICA and when the derivatives  are
capable of approximating output marginal distributions
with the infinite precision.

The Kullback-Leibler distance between the joint and the
marginal probabilities is defined as:

(6)

or equivalently:

(7)

Equation (7) indicates that the Kullback-Leibler distance is
the mutual information between the output components

.
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The relationship between the input and output joint
probabilities of a differentiable map  is equal to:

(8)

where  is the Jacobian matrix of . Consequently, the
relationship between the corresponding entropies is:

(9)

Combining equations (6) and (7) with (8), it follows that:

(10)

Since the input entropy  is independent of the
input-output transformation, the minimization of

 is equivalent to maximization of

, i.e. to the

Maximum Likelihood Expectation (MLE) of

. In general, the analytical

expression for the marginal probabilities  are not

known, and their estimates  have to be obtained

from the data for every change of the matrix .

Similarly, in the information maximization problem the
output joint entropy  is equal to:

(11)

or, equivalently, to the MLE of
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Abstract

This paper provides a detailed and rigorous analysis of the
two commonly used methods for redundancy reduction:
Linear Independent Component Analysis (ICA) and
Information Maximization (InfoMax). The paper shows
analytically that ICA based on the Kullback-Leibler
information as a mutual information measure and InfoMax
lead to the same solution if the parameterization of the
output nonlinear functions in the latter method is
sufficiently rich. Furthermore, this work briefly discusses
the alternative redundancy measures not based on the
Kullback-Leibler information distance and Nonlinear ICA.
The practical issues of applying ICA and InfoMax are also
discussed.

1.   INTRODUCTION

The pioneer work of Zipf [1] and the ideas of Attneave [2]
about information processing in visual perception have led
to the idea that nervous system and brain may be regulated
by an economy principle. In the neural network society
these ideas were introduced by the important paper of
Barlow [3]. In this work the author presented the
connectionist model of unsupervised learning under the
perspective of redundancy reduction. The minimum
entropy coding method was introduced for the generation
of factorial codes [4]. Atick and Redlich [5] demonstrated
that statistically salient input features can be optimally
extracted from a noisy input by maximizing mutual
information. Simultaneously, Atick and Redlich [6] and
specially the works of Redlich ([7], [8]) concentrate on the
original idea of feature extraction by redundancy
reduction. Several neural network learning algorithms for
PCA are presented, among others, in [9] and [10].

The problem of Linear Independent Component Analysis
as linear feature extraction was introduced by Comon [11]
and further extended in linear and defined in nonlinear case

by the works of the authors ([12]-[19]). In parallel, Bell
and Sejnowski [20] have demonstrated that their InfoMax
method can also achieve linear feature extraction. This
paper provides a detailed and rigorous analysis of the two
methods and derives conditions under which these
methods lead to identical solution. In addition, the paper
briefly addresses the cumulant based criteria for ICA as
well as Nonlinear ICA.

2.   LINEAR INDEPENDENT COMPONENT
ANALYSIS AND INFORMATION MAXIMIZATION

Let  be random vector of dimension  with the joint
probability density function  whose covariance
matrix is nonsingular. Furthermore, let  be a linear
square map which maps  into the random vector
whose probability density function is .

Definition 1: ICA

Linear Independent Component Analysis (ICA) is an
input/output linear transformation M from  to  such
that the output components with joint probability:

(1)

are “as independent as possible” according to the
appropriate measure. In the special case where the
complete independence of the output components is
achieved, the following holds:

(2)

If the input vector  is jointly Gaussian, ICA is equivalent
to the problem of diagonalizing the output covariance
matrix  which is the standard PCA problem. In order to
guarantee the existence of the solution for the ICA
problem, we assume that the input signal  was originally
obtained by the invertible linear mixture of the statistically
independent signals .
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