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ABSTRACT

In blind source separation one tries to separate statistically
independent unknown source signals from their linear mix-
tures without knowing the mixing coe�cients. Such tech-
niques are currently studied actively both in statistical sig-
nal processing and unsupervised neural learning. In this
paper, we apply neural blind separation techniques devel-
oped in our laboratory to extraction of features from natu-
ral images and to separation of medical EEG signals. The
new analysis method yields features that describe the un-
derlying data better than for example classical principal
component analysis. We brie�y discuss di�culties related
with real-world applications of blind signal processing, too.

1. INTRODUCTION

Blind signal separation (BSS) and the closely related Inde-
pendent Component Analysis (ICA) have been studied in
statistical signal processing since 1980's. Most of the devel-
oped methods are batch type, though adaptive approaches
have been considered, too. For references and reviews, see
[1, 2, 3]. In these statistical approaches, separation is usu-
ally achieved by optimizing some constrast functions that
are de�ned explicitly in terms of cumulants (higher-order
moments) of the observed data.

On the other hand, in neural approaches to BSS and
ICA, cumulants are typically replaced by suitable nonlin-
earities in the learning algorithms. The nonlinearities im-
plicitly introduce the higher-order statistics which is neces-
sary for blind separation. The �rst neural BSS algorithm,
discussed in [4], was proposed by Jutten and Herault al-
ready in 1985. During the last couple of years, there has
been a strong renewed interest in neural realizations of BSS
and ICA. Several research groups have independently devel-
oped new, more e�cient learning algorithms for separation
problems. Neural approaches to BSS and ICA are reviewed
in the recent tutorial paper [5]. Some new developments
can be found in the special sessions arranged recently on
this topic [6, 7].

Blind signal separation and ICA can be applied to a
wide variety of problems. These include at least:

� Array signal processing; see for example [3].
� Separation of speech sources (Cocktail party prob-
lem) [8, 9]. More references can be found in [9].

� Several communications problems, such as multipath
propagation in mobile communications, and separa-
tion of QAM sources [10, 11].

� Medical signal processing. Examples are electroen-
cephalography (EEG) (separation of brain signals)
[12, 13], and separation of ECG (heart) signals.

� Industrial problems, such as fault detection [3, 14].
� Extraction of meaningful features from data. Inde-
pendent component analysis has been successfully ap-
plied at least to image [15, 16] and speech data [17].

� Generally, ICA can be applied to the same problems
as standard Principal Component Analysis (PCA)
[1]. If the internal representation of the data is not
important (for example in technical data compres-
sion) or the data are Gaussian, it is easier to use PCA.
But if higher-order statistics contain important infor-
mation and the goal is meaningful representation of
the data, ICA generally provides better results than
PCA.

The above list is not complete (especially with respect to
references) due to space limitations.

Of the neural based algorithms, the most widely applied
in various forms are probably the seminal Herault-Jutten
algorithm (for example [4, 8, 11]), Bell-Sejnowski algorithm
[9, 12, 15, 17], and the �xed-point rules [13, 16] discussed
later on in this paper.

2. NEURAL BLIND SOURCE SEPARATION

The basic data model employed both in blind source separa-
tion and independent component analysis is as follows [1, 5].
Assume that there exist m zero mean source signals (inde-
pendent components) s1(t); : : : ; sm(t) that are scalar-valued
and mutually statistically independent (or as independent
as possible) at each index value t. The original sources si(t)
are unknown, and all that we have are n possibly noisy but
di�erent linear mixtures x1(t); : : : ; xn(t) of the sources. The
mixing coe�cients are some unknown constants. In blind
source separation, the task is to �nd the waveforms fsi(t)g
of the sources, knowing only the mixtures xj(t).

Denote by x(t) = [x1(t); : : : ; xn(t)]
T the n-dimensional

t:th data (mixture) vector at discrete time (or point) t. The
BSS signal model can then be written in the form

x(t) = As(t) =

mX

i=1

si(t)ai: (1)

Here s(t) = [s1(t); : : : ; sm(t)]T is the source (independent
component) vector. A is a constant full-rank n�m mixing
matrix whose elements are the unknown coe�cients of the
mixtures. The vectors ai, i; : : : ;m, are the basis vectors of
ICA; see [1, 5].

The number of di�erent mixtures n must be at least
as large as the number of sources m (unless there is some
extra information). Usuallym is assumed known, and often
m = n. Furthermore, each source signal si(t) is assumed to
be a stationary zero-mean stochastic process. Only one of
the sources is allowed to have a Gaussian distribution.

In neural and adaptive BSS, an m�n separating matrix
B(t) is updated so that the m-vector

y(t) = B(t)x(t) (2)



becomes an estimate y(t) = ŝ(t) of the original independent
source signals. In neural realizations, y(t) is the output vec-
tor of the network, and the matrix B(t) is the total weight
matrix between the input and output layers. The estimate
ŝi(t) of the i:th source signal may appear in any compo-
nent yj(t) of y(t). The amplitudes of the estimates yj(t)
are typically scaled so that they have unit variance.

In several BSS algorithms, the data vectors x(t) are pre-
processed by whitening (sphering) them: v(t) = V(t)x(t).
Here v(t) denotes the t:th whitened vector, and V(t) is an
m�n whitening matrix. After prewhitening the subsequent

separating matrix, denoted here for clarity by WT (t), can
be taken orthogonal. The relationship between the whiten-

ing and output layers is y(t) = WT (t)v(t), and the total
separating matrix between input and output layers becomes

B(t) =WT (t)V(t).
Various neural algorithms for learning either the sepa-

rating matrix B(t) or the matrix W(t) after prewhitening
are reviewed in [5]. Some algorithms are based on heuristic
independence conditions, while others try to optimize an
information-theoretic criterion or a simpler contrast func-
tion leading to independent outputs. We have used the
kurtoses Efyi(t)

4g � 3[Efyi(t)
2g]2 of the components yi(t)

of the vector y(t) as a separating criterion, because this
approach leads to simple learning algorithms. It can be
shown that the source signals or independent components
are found from the local maxima of the modulus of the
kurtosis for prewhitened data. A generalization of this ap-
proach can be found in [22].

3. SEPARATION ALGORITHMS

We have earlier derived simple stochastic gradient type al-
gorithms [5, 18, 19, 21] for minimizing or maximizing the
kurtosis criterion. These truly neural algorithms employ
nonlinear Hebbian learning, but due to the crude instan-
taneous estimate of the gradient their accuracy is limited,
and convergence speed may be slow. Therefore, it may
be di�cult to apply them to separation problems where
there are more than about ten sources. Another problem is
that in certain applications some of the source signals are
sub-Gaussian (having a negative kurtosis) while others are
super-Gaussian (with positive kurtosis), but the gradient
algorithms are directly applicable to either type of sources
only. Quite recently, we have developed a new recursive
least-squares type neural or adaptive learning algorithm [20]
which is more accurate and converges clearly faster, but it
has not yet been applied to large-scale practical problems.

However, we have recently introduced �xed-point algo-
rithms [21, 22] which are simple to implement, accurate,
and converge fast to the local maxima of the kurtosis cri-
terion. They can be applied to both sub-Gaussian and
super-Gaussian sources simultaneously. Therefore, these al-
gorithms are very useful in practical applications. A draw-
back is that the �xed-point algorithms are not strictly neu-
ral and data-adaptive. However, they originate from our
earlier neural gradient algorithms, and could be replaced
by them in some situations at least.

In the basic generalized �xed-point algorithm [22] the
data vectors x(t) are �rst whitened using for example stan-
dard PCA [5]. Random vectors normalized to unit length
are chosen to the initial values of the rows wi (i = 1; : : : ;m)

of the orthogonal m �m separating matrix WT . The key
step in the generalized �xed-point algorithm is to compute
a new (k + 1):th estimate for wi using the iteration

w
�

i (k + 1) = Efvg(wi(k)
T
v)� g

0(wi(k)
T
v)wi(k)g; (3)

wi(k + 1) = w�

i (k + 1)= k w�

i (k + 1) k : (4)

Here E denotes the mathematical expectation. In practice
it is replaced by sample mean computed using a large num-
ber of whitened vectors v(t). The function g(u) can be
chosen any odd, su�ciently regular nonlinear function, and
g
0(u) denotes its derivative. The choice g(u) = u

3 directly
maximizes the kurtosis criterion. In practice, it is often
advisable to use a robust nonlinearity that grows less than
linearly; a typical choice is g(u) = tanh(u). This also has
a relationship to the kurtosis criterion [18]. For preventing
the vectors wi, i = 1; : : : ;m, from converging to the same
directions, they are orthogonalized against each other. This
can be done either symmetrically or sequentially using a de-
�ation type procedure [21, 22].

It can be proven [22] that wi(k) converges (up to the

sign) to one of the rows of the separating matrixWT under
very mild conditions. The convergence of the �xed-point
algorithms is cubic, and our experiments show that usu-
ally less than 10 iterations provide su�ciently accurate esti-
mates. This means that the �xed-point algorithms are very
fast compared to typical gradient-based adaptive blind sep-
aration algorithms. Another advantage is that they don't
require any learning parameters. They are also much sim-
pler than the currently best known batch algorithm intro-
duced in [1]. In [22], versions that need not prewhitening
have been introduced.

4. SEPARATION OF EEG SOURCES

In electroencephalography (EEG), a practical problem is
to extract the meaningful brain activity information from
measured signals distorted by various artifacts. Typical ar-
tifacts consist of eye movements, muscle activity, and me-
chanical displacements in the measuring apparatus. Tra-
ditional methods of artifact canceling are usually based on
discarding the portions of EEG measurements that contain
high amounts of these disturbances.

It seems that the model (1) describes well some impor-
tant aspects of the EEG measurement data. The source sig-
nals si(t) can be divided into roughly mutually independent
brain activity signals and artifacts. In [13], we have applied
blind source separation (independent component analysis)
to practical EEG data. The 23-dimensional data vectors
x(t) are not shown in this paper due to space limitations;
see [13]. They were whitened and used in the standard
�xed-point algorithm. This algorithm is actually a special
case of the generalized algorithm (3) for the cubic nonlin-

earity g(u) = u
3. However, (3) becomes even simpler in this

case because the derivative Efg0(wTv)g = 3Ef(wTv)2g =

3 k w k2 = 3.
The �rst 8 source signals s1(t); : : : ; s8(t) (independent

components ICA1,: : :,ICA8) found after learning are shown
in Fig. 1. The �rst source signal s1(t) (ICA1) isolates eye
blinking, a mechanical disturbance appears in ICA3, and
the electronic adaptation triggered by it in ICA5. The sig-
nals ICA2 and ICA8 explain the rest of the eye activity. The
utility of ICA/BSS in EEG is very clearly demonstrated in
the 4th component ICA4, where a signal not visible in the
EEG is separated. A possible interpretation of this source
signal is a k-complex associated to initialization of sleeping.

The results are very promising, allowing to isolate typ-
ical artifacts from EEG monitoring while keeping the rest
of the brain activities untouched. They open up some new
vistas for EEG research. Makeig et al. have earlier applied
Bell's and Sejnowski's algorithm to EEG data in [12]. How-
ever, the features found in [13] seem to be physiologically
more signi�cant. Possible explanations are that the �xed-
point algorithm is more accurate, and that the EEG sources
can be either sub-Gaussian or super-Gaussian.
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Figure 1: Eight �rst independent components of the EEG data.

5. IMAGE FEATURE EXTRACTION

As a second application example, consider unsupervised ex-
traction of image features using ICA. This is described in
more detail in [16].

The raw data consisted of 15 di�erent images represent-
ing various natural objects or scenes. From these images, we
randomly picked 10000 12� 12 subimages. Each subimage
was then separately made zero-mean and normalized to unit
length. The obtained 144-dimensional data vectors x(t)
were whitened using standard PCA. The PCA whitening

matrix is V = D�1=2ET , where the columns of the matrix
E contain the PCA eigenvectors, and the diagonal matrixD
the respective eigenvalues [5]. The generalized �xed-point
algorithm (3) was then applied to the whitened vectors v(t)
using the sigmoidal nonlinearity g(u) = tanh(u). From the
learned vectors wi, one can compute the estimates of the
corresponding basis vectors ai of ICA using the formula [5]

âi = ED
1=2
wi: (5)

Figure 2 shows typical examples of the estimated basis
âi vectors of ICA, represented again as 12 � 12 subimages
scaled suitably. Most of the ICA basis vectors correspond
to wavelet type �lters that are sensitive to local features
and spatial frequencies in the images. However, a part of
the estimated basis vectors yield �lters that are sensitive to
edges and lines of varying thickness in di�erent orientations.

Image feature extraction using ICA has been indepen-
dently considered in [15] using di�erent algorithms and pre-
processing. The results are, however, qualitatively fairly
similar than in Fig. 2. It is noteworthy that ICA is a new
image analysis method which extracts meaningful features
from the input images in a completely unsupervised man-
ner. Contrary to �xed transforms and �lter masks, the
results depend on the image data. The masks provided
by ICA should be in many tasks more useful than the PCA
masks which are mainly sensitive to spatial frequencies only.

Figure 2: Some ICA basis vectors of natural image data.

6. PROBLEMS AND PROSPECTS

Until recently, blind source separation and independent com-
ponent analysis have been applied to small dimensional
problems where there are a few source signals only. The de-
velopment of new, computationally e�cient algorithms has
enabled applications to larger scale problems. Two such
applications, showing promising results and the potential
of these techniques, have been described in this paper.

In developing practical real-world applications, the ba-
sic model (1) is often too simple or the assumptions made on
it are not realistic. The model (1) can be extended and/or
modi�ed in several ways. We just mention here some pos-
sibilities. Some more information can be found in [5, 6, 7].

� It is usually not possible to separate noise from the
source signals si(t) unless there is some prior infor-
mation on noise available. If there are more mixtures



than sources (n > m), the amount of noise can be
suppressed using PCA prewhitening [5, 23].

� Either the sources or the mixture coe�cient or both
can be nonstationary. Adaptive algorithms can be
used in principle, but blind separation becomes even
more di�cult than normally.

� The source signals may have di�erent time delays
in each mixture. This problem has been studied by
many authors, see e.g. [3, 8, 9].

� The number m of sources is often unknown. The sit-
uation where there are more sources than mixtures
(m > n) is especially problematic. It can be some-
times handled if there is some prior information con-
straining the form of sources (for example the sources
are binary).

� Some work for extending the linear data model to
nonlinear ICA and source separation has been done;
see [5, 6, 7, 14]. However, there are computational
problems, and some additional constraints must be
imposed for making the problem tractable. Recently,
nonlinear ICA has been applied to detection of motor
faults [14].

� In practice, there is often some prior information avail-
able, but the number of unknown parameters in (1) is
too large for applying classical parameter estimation
methods. This prior information should be utilized
for getting optimal separation results. Some cases
have been discussed in [23].

� The source signals may not be statistically indepen-
dent. However, some algorithms are able to approxi-
mately separate moderately correlated sources in prac-
tice.

A lot of work is still required for developing satisfactory
BSS and ICA methods for these and other extensions of
the basic data model (1). Another important topic is to
develop more accurate and faster converging truly neural
or adaptive learning algorithms for large-scale problems.
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