COMMUNICATIONS AND NEURAL NETWORKS: THEORY AND PRACTICE

Mark D. Plumbley
Division of Engineering, King’s College London, Strand, London WC2R 215, UK

ABSTRACT

In this paper we shall see that neural networks and commu-
nications are interlinked in a number of ways, towards the
goal of efficient communication of information. One con-
crete example of this is the use of neural networks to ensure
efficient use of communication channels, through connection
admission control in ATM networks. In addition, however,
efficient communication 1s also important within a decision
making system such as a neural network. Finally we exam-
ine what type of neural network solutions are suggested by
this approach.

1. INTRODUCTION

In this paper we will be concerned with how the applica-
tion of neural networks is related to problems of efficient
communication of information. For example, we shall see
that neural networks can be used to aid decision making
in ATM connection admission control, attempting to make
most efficient use of an ATM network. In this example, the
link between neural networks and communication efficiency
is relatively direct.

However, a great many other problems can also be for-
mulated in terms of efficient communication of information.
Some of these are fairly obvious, as in the case of the ATM
network above, while others may be a little more indirect.
In these the communication concerned may be within the
neural network or other decision-making system itself, and
the information may be that which is required to make a
later decision.

Consider a typical pattern recognition system f(x) which
is designed to classify an input x into one of a number of
classes w;. A common approach (often called the Bayesian
or mazimum a-posteriori (MAP) approach) is to try to de-
sign a system which will choose an output class w; which
will maximize the probability P(w;|x). This may be done by
attempting to model the likelihood p(x|w;) and the a-priori
probabilities P(w;) and using Bayes theorem to maximize
P(wi|x).

In practice, however, the input x is often very large or
complex (e.g. if x is an image) that it is not practical to
construct these models directly, and a pre-processing stage
is used. Thus the system y = f(x) is split into v = f1(x)
and y = fo(v) where fi(-) is a pre-processing stage on the
front of the system. The purpose of this pre-processor is to
simplify the representation, while retaining as much infor-

mation as possible that would affect the final decision to be
made by f2(:).

We are therefore faced with a problem of efficient com-
munication: how to construct fi(-) (and f2(-)) to transmit
as much of the information in x pertinent to the classifica-
tion decision about w; as possible, while making the repre-
sentation v used to transmit this information as simple as
possible.

This same type of problem is also faced by biological or-
ganisms in attempting to make sense of the world around
them. We shall see how the cross-fertilization of ideas from
biology and communications are pointing to new directions
for neural network applications.

2. NEURAL NETWORKS

There has been interest in the computational capabilities of
biological neurons for at least the last 50 years. While neu-
ral networks which are applied to information engineering
problems are inspired by our knowledge of biological neural
processing, we do not normally try to model a particular
biological system in detail. For example, biological neurons
normally communicate their activity to each other through
a series of all-or-nothing pulses (spikes), while we use either
binary or real-valued numbers to represent activity in an
artificial neural network. In a biological system, there are
many different types of neurons specialized for particular
tasks, while we normally use only one or two in types in a
given neural network. We sometimes make the distinction
between artificial neural networks (ANNs) and biological
neural networks if we want to make this clear.

In neural network models used for problem solving, we
start from the principle of performing a complex task with
a network of many neurons, each of which performs a rel-
atively simple function by itself. The information that the
neural network ‘knows’ about a given problem is really held
in the strengths of the connections between the neurons,
rather than the neurons themselves. The ability to tackle a
complex problem is then an emergent property of the neural
network itself, rather than being a property of any individ-
ual neuron.

2.1. Neural Network Basics

As we mentioned above, (artificial) neural networks are
composed of a number of neurons, or nodes. Each node
has a number of inputs z; connected to it via weights w;,
and calculates its output y as a simple function of its inputs.



Nodes may calculate different functions in different types
of neural networks, but a typical node might calculate a
weighted sum of the inputs,

N
s = Zwml (1)
i=1

and feed this through a sigmoidal (s-shaped) activation
function such as to give the node output:

y=o (Zwml) . (2)

A number of other node functions are possible. For ex-
ample, the sigmoid activation function could be replaced
by a 0-or-1 threshold function, or the weighted sum may be
replaced by a squared distance (with a suitable activation
function) to give a radial basis function (RBF) node:

y = exp (— (Z(w - 7Ez‘)2)) : (3)

Individual nodes (neurons) are connected together via
their weights to form the neural network.

In a layered neural network, such as a multi-layer per-
ceptron (MLP) the outputs of the neurons in one layer are
fed forward to the inputs of the next layer. Any nodes
which are not connected to either the input or the output
of the network are called ‘hidden’ nodes. By adjusting the
weights, such a neural network can be trained to perform a
range of different input-output functions, in much the same
way that adjusting the parameters a; in a polynomial

Y=ot a1z +aza’ +- - (4)

will change the function the polynomial follows. The pro-
cedure used to adjust the weights is called the learning al-
gorithm.

2.2. Supervised learning

Neural networks are often required to learn an input-output
mapping from existing data. For example, suppose that
have data such as income, age, and amount requested for a
bank loan (input data), together with the yes/no decision
that a skilled expert had previously made (desired output
data, or target): this is called the training data. We can
train the network by adjusting its weights until the mis-
match between its outputs and the targets, often measured
as the mean-squared error (MSE), is a small as possible over
all the training data. We can then use the network by pre-
senting it with the input data only, and the network output
should closely match the target output for that input.

The most popular supervised learning algorithm for train-
ing a supervised network such as an MLP is Frror Back-
Propagation, usually called ‘BackProp’. This is simply a
mechanism that finds the derivative (i.e. the slope) of the
MSE with respect to each of the weights in the network,
and then uses a steepest-descent search to find the set of
weights which gives the minimum error. Neural networks
can take along time to train, making many passes over their
training data.

2.3. Other networks

There are several other types of neural network and learning
algorithm, as well as those mentioned above. For example,
Hopfield-type networks uses bi-directional connections and
are used to tackle optimization problems, or as associative
memory models.

Nodes in RAM-based networks such as the WISARD or
pRAM (sometimes called n-tuple networks or ‘weightless’
networks) use binary inputs as the address lines to a small
RAM inside the node. The node function is altered by
changing the contents of the RAM. Some networks can learn
to produce the correct output given only an indication of
reward or penalty, like the fitness term used for genetic
algorithms. This is called reinforcementlearning.

Others, so-called unsupervised networks, are not given
any guidance on the ‘correctness’ or otherwise of an output.
We shall see later that some of these unsupervised networks
can be formulated as a data compression task within our
efficient communication framework.

For more details of these and other neural networks, the
reader is referred to one of the many standard texts, such
as that by Haykin [3].

3. NEURAL NETWORKS IN
COMMUNICATIONS

An interesting concrete application of neural networks in
communications is in the control of ATM (Asynchronous
Transfer Mode) networks. In ATM networks, users send in-
formation in short fixed-sized cells, which are packets of 48
data bytes plus a 5 byte header. ATM network nodes con-
tain hardware switches that route each packet according the
information in the header. There is no synchronization be-
tween different users, so ATM nodes include output buffers
to absorb fluctuations in the rate that cells from several
sources arrive for one link. As the buffer fills up, the delay
before cells 1s transmitted increases, and if the buffer fills
completely some cells will be lost. (Note that communica-
tions engineers and neural network researchers both use the
term network for different purposes, so beware of possible
confusion!).

When a new users wishes to connect to a node, the node
must decide whether or not to admit the connection. To
bring in most revenue, the ATM network must carry as
much traffic as possible, while keeping minimum levels of
quality of service (QoS) for each of the users, i.e. limiting
cell delay and cell loss. Predicting whether the new connec-
tion would degrade the QoS unacceptably a difficult prob-
lem, and is one where neural networks have been brought
to bear [4].

Before the network is installed in the ATM switch, the
network is trained to match either previously-collected
training data (of cell arrival statistics vs. cell loss rate),
or to match a model of the behaviour if a good model is
available. Once trained, the neural network can be used in
the connection admission controller to predict e.g. the cell
loss rate that would result if a new connection is admit-
ted. If this predicted loss rate is above a certain threshold,
the new connection would be rejected. While the network
is being used, more information is available concerning the
real cell loss rates during operation of the ATM switch.



The neural network can be trained using this information,
to adapt more closely to the traffic characteristics: this is
called real-time training.

Other neural networks, such as the pRAM, have also been
used in ATM networks [10]. For an overview and a sample
of applications of neural networks to communication net-
works, see the recent special issue of IEEE Communications
Magazine [5].

4. COMMUNICATIONS IN NEURAL
NETWORKS

While we have seen that communications engineering is tak-
ing advantage of neural networks, it is also true that neural
networks can also use ideas from communications engineer-
ing.

In a biological sensory system such as vision, the infor-
mation from the world outside the organism needs to be
processed into a form suitable for higher stages in the brain,
using the biological neural networks in the organism. But
this processing involves certain costs and constraints, such
as the number of neurons which will be used, the space
available, the noise in the system, and the energy used in
processing the signal (the human brain uses some 20% of
the body’s energy intake just to process information!).

One proposal for learning in unsupervised neural net-
works, is that they should learn to maximize the Shannon
information transmitted through them: Linsker’s Infomax
principle [7]. On the biological side, Atick and Redlich [2]
have found a very good match between the measured re-
sponse of the human visual system, and the response prop-
erties that the human retina should have predicted by this
information-theoretic approach.

4.1. Principal subspace networks

In artificial unsupervised neural networks, we can construct
algorithms which will learn to perform Infomax. Provided
we make some simple assumptions about the input noise,
in the linear 2-layer networks we mentioned earlier, Linsker
shows that information capacity is maximized when the net-
work performs principal component analysis (PCA).

Suppose we have an N-dimensional zero-mean input ran-
dom vector x, and an M-dimensional output vector y, =
[y1,-..,ynm] where yo = Wx, and W is an M X N weight
matrix with M < N (figure 1(a)). If we set the M successive
rows of W to be the M largest eigenvectors of the input co-
variance matrix Xx, = E(Xaxg), then we have performed
a principal component analysis of the input x,.

If the input x, is corrupted by equal-variance additive
gaussian noise, then PCA optimizes the information capac-
ity from X, to y,. If fact, for optimum information capacity
it is sufficient for the rows of W to span the same subspace
as the first M eigenvectors of Xx_: we call this principal
subspace analysis.

A number of neural network algorithms have been de-
veloped to perform PCA or principal subspace analysis
[14, 9, 12], many based on the Oja [8] principal compo-
nent finding neuron. Often these use a learning algorithm
of the form

AW = nyy(yax, — KW) (5)

where nyy is a small update factor, and K is a weight decay
matrix which is typically a function of W and x,.

4.2. Decorrelation networks

Any practical signal processing system will be faced with
having to cope with noise and inaccurate representation of
data within it. Suppose we are now concerned with en-
suring that our neural network should protect the outgoing
signal against processing noise on its output. If simplifying
assumptions can be made, it turns out that the network
should learn to make its outputs as uncorrelated and equal-
variance (i.e. white) as possible to optimize communication
efficiency [11].

For a neural network and algorithm to achieve this, sup-
pose that we have a network with an input vector X, output
vector yp, and interneuron vector z, where these are all M-
dimensional (figure 1(b)). We further suppose that y, and
7 adapt over a fast timescale so that
7 — nz(V ybu)+(1-nz)z ¥b = 1y (x6—Vz)+(1-7y)ys

(6)
where —V is a matrix of inhibitory connections from z to
yb, which are equal and opposite to the connections V7
from y1, to z, and ny and 7z are the update factors for yy
and z respectively. The equilibrium activity is then given
by

z=V7%y; yb =Xp — Vz (7)

so that we have
yo=(I+VV)Tx, (8)

provided the term (I 4+ VVT) is positive definite. This
settling is assumed to operate at a timescale much faster
than any change in the weights V.

In [11], it was shown that the simple local algorithm

AV = gy(yz’ —BV)
= ay(yy’ —pDV (9)

where 7y7 is a small learning rate, produces the decorre-
lated equal variance outputs required, provided this can be
achieved by reducing, and not increasing, the variance of all
the input components.

The algorithms above can be combined to try to perform
both the roles of signal extraction from input noise, and pro-
tection from output noise, towards our ultimate aim of ef-
ficient communication of information [13]. These combined
networks include feedback inhibitory connections, which are
thought to be important in many biological sensory and mo-
tor systems.

Investigating this type of artificial feedback network may
help us to learn about biological information processing in
these systems. The increasing interest in this area has led
to the recent workshop series on Information Theory and
the Brain (see [6] for the proceedings of the first of these).
Also, since simple Hebbian-like learning algorithms can be
used to find these optimal situations, this type of approach
may be practical for the initial stages of an artificial vision
system.



Xa Ya

(a)

-V

Xb

Figure 1. Linear networks for performing (a) principal subspace analysis, and (b) decorrelation.

4.3.

One interesting application from the use of principal com-
ponents is the extraction of shape from shading in human
heads by Atick, Griffin and Redlich [1]. Rather than at-
tempting to solve the general shape-from-shading problem,
they find that the variations between human heads are ad-
equately represented by a very small PCA subspace of pos-
sible 3-D objects, simplifying the problem.

Here restricting the set of objects which the system must
communicate about has allowed a simple (i.e. low-cost)
intermediate representation to be used, achieving the goal
of efficient communication within the system. With more
work in this direction it may be that the technique of many
relatively simple processing stages, that biological informa-
tion processing systems seem to use, may begin to bear fruit
in artificial information processing systems.

Other possibilities

5. CONCLUSIONS

Neural networks are growing strong links with the commu-
nications field. We have seen not only that neural networks
can be applied to applications in communication networks,
but communication theory can also be applied to neural net-
work learning. With neural networks becoming more and
more a standard tool in the information engineer’s armoury,
and with continued advances in the theoretical background
to neural networks, we could expect this trend to continue.

REFERENCES
[1] J. J. Atick, P. Griffin, and A. Redlich. Statistical ap-

proach to shape from shading: reconstruction of 3d
face surfaces from single 2d images. Neural Computa-
tion, 1996. In press.

[2] J. J. Atick and A. N. Redlich. What does the retina
know about natural scenes? Neural Computation,
4:196-210, 1992.

[3] S. Haykin. Neural Networks: A Comprehensive Foun-
dation. Macmillan, New York, 1994.

[4] A. Hiramatsu. ATM communications network control
by neural networks. ITEEFE Transactions on Neural Net-
works, 1:122-130, 1990.

[5] TEEE Communications Magazine. Oct. 1995.

[6] ITB. Special issue on Stirling Workshop on ‘Informa-
tion Theory and the Brain’. Network, 7(2), 1996.

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

R. Linsker. Self-organization in a perceptual network.
IEEE Computer, 21(3):105-117, Mar. 1988.

E. Oja. A simplified neuron model as a principal com-
ponent analyser. Journal of Mathematical Biology,
15:267-273, 1982.

E. Oja and J. Karhunen. On stochastic approximation
of the eigenvectors and eigenvalues of the expectation
of a random matrix. Journal of Mathematical Analysis
and Applications, 106:69-84, 1985.

G. Onyiagha, X. Krasniqi, and T. G. Clarkson. Prob-
abilistic RAM neural networks in ATM traffic shaping
and policing. In Proceedings of the Conference on En-
gineering Applications of Neural Networks, FANN’96,
pages 229-232, 1996.

M. D. Plumbley.
anti-Hebbian neural networks.
6:823-833, 1993.

M. D. Plumbley. Lyapunov functions for convergence
of principal component algorithms. Neural Networks,
8:11-23, 1995.

M. D. Plumbley. Information processing in nega-
tive feedback neural networks. Network, 7(2):301-305,
1996.

R. J. Williams. Feature discovery through error-
correction learning. ICS Report 8501, University of
California, San Diego, 1985.

Efficient information transfer and
Neural Networks,



